Baqasi L. A, Qari H. A, Hassan I. A. Physiological and Biochemical Response of Winter Wheat (Triticum Aestivum L.) to Ambient O3 and the Antiozonant Chemical Ethylenediurea (EDU) in Jeddah, Saudi Arabia. Biomed Pharmacol J 2018;11(1).
Manuscript received on :February 07, 2018
Manuscript accepted on :March 09, 2018
Published online on: --
Plagiarism Check: Yes
How to Cite    |   Publication History
Views Views: (Visited 244 times, 1 visits today)    PDF Downloads: 387
Physiological and Biochemical Response of Winter Wheat (Triticum Aestivum L.) to Ambient O3 and the Antiozonant Chemical Ethylenediurea (EDU) in Jeddah, Saudi Arabia

Laila A. Baqasi1,2, Huda A. Qari1,2 and Ibrahim A. Hassan2,3

1Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

2Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, 21589 Jeddah, Saudi Arabia.

3Department of Botany, Faculty of Science, Alexandria University, 21589 El Shatby, Alexandria, Egypt.

Corresponding Author E-mail: ihassan_eg@yahoo.com

DOI : http://dx.doi.org/10.13005/bpj/1346

Abstract:

This study was to conducted to investigate the use of ethylenediurea (EDU) as a possible tool to evaluate O3 effects on wheat (Triticum aestivum L.) plants under field conditions in Jeddah. Wheat plants were expsoed to ambient O3 (AA) and the antiozonant chemical ethylenediurea (EDU) in closed fumigation chambers for the full growing season. Growth, yield and physiology were determined in response to O3 and/or EDU. EDU-treated plants had higher photosynthetic rates (24%) and stomatal conductance (25%), which were reflected in higher growth and yield in terms of number of grains. The present study revealed that EDU could be used as a promising tool to mitigate damaging effects of O3 on under field conditions. EDU protected wheat plants leading to increases in photosynthetic rates, growth and yield.

Keywords:

Ethylenediurea (EDU); Growth; Ozone; Protection and Yield

Download this article as: 
Copy the following to cite this article:

Baqasi L. A, Qari H. A, Hassan I. A. Physiological and Biochemical Response of Winter Wheat (Triticum Aestivum L.) to Ambient O3 and the Antiozonant Chemical Ethylenediurea (EDU) in Jeddah, Saudi Arabia. Biomed Pharmacol J 2018;11(1).

Copy the following to cite this URL:

Baqasi L. A, Qari H. A, Hassan I. A. Physiological and Biochemical Response of Winter Wheat (Triticum Aestivum L.) to Ambient O3 and the Antiozonant Chemical Ethylenediurea (EDU) in Jeddah, Saudi Arabia. Biomed Pharmacol J 2018;11(1). Available from: http://biomedpharmajournal.org/?p=19558

Introduction

Tropospheric O3 is produced through photochemical reactions of its precursors (NOx and VOCs) and its concentrations varied spatially and temporally. Ozone (O3) is a secondary phytotoxic pollutant causing changes in metabolic, biochemical and physiological processes leading to reductions in  growth and yield of economic crops.1-4 Ozone concentrations in Jeddah were recorded to be between 40 – 70 nl l-1. 4,5 These concentrations are high enough to affect many plant processes, such as photosynthesis, transpiration, nutrient uptake, and senescence, resulting in significant effects on crop growth and yield.Jeddah suffers from serious air pollution problems due to emissions from different sources. There is a very poor legislation regarding emissions from old cars in streets as well from factories which cause environmental hazards. Levels of heavy metals, gaseous air pollutants and particulate emissions far exceed internationally acceptable standards.4-6 The antiozonant chemical ethylenediurea (EDU) is extensively used to assess the crop loss due to O3.7-8

Wheat is a nutritious and versatile crop, it has been known to be sensitive to O3 in the USA, Europe and other areas of the world.9-15 However, very little is known