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	 Brain tumor classification is a crucial task in medical image analysis due to the 
complexity of the neurological system. With the rapid advancements in deep learning techniques, 
particularly in medical imaging, there is growing potential to enhance the accuracy and efficiency 
of brain tumor diagnosis using the magnetic resonance imaging (MRI). This paper proposes 
an optimized and low-computation deep learning model built on the backbone MobileNetv2 
convolutional neural network architecture to classify the brain tumors into three categories: 
glioma, meningioma, and pituitary tumors. The model is trained, validated, and tested using a 
dataset of T1-weighted contrast-enhanced brain MR images (T1W-CE MRI). Preprocessing steps 
are incorporated to enhance the classification efficiency. We evaluate the model's performance on 
both equally and unequally distributed classes of the images and achieve an accuracy of 92.23% 
and 93.59%, with F1 scores of 92.21% and 93.65%, respectively, for both the distributions. The 
experimental results demonstrate that the proposed model efficiently classifies the brain tumors 
using the MR images and achieves superior accuracy to the latest literature methods and state-
of-the-art models: "ResNet50, VGG16, NASNetMobile, InceptionResNetV2, and InceptionV3". 
Thus, the proposed model may help assisting the radiologists in fast and better diagnoses.
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	 Cancer in critical central nervous system 
(CNS) regions, including the brain, represents 
a significant public health concern worldwide. 
They are characterized by high mortality rates, 
low survival rates, and an unfavorable impact on 
patient superiority of life. 1  As per GLOBOCAN 
2022, CNS and brain cancers are 19th in prevalence 
(1.6% of all cancers) and 12th in cancer-related 
mortality (2.6% of all cancers).2 The cases of 

CNS (also including brain tumor) are consistently 
rising globally due to demographic transitions and 
various lifestyle factors that’s results by the year 
2050, the number of new CNS cases worldwide is 
projected to reach 5,03,910, marking a staggering 
56.6% increase compared to estimates of 2022 
which were 3,21,879 as per “International Agency 
for Research on Cancer (IARC)”. This alarming 
trend is particularly pronounced in rapidly growing 



984 Gupta et al., Biomed. & Pharmacol. J,  Vol. 18(1), 983-997 (2025)

and densely populated continents such as Asia, 
where the number of new CNS cases is expected 
to rise from 1,77,139 in 2022 to 2,72,803 by 2050, 
signifying a 54% increase. Correspondingly, deaths 
in Asia due to this cancer are projected to 63.8%, 
increasing from 1,32,799 in 2022 to 2,17,518 by 
2050.3

	 The formation of a tumor in the brain is 
due to the aberrant growth of some of the brain 
cells that damages the critical tissues and leads 
to the brain cancer. Tumors may often be divided 
into two categories: benign and malignant. Tumors 
that are benign do not spread to other tissues and 
mature slowly, whereas malignant tumors mature 
rapidly and destructively invade surrounding 
tissues. Over 150 types of brain tumors have been 
identified based on the location, size, and form of 
the brain. But brain tumors are mainly classified 
into two groups: a.) primary and b.) secondary, as 
shown in Fig.1. A primary tumor originates from 
brain cells, while a secondary tumor arises when 
cancer from another part of the body spreads to the 
brain. 4 Due to this classification, brain tumors are 
generally three types: gliomas, meningioma, and 
pituitary.5 Gliomas comprise 78% of malignant 
occurrences of adult brain tumors, making them 
the most common kind where glial cells inside 
the brain are responsible for gliomas. Meningioma 
and pituitary are benign types where meningioma 
develops on the membrane enclosing the brain and 
spinal cord.6 The pituitary gland, a key structure 
beneath the brain that generates hormones, is where 
pituitary tumors arise. Tumors are categorized into 
grades I to IV by the World Health Organization 
(WHO) according to variables such as growth rate, 
malignancy, recurrence, and aggressiveness. Grade 
I and II are considered low-grade tumors, whereas 
grades III and IV are categorized as high-grade 
tumors.7

	 Clinically, MRI is the most effective 
noninvasive tool for visualizing the anatomy and 
functionality of brain tumors.8 Because of the 
significant rate of mortality, prompt diagnosis and 
precise classification of tumors inside the brain 
enhance the chances of survival. However, due 
to manual diagnosis, the rate of misdiagnoses is 
high; therefore, using computer-aided diagnosis 
(CAD) is essential to helping radiologists make 
faster, more accurate diagnoses.9 Significant 
potential has been demonstrated in CAD by recent 

developments in deep learning (DL) techniques 
that explore data from several sources, such as 
text, audio, and images. Recently, convolution 
neural networks (CNNs) under deep learning 
have made significant progress in addressing 
detection and classification issues in medical 
imaging. CNNs have the ability to automatically 
extract the most valuable features from MR images 
and minimize the dimensionality,10,11 so that 
the traditional handmade features are no hardly 
required. However, challenges still need to be 
addressed, such as high error rates in large datasets, 
computational expense, and inadequate training. 
	 Because CNNs are highly data-hungry, 
they require extensive training data samples since, 
in general, the higher the training data will be give, 
the better the CNN model performs and accuracy. 
However, the medical sector is a substantial barrier 
because to the extensive quantity of labeled image 
data. Additionally, CNNs have the drawback of 
being computationally intensive compared to 
traditional machine learning methods, requiring 
substantial resources such as enormous quantities 
of Random Access Memory (RAM) for training 
and Graphical Units. Transfer learning offers a 
solution to these challenges by delivering strong 
performance with fewer training samples and 
reduced training time.12

	 To address these challenges, we have 
introduced an optimized deep learning-based 
approach for brain tumor classification using 
transfer learning, where we applied a pre-
trained MobileNetv213 architecture as a base, 
which provides a lightweight, computationally 
efficient solution while maintaining high accuracy. 
The novelty of our work lies in combining 
MobileNetv2’s architecture with fine-tuning 
techniques, enabling classification across three 
tumor types: glioma, meningioma, and pituitary, 
while overcoming hardware and dataset limitations. 
Specifically, the proposed method is designed to 
perform smoothly on low-power devices, offering 
a practical tool for clinical applications. The aim 
of this research is to develop an efficient and 
accessible deep-learning model for brain tumor 
classification that achieves high performance with 
reduced computational requirements.
	 The main objective of this research is 
to design a low computationally expansive auto-
computer-aided diagnosis system that classifies 
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brain tumors without the need for extensive 
radiologist intervention.    
	 Our study attempts to tackle all the 
above-discussed problems in contrast with 
existing state-of-the-art models (SOTAM) such 
as “ResNet50,14 VGG16,15 NASNetMobile,16 
InceptionResNetV2,17 and InceptionV318”. That 
focuses on the classification of brain tumors 
using MR images into glioma, meningioma, and 
pituitary. In this work, transfer learning of pre-
trained MobileNetv2 is used as a backbone, and 
they are fine-tuned explicitly on the T1W-CE 
MRI brain tumor dataset for feature extraction 
and classification. The pre-trained MobileNetv2 is 
further enhanced with many top layers, which are 
subsequently trained and assessed with significant 
contributions in brain tumor classification that are 
mentioned in section 2. 
	 The rest of the paper structure is like that: 
Section 2 highlights the relevant research. Section 
3 explores the materials and methods. Section 4 
setup the experimental framework and evaluation 
measures. The results and discussion are presented 
in Section 5, and the study is concluded with future 
directions in Section 6.
Related work 
	 Advancements in deep learning (DL) 
and machine learning (ML) have emerged as 
fundamental techniques in order to classify medical 
diagnoses.19,20 Similarly, numerous investigations 
have looked into the use of ML algorithms for 
brain tumor classification, including k-nearest 
neighbor, support vector machines (SVM), and 
decision trees.21-23 Furthermore, CNNs have 
proven to be exceptionally good at extracting 
prominent features, efficiently classifying using 
the last fully connected layers, and producing 
excellent outcomes in the domain of medical 
imaging. The latest advances in human-driven 
research on magnetic resonance imaging-based 
detection, segmentation, and classification of 
brain tumors have become pressing priorities, 
as they hold the potential to facilitate timely and 
appropriate treatment interventions.24-26 In,27 a 
segmentation method combining Otsu Binarization 
with K-Means clustering was proposed, and for 
feature extraction and dimensionality reduction, 
Discrete Wavelet Transform (DWT) and Principal 
Component Analysis were employed, respectively. 
The reduced features were then classified using 

a SVM. Sensitivity, specificity, and accuracy 
measures were used to compare the outcomes 
of each processed image to the ground truth in 
order to assess the system’s performance, but due 
to an unsupervised mechanism, it was not too 
impactful in such a task. In,28 various noise removal 
techniques were implemented as a pre-processing 
step for brain tumor segmentation. Their method 
made use of DWT-based features and the Gray-
Level Co-occurrence Matrix (GLCM), and it also 
included morphological filtering to get rid of the 
noise that was created during segmentation. The 
model for identifying tumor locations in MRI 
brain images was trained and evaluated using a 
probabilistic neural network classifier. It achieved 
almost 100% accuracy in differentiating between 
normal and malignant tissues in MRI scans. In,29 
five different CNN architectures for brain tumor 
classification were proposed. According to their 
findings, architecture 2, which consists of an output 
layer, a fully connected layer, and two max-pooling 
and convolutional layers, outperformed the other 
four, with 98.51% training and 84.19% validation 
accuracy. In,30 a CNN-based complex network was 
introduced, which modified activation functions for 
classifying MRI brain tumors.
	 CNNs are highly effective in handling 
visual images, but they require large datasets 
to avoid overfitting and generalize well to 
unseen instances. To address these limitations,31 
proposed Capsule Networks (CapsNets), which 
are more robust to image rotations and affine 
transformations and require less data compared to 
CNNs, under explored the multi-class classification 
of brain tumor types using CapsNets32, conducting 
experiments on both MRI images and segmented 
tumor masks. Their model produced sixty-four 
feature maps with a single convolutional layer, 
yielding an 86.56% test accuracy. In,33 a novel 
approach involved augmenting the locality of the 
tumor region to enhance the task’s performance in 
terms of classification. Their approach consisted 
of three separate feature extraction processes: a 
gray-level co-occurrence matrix, a bag of words, 
and an intensity histogram that makes its approach 
complex. This comprehensive approach resulted an 
accuracy of 91.28%. In,34 multiple CNN models are 
performed using transfer learning, such as VGG 
19, to recognize brain tumors with an accuracy 
of 81%. In,35 a generalized deep learning (GDL) 
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technique was presented for MRI-based brain 
tumor classification with an average five-fold 
cross-validation and got an accuracy of 91.43%, 
but it has limitations in handling complex spatial 
relationships. In,36 an unsupervised generative 
adversarial network (GAN) was implemented 
for brain tumor classification task and tested the 
network performance through multiple evaluation 
metrics such as accuracy, precision, recall, and F1 
score of 91.70%, 91.17%, 90.16%, and 90.66% 
respectively. 
	 Despite the exploration of diverse 
techniques and algorithms for brain tumor 
classification, existing approaches often face 
limitations. Traditional ML classifiers rely on 
manually crafted features, a process that can be 
time-consuming, computationally expensive, and 
can compromise the efficiency of the system. 
Conversely, convolutional neural networks have 
gained traction because they have the ability to 
directly recognize the features from unprocessed 
metadata. However, CNNs can be computationally 
demanding, require fixed input image sizes, and 
necessitate careful selection of hyper-parameters 
to optimize performance. Additionally, many prior 
works involve extensive pre-processing steps, 
which can introduce complexities. This research 
addresses these limitations by employing minimal 
pre-processing and a meticulously chosen deep-
learning model with optimized hyperparameters 
and contributed significantly, which are discussed 
below.

	 The following are our study’s significant 
contributions:
• This paper proposes an optimized, low-
computation deep learning model based on the 
MobileNetv2 architecture for the classification 
of brain tumors into three categories: Glioma, 
Meningioma, and Pituitary.
• We utilized an open-accessed brain tumor MRI 
image dataset, applying minimal preprocessing 
during the training and testing stage.
• We analyzed the comparative performance metrics 
achieved by our proposed model with SOTAM 
such as “ResNet50, VGG16, NASNetMobile, 
InceptionResNetV2, and InceptionV3”. 
• We analyzed the model performance on equally 
and unequally distributed classes (glioma, 
meningioma, and pituitary). 
• In comparison to latest literature methods, 
our proposed approach exhibits outstanding 
performance across several key metrics, including 
precision, recall, F1 score, and accuracy, on both 
the training and testing sets. Additionally, the 
confusion matrix and ROC curve for the testing 
set further highlight its effectiveness.

Materials and methods

	 This section provides a detailed description 
of the technique, under which it deals with data 
collection and pre-processing, dataset selection, 
and the proposed work. 
Data collection and pre-processing
	 The data utilized in this methodology is 
T1W-CE MRI that has been obtained from an open-

Fig. 1. Types of brain tumors
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Fig. 2. Specimen images of T1W-CE MRI

Fig. 3. Pre-processing steps

access Figshare repository,37 which was uploaded 
by Cheng, Jun. These dataset images were acquired 
from 233 patients from a clinical study in China; 
T1W-CE MRI consists of 3,064 images of brain 
tumors overall and is divided into three categories: 
glioma (1426), meningioma (708), and pituitary 
(930). These images are distributed across three 
anatomical planes: sagittal (1025), axial (994), and 
coronal (1045), all with a resolution of 512x512 
pixels. The specimen images for each case of T1W-
CE MRI are shown in Fig.2. 
	 Pre-processing is a critical image 
enhancement technique used to improve image 

quality by eliminating distortions and refining 
specific properties that are valuable for further 
analysis. In this study, essential pre-processing 
steps are applied to MRI images to ensure accurate 
input to the system, thus creating an optimized 
environment for image analysis. Initially, the raw 
images from the dataset are cropped to remove 
irrelevant regions, to reducing unnecessary 
complexity in the model. To enhance feature 
extraction and improve image clarity, a non-
linear, edge-preserving bilateral filter is applied, 
which accounts for both spatial distance and pixel 
intensity differences when averaging neighboring 
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Table 1. Description of dataset and augmentation details 

Class	 Original 	 Split 		  Training set		  Validation	               Test set
	 count	 (Train:Test)				    set

Glioma	 1426	 70:30	 990	 2280	 2232	 Validation 	 436	 206
Meningioma	 708		  502	 2264	 2232	 split = 0.1 	 206	 206
Pituitary	 930		  652	 2232	 2232		  278	 206
Total	 3064		  2144x	 6776y	 6696z		  920x	 618z

x: original image count (without augmentation), y: image count after augmentation (unequally distributed classes), z: image count 
after equally distributed classes.Augmentation: A1 = 90o random rotation, A2 = Vertical flip, A3 = Horizontal flip, A4, Factor = 
2,4,3 respectively for glioma, meningioma and pituitary.

Fig. 4.  Proposed model network architecture Fig. 5. Confusion matrix framework

pixels. Additionally, histogram equalization38 is 
employed to detect anomalies such as tumors and 
tissue boundaries, enhancing contrast and visibility 

by remapping pixel intensities, resulting in a more 
contrasted image. Finally, the images are resized 
to ensure better compatibility with the proposed 
model. The complete pre-processing workflow is 
illustrated in Fig. 3. 
Dataset selection
	 To achieve fast computation and high 
model performance while utilizing optimal 
computational resources, the selection and 
preparation of the dataset are crucial. In this 
study, T1W-CE MRI images were resized to a 
resolution of 128 x 128. The model performance 
has been evaluated under both unequal and equal 
distributions of the three image categories. The 
data under-sampling technique has been applied 
to ensure equal distribution across categories.39 
Following pre-processing, the dataset has been 
divided into training, testing, and validation 
subsets, with 70% distributed for training and 
the remaining for testing (30%), as described in 
Table 1.  Additionally, data augmentation was 
employed on the training images to generate 
additional samples, thereby reducing overfitting 
and enhancing model performance.
K-fold cross validation
	 It is a widely used technique in ML 
and deep learning DL for tasks such as image 
classification. It is employed to evaluate model 
performance and mitigate issues like overfitting. 
This approach divides the dataset into K subsets, 
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Table 2. Performance analysis of the proposed model on the unequally distributed classes ( in %)

Perf.	 Class	 Acc 	 Ps 	 Rc 	 F1 	 TNR 	 FNR	 FPR	 NPV	 FDR	 FOR

Training Set	 1	 99.90	 100.0	 99.90	 99.95	 100.0	 00.10	 00.00	 99.91	 00.00	 00.09
	 2	 100.0	 99.80	 100.0	 99.90	 99.94	 00.00	 00.06	 100.0	 00.20	 00.00
	 3	 100.0	 100.0	 100.0	 100.0	 100.0	 00.00	 00.00	 100.0	 00.00	 00.00
Testing Set 	 1	 92.89	 95.74	 92.89	 94.30	 96.28	 07.11	 03.72	 93.76	 04.26	 06.24
	 2	 89.32	 83.64	 89.32	 86.38	 94.96	 10.68	 05.04	 96.86	 16.36	 03.14
	 3	 97.84	 98.19	 97.84	 98.02	 99.22	 02.16	 00.78	 99.07	 01.81	 00.93

Perf.: Performance, 1: Glioma, 2: Meningioma, 3: Pituitary, Acc: Accuracy, Ps: Precision, Rc: Recall, F1: F1 score.

Table 3. Performance analysis of the proposed model on the equally distributed classes ( in %)

Perf.	 Class	 Acc 	 Ps 	 Rc 	 F1 	 TNR 	 FNR	 FPR	 NPV	 FDR	 FOR

Training Set	 1	 99.80	 99.40	 99.80	 99.60	 99.70	 00.20	 00.30	 99.90	 00.60	 00.10
	 2	 99.20	 99.80	 99.20	 99.50	 99.90	 00.80	 00.10	 99.60	 00.20	 00.40
	 3	 100.0	 99.80	 100.0	 99.90	 99.90	 00.00	 00.10	 100.0	 00.20	 00.00
Testing Set 	 1	 91.26	 91.71	 91.26	 91.48	 95.87	 08.74	 04.13	 95.64	 08.29	 04.36
	 2	 87.86	 88.73	 87.86	 88.29	 94.42	 12.14	 05.58	 93.96	 11.27	 06.04
	 3	 97.57	 96.17	 97.57	 96.87	 98.06	 02.43	 01.94	 98.78	 03.83	 01.22

Table 4. Performance comparison of the proposed model with the SOTAM ( in %)

Class distributed	 Model	 Acc 	 Ps 	 Rc 	 F1 	 TNR 

Unequally	 ResNet50	 76.30	 79.57	 76.30	 69.21	 88.15
	 VGG16	 90.98	 90.86	 90.98	 90.66	 95.49
	 NASNetMobile	 86.41	 86.06	 86.41	 86.15	 93.21
	 InceptionResNetV2	 88.91	 87.69	 87.25	 87.13	 94.46
	 InceptionV3	 85.54	 85.22	 85.54	 85.31	 92.77
	 Proposed	 93.59	 93.77	 93.59	 93.65	 96.79
Equally	 ResNet50	 69.26	 74.42	 69.26	 64.58	 84.63
	 VGG16	 88.51	 88.50	 88.51	 88.38	 94.26
	 NASNetMobile	 85.28	 85.29	 85.28	 85.01	 92.64
	 InceptionResNetV2	 88.51	 88.89	 88.51	 88.54	 94.26
	 InceptionV3	 78.48	 79.59	 78.48	 77.1	 94.30
	 Proposed	 92.23	 92.20	 92.23	 92.21	 96.12

commonly known as folds, ensuring that each 
subset is of approximately equal size.40 The 
model is trained iteratively K times, using K-1 
folds for training and reserving one fold for 
validation in each iteration. This process enables 
a comprehensive assessment of the model’s 
performance across different portions of the 
dataset. To validate the data split (70:30) discussed 
earlier, we set the value of K to 3. For this 3-fold 
cross-validation, the dataset was divided into three 
folds, each comprising approximately 33.33% of 
the data. During training, two folds (approximately 

66.66% of the data) were used for model training, 
while the remaining fold (approximately 33.33% 
of the data) was designated for validation.
Proposed work
	 In this study, we present an optimized 
low-computation model built upon the foundational 
architecture of MobileNetv213 via fine-tuning that 
excludes the ImageNet classifier layer at the top 
and adds proposed dense layers. This model is 
customized for brain tumors classification tasks, 
leveraging its prior training on ImageNet datasets. 
The output from the second-to-last dense layer is 
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Fig. 6. Model performance based on unequally distributed classes: (a) Accuracy during training and validation 
(b) Loss during training and validation (c) Test set confusion matrix (d) ROC of the test set

retrieved once the base model is acquired, and 
then a flattened layer is used; subsequently, several 
new dense layers are introduced, incorporating 
ReLU activation and dropout layers. The complete 
proposed network architecture, illustrated in 
Fig. 4, comprises three layers: an initial fully 
connected (FC) layer with 256 neurons, followed 
by another FC layer with 128 neurons, and lastly, 
there is a layer for multi-classifier that uses a 
softmax function. The dropout rates for the first 
and second added layers are fixed at 0.5 and 0.2, 
respectively. The model processes input from the 
base architecture of MobileNetv2 and produces 
outputs for classification into glioma, meningioma, 
and pituitary categories built with a learning rate 

of 0.001 using the Nadam optimizer that extracts 
better features in less time. Our proposed model 
architectures encompass multiple parameters 
and hyper-parameters to enhance its efficiency, 
such as the number of epochs, early stopping 
conditions, tracking the accuracy of training and 
validation, and their corresponding losses, with 
the consideration of categorical cross-entropy loss 
function41. 
Experimental setup and evaluation measures
	 The experiment has been carried out on 
an Intel Core i9 processor with an integrated GPU 
and utilized a Python environment with Tensorflow, 
Keras, OpenCV, and Scikit learn libraries. Using 
the Nadam as an optimizer, the model has been 
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Fig. 7. Model performance based on equally distributed classes: (a) Accuracy during training and validation (b) 
Loss during training and validation (c) Test set confusion matrix (d) ROC of the test set

trained with batch sizes of 32 and a 0.001 learning 
rate. Several assessment metrics,42 including 
accuracy, precision, recall, F1 score, confusion 
matrix, Receiver Operating Characteristic (ROC) 
curve, True Negative Rate (TNR), False Negative 
Rate (FNR), False Positive Rate (FPR), Negative 
Predictive Value (NPV), False Discovery Rate 
(FDR), and False Omission Rate (FOR) have 
been utilized to assess model performance for the 
classification tasks in the training and testing sets. 
	 A confusion matrix (error matrix), is a 
counter that compares true labels with predicted 
classes, and provides a thorough assessment of a 
model’s functionality and adaptability to various 
classes (refer Fig. 5). Precision (Ps), defined in Eq. 
(1), finds the percentage of positively correlated 

cases that are accurately predicted. Recall (Rc), 
defined in Eq. (2), quantifies the percentage of 
actual positives that are correctly identified. F1 
score (F1), defined in Eq. (3), evaluates the balance 
between precision and recall for the positive class. 
Accuracy (Acc), defined in Eq. (4), is employed to 
evaluate the proposed model overall efficacy. True 
Negative Rate (TNR), defined in Eq. (5), measures 
the proportion of actual negatives that are correctly 
classified. False Negative Rate (FNR), defined in 
Eq. (6), evaluates the percentage of actual positives 
that are misclassified as negatives. False Positive 
Rate (FPR), defined in Eq. (7), represents the 
fraction of actual negatives incorrectly classified 
as positives. Negative Predictive Value (NPV), 
defined in Eq. (8), determines the likelihood that 
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Table 5. Performance metrics of K-fold (K = 3) validation ( in %)

Class distributed	 K-fold 	 Acc 	 Ps 	 Rc 	 F1 

Unequally	 Fold 1	 92.95	 92.86	 92.95	 92.76
	 Fold 2	 93.05	 93.00	 93.05	 93.02
	 Fold 3	 93.93	 93.92	 93.93	 93.92
	 Mean	 93.31	 93.26	 93.31	 93.23
Equally	 Fold 1	 93.13	 93.12	 93.13	 93.08
	 Fold 2	 92.20	 92.24	 92.20	 92.20
	 Fold 3	 93.06	 93.07	 93.06	 93.06
	 Mean	 92.80	 92.81	 92.80	 92.78

Table 6. Comparison of the proposed model with existing methods from recent literature

Method	 Datasets	 Acc (%)	 Ps (%)	 Rc (%)	 F1 (%)

VGG1934 	 MR Images	 81.00	 82.75	 80.25	 80.50
CapsNet32	 MR Images	 86.56	 -	 -	 -
GDL35 	 MR Images	 91.43	 -	 -	 -
GAN36	 MR Images	 91.70	 91.17	 90.16	 90.66
Proposed	 Equally distributed 	 92.23	 92.20	 92.23	 92.21
	 Unequally distributed	 93.59	 93.77	 93.59	 93.65

a predicted negative case is truly negative. False 
Omission Rate (FOR), defined in Eq. (9), estimates 
the proportion of predicted negative cases that 
are actually positive. Finally, False Discovery 
Rate (FDR), defined in Eq. (10), calculates the 
proportion of predicted positive cases that are 
falsely identified.  

	 ...(1)

	 ...(2)

	 ...(3)

	 ...(4)

	 ...(5)

	 ...(6)

	 ...(7)

	 ...(8)

	 ...(9)

	 ...(10)

Results and discussion 

	 Here, we assess our model efficacy 
to classify glioma, meningioma, and pituitary 
of the brain tumor images using an optimized, 
low-computational, fine-tuned DL model in 
conjunction with dense layers along the ReLU 
activation function. In our experiment, we trained 
our model for 35 epochs with a batch size of 32 on 
MRI images with an input image of 128x128. The 
dataset is separated into sets of training, validation, 
and testing. During the training of the model, 70% 
of the overall data images are used for training the 
model, with a split of 0.1 from training data for 
validation, and 30% of data images are used to test 
the proposed model effectiveness. 
	 To check the proposed model performance, 
we utilized the datasets in two parts that are unequal 
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Fig. 8. Performance comparison with SOTAM for unequally distributed classes

Fig. 9. Performance comparison with SOTAM for equally distributed classes

Fig. 10. Comparison of accuracy with recent related works
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distribution and equal distribution of image classes 
(glioma, meningioma, pituitary), to avoid any 
kind of biasedness. Fig. 6(a, b) shows the model 
performance in terms of loss and accuracy over the 
training and validation sets, and Fig. 6(c,d) shows 
the model performance in terms of the confusion 
matrix and ROC of a test set in an unequally 
distributed classes dataset. The model achieved a 
training accuracy of 99.90%, 100%, 100% with F1 
scores of 99.95%, 99.90%, and 100% for glioma, 
meningioma, and pituitary categories, respectively. 
Similarly, the test set accuracy have 92.89%, 
89.32%, and 97.84%, with F1 scores of 94.30%, 
86.38%, and 98.02% for glioma, meningioma, and 
pituitary categories, respectively, for unequally 
distributed classes of the dataset, as shown in Table 
2.  
	 Fig. 7(a, b) shows the model performance 
in terms of loss and accuracy over the training and 
validation sets, and Fig. 7(c,d) shows the model 
performance in terms of the confusion matrix and 
ROC of a test set in an equally distributed classes 
dataset. The model achieved a training accuracy 
of 99.80%, 99.20%, and 100%, with F1 scores 
of 99.60%, 99.50%, and 99.90% for glioma, 
meningioma, and pituitary categories, respectively. 
Similarly, the test set accuracy have 91.26%, 
87.86%, and 97.57%, with F1 scores of 91.48%, 
88.29%, and 96.87% for glioma, meningioma, 
and pituitary categories, respectively, for equally 
distributed classes of the dataset, as shown in Table 
3. 
	 Similarly, as above, Table 5 represents the 
cross-validation performance of our overall model 
under K-fold (K=3) to validate the generalizability 
of model in terms of accuracy, precision, recall, and 
F1-score in both the distribution of datasets. 
	 Figs. 8,9, which compares the performance 
of our model with SOTAM as shown in Table 4 in 
both the distribution of datasets, demonstrating 
that our technique exhibits superior efficiency. 
Similarly with comparison with latest existing 
methods as shown in Table 6 and Fig. 10, our model 
outperforms, specially the model36 with significant 
margins of 1.89% (93.59% vs. 91.70%) in 
accuracy, 2.6% (93.77% vs. 91.17%) in precision, 
3.43% (93.59% vs. 90.16%) in recall, and 2.99% 
(93.65% vs. 90.66%) in F1 score.                        
Limitations of the proposed approach 
	 The proposed model has several limitations 

that should be considered. Its performance and 
generalizability largely depend on the quality, 
diversity, and representativeness of the training 
and evaluation datasets. Factors such as limited 
dataset size or a lack of diversity in tumor types, 
patient demographics, or imaging modality could 
adversely affect its effectiveness. Additionally, the 
model requires validation on external datasets to 
ensure its reliability across different populations, 
imaging devices, and clinical settings. The 
interpretability of Mobilenetv2 also presents 
challenges, as their decision-making processes 
can be difficult to understand. For instance, the 
proposed model necessitates exactly three input 
channels, and minimum dimensions of 32x32 
images should be considered; if not met, it could 
lead to biases or errors. Furthermore, clinical 
validation through medical professionals and 
rigorous trials is essential to evaluate the model’s 
impact on patient outcomes, treatment strategies, 
and healthcare workflows.

Conclusion and future work

	 In this research, an effective, optimized 
technique that requires minimal pre-processing and 
computational power for classifying brain tumor 
using the MR dataset has been introduced. The 
proposed method uses fine-tuned, MobileNetv2 
architecture to accurately classify brain tumors into 
its different categories. While compared to relevant 
work on comparable datasets, our model showed 
the highest classification accuracy, achieving 
92.23% and 93.59% in equally and unequally 
distributed categories, respectively. Various metrics 
have been utilized to estimate the robustness 
and performance of the system. Compared to 
existing methods, our low computational robust 
automated classification technique significantly 
reduces the effort and time needed to classify brain 
tumors, which can help radiologists. Furthermore, 
investigating the effects of various activation 
functions, regularization factors, and kernel 
initializers on model performance in the future 
may help determine the ideal hyperparameters for 
brain tumor classification. The model’s clinical 
applicability and generalizability may be assessed 
by applying it to different datasets and real-world 
scenarios to enhance model performance.
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