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	 Acrylamide, a neurotoxic compound formed during high-temperature cooking 
processes, poses significant health risks, particularly regarding neurotoxicity. This study 
investigates the association between acrylamide exposure and neurotoxic effects, utilizing RNA 
sequencing (RNA-Seq) to elucidate the underlying molecular mechanisms. Gene expression 
profiles of neuronal cell models exposed to acrylamide was retrieved from ENA database with 
project id: PRJNA545942. RNAseq analysis was done to identify significant dysregulation of 
genes involved in critical cellular processes, including oxidative stress response, apoptosis, 
and neuroinflammation. Results revealed an upregulation of inflammatory pathway genes and 
a downregulation of neuroprotective factors, indicating a shift towards a pro-apoptotic and 
inflammatory state in response to acrylamide exposure. Among the upregulated genes, HMGSC1 
and TUBB5 were particularly significant for their association with neurotoxicity pathways. 
TUBB5 plays a crucial role in neuronal migration and axonal guidance; abnormalities in this 
gene are severe neurodevelopmental disorders.  Findings indicate that acrylamide exposure 
activates pathways linked to neuronal cell death and impaired neuronal function, providing 
a clearer understanding of its neurotoxic potential. This research emphasizes RNA-Seq as 
a valuable tool for investigating acrylamide-induced neurotoxicity and contributes to risk 
assessment frameworks for chemical exposures. By advancing the understanding of acrylamide's 
impact on neuronal health, this study lays the groundwork for future studies to mitigate its 
neurotoxic effects and protect public health.    
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	 Acrylamide (ACR) is a type-2 alkene; 
prolonged exposure to ACR can cause ataxia, 
weakness in skeletal muscles, developmental 
defects, reproductive issues, neuronal development, 
etc1. Acrylamide is an aggregate neurotoxin, and 
reused openness to moderate quantities may 
cause actual injury to the nervous system. ACR 
is generally used as a synthetic compound with a 
neurotoxic effect on warm-blooded animals2. Its 
impact on developmental biology has been studied 
in several organisms like mammalian models3. 
Acrylamide is a water-soluble alkene primarily 

used to produce personal care products that include 
polyacrylamide. It is also utilized in various 
chemical processes that include the treatment of 
wastewater, complex cementing processes, and 
enhancing soil fertility through soil conditioning4. 
However, exposure to acrylamide, particularly 
in its monomeric form, has been associated with 
neurotoxic effects in both humans and animals, 
leading to symptoms such as muscle weakness, 
gait abnormalities, and peripheral neurons.4

	 Acrylamide is generally found in plant-
based foods, like potatoes, grain products, 
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brewed coffee, baked foods, ready-to-eat snacks, 
etc. Studies show that the polymeric form of 
Acrylamide is non-toxic, while its monomeric 
form is highly toxic. Researchers have established 
that exposure to Acrylamide is highly toxic 
to rodents and mice, exhibiting carcinogenic, 
teratogenic, and neurotoxic effects5. Exposure 
of Acrylamide to humans causes symptoms of 
neuronal abnormalities that include symptoms like 
motor dysfunction, weakness in skeletal muscle, 
weight loss, ataxia, polyneuropathy, cancer, etc.6

	 Acrylamide-induced neurotoxicity has 
been associated with central peripheral distal 
axonopathy7. The neurotoxic effects are initiated 
by acrylamide-forming adducts with sulfhydryl 
thiolate groups, disrupting essential synaptic 
vesicle recycling mechanisms. These mechanisms 
include vesicle docking, involving essential 
proteins like synaptotagmin, synaptophysin, 
and syntaxin; vesicle processing mediated by 
complexin 2; disassembly of the SNARE (soluble 
N-ethylmaleimide-sensitive factor attachment 
protein receptor) complex; endocytosis through 
clathrin; neurotransmitter reuptake via the 
dopamine transporter; and vesicular storage, 
regulated by the vesicular monoamine transporter 
in nerve terminals8-9.
	 Researchers have identified the toxicity 
of acrylamide at the developmental level, and 
experiments have been widely studied in laboratory 
animals. However, its specific neurotoxic effects 
during early development remain underexplored. 
This gap highlights the need for advanced animal 
models to examine the impact of acrylamide at the 
neuronal developmental level and its neurotoxicity. 
These resources are essential for better clinical 
supervision of individuals exposed to acrylamide, 
especially in occupational settings10. Zebrafish 
(Danio rerio) is a standard vertebrate model to study 
developmental biology and effect of pollutants on 
it, generally it is used for neurotoxicity research11. 
Its advantages include  rapid generation time, high 
reproductive chances, and a visible body, making 
it well-suited for toxicity assessments and high-
throughput screening of chemical compounds in 
vivo.
	 Additionally, the development of the 
zebrafish brain and central nervous system occurs 
within just three days post-fertilization, allowing 
for rapid observation of developmental effects. 

With approximately 70% DNA sequence homology 
with humans and comparable neurotransmitter 
systems, zebrafish are poised to become a 
fundamental model for bridging the gap between 
cell-based studies and mammalian testing12. Their 
transparent bodies allow for easy visualization 
of chemical-induced abnormalities under a 
stereomicroscope. Although acrylamide-induced 
acute neurotoxicity has been previously assessed 
in adult zebrafish using concentrations as high as 
0.75 mM (51.31 mg/L), studies on its effects in 
larval zebrafish are still limited13.
	 The zebrafish is a fantastic harmfulness 
model and biochemical examines can be joined 
with perceptions at a primary and useful level inside 
one person valuable level inside one person. This 
smaller-than-expected audit sums up the power 
of zebrafish a model for formative neurotoxicity 
screening, and its prospects to explore working 
instruments of poisons14. 
Transcriptomic data analysis and annotations
	 Transcriptome analyses are increasingly 
conducted using high-throughput RNA sequencing 
(RNA-seq) techniques. These advanced sequencing 
methods offer numerous advantages ncluding 
sequence results at single-base pair resolution, fewer 
chances of error, and decreased background noise. 
They also provide a range of expression values 
that can be detected and analyzed. Additionally, 
RNA-seq provides higher reproducibility, requires 
smaller initial RNA sample quantities, and allows 
for identifying transcripts that may not correspond 
to a previously sequenced genome15.
	 Ongoing specialized and scientific 
advances make it worthwhile to quantify the 
articulation of thousands of qualities by equally 
utilizing cutting-edge sequencing techniques. 
Significant upgrades in sequencing advances have 
now given an uncommon freedom to analyze 
the malignancy genome for enormous scope, 
distinguishing proof of genomic adjustments 
in an exhaustive and impartial way16. High-
throughput mRNA sequencing (RNA-seq) utilizes 
considerably equal sequencing to permit an 
unbiased examination of both genome-wide record 
levels and the transformation status of a tumor. In 
the RNA-seq strategy, reciprocal DNA (cDNA) 
produces short succession peruses by immobilizing 
many intensified DNA parts onto a firm surface 
and playing out the arrangement response. 
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The subsequent arrangements are adjusted to a 
reference genome or record information base to 
depict the investigated transcriptome17 accurately.
	 DESeq2 is a powerful tool for managing 
RNA-seq data and performing differential gene 
expression (DEG) analysis. It combines read count 
data from multiple samples into a comprehensive 
matrix, with genes organized in rows and samples 
in columns. DESeq2 applies normalization 
techniques to account for sequencing depth and 
library composition variations, ensuring that the 
resulting counts accurately reflect gene expression 
levels. Notably, gene length normalization is 
unnecessary in this analysis, as the focus is on 
comparing counts of the same gene across different 
sample groups, allowing for a direct assessment of 
differential expression.18

Material and Methods

RNAseq Data Retrieval 
	 The raw fasta file of paired-end RNA-seq 
sequencing data for Danio rerio (Zebrafish) was 
retrieved from NCBI’s SRA database. (https://
www.ncbi.nlm.nih.gov/sra), (accession ID: 
PRJNA545942). Brain samples of the control and 
two ACR-exposed brain samples were downloaded 
in FASTq format.
	 Table 1 shows the RNAseq data used 
for current research. Run IDs SRR9182362 and 
SRR9182363 were used for ACR-exposed samples, 
and SRR9182372 and SRR9182373 were used as 
control samples.
	 The paired-end sequence for the Brain 
sample was taken from the ENA database. The. 
The Instrument model for the sequences was 
ILLUMINA (Illumina NovaSeq), and the RNA-
seq library samples preparation strategy was used 
in this data; the library layout was Paired seq and 
organism Danio rerio.
RNA-Seq Data analysis 
	 RNA-Seq analysis using Galaxy tools 
involves a multi-step process to ensure the accurate 
identification of gene expression patterns and 
potential genetic variants. The complete workflow 
and the tools used are shown in Figure 1. The 
workflow begins with FastQC, which evaluates 
the quality of raw RNA-Seq reads, followed by 
Cutadapt19 to trim adapters and remove low-quality 
bases, ensuring cleaner reads. Post-trimming 
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Fig. 1. Work flow for the NGS data analysis to identify differentially expressed genes

Fig. 2. Scatter plot depicting the first two dimensions obtained from a principal component analysis (PCA) 
performed on the normalized counts of the samples.

quality control is conducted with MultiQC20, 
which aggregates and visualizes FastQC reports to 
confirm improved read quality. Aligned reads are 
then mapped to the reference genome using RNA 
STAR21, generating BAM files for each sample. To 
assess alignment consistency, MultiBamSummary 
is used to compute coverage across the genome to 
assess alignment consistency, offering an overview 
of alignment quality.

	 The next step involves quantifying gene 
expression through featureCounts22, which counts 
the aligned reads per gene and generates a count 
matrix. This matrix is fed into DESeq2 23 for 
differential expression analysis, identifying genes 
with significant changes between conditions. To 
refine the results, The Filter tool is applied to select 
differentially expressed genes based on fold change 
and adjusted p-values to refine the results. These 
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genes are then annotated using Annotate DESeq224 
to provide functional insights, such as gene names 
and biological roles. For visualization, Heatmap25 
creates heatmaps to display expression patterns 
of the top differentially expressed genes across 
samples for visualization.
	 Variant calling is carried out using 
FreeBayes26, identifying potential SNPs and indels 
from the RNA-Seq data, with results saved in a 
VCF file. VCFannotate and SnpEff 27 are used to 
annotate further and predict the functional effects 
of the variants, providing a deeper understanding 
of their impact on gene function. This workflow 
offers a comprehensive approach to RNA-Seq 
analysis, utilizing powerful Galaxy tools to study 
gene expression, regulatory mechanisms, and 
genetic variants.
Quality Control and Trimming of RNA-Seq 
Data
	 To ensure high-quality data for RNA-Seq 
analysis, initial quality control (QC) checks were 
performed on the raw FASTQ files using the FastQC 
tool available on the Galaxy platform. FastQC 
provides a comprehensive quality assessment by 
analyzing various metrics, such as base quality 
scores, GC content, and the presence of adapters. 
Sequencing errors, including incorrect nucleotide 
calls and leftover adapter sequences, can introduce 
biases and misinterpretations of the data. Trimming 
adapters and low-quality bases is crucial for 
improving read mapping efficiency. The Cutadapt 
tool28 was employed for this, which trims Illumina 
paired-end and single-end data. The quality control 
results from FastQC were then aggregated using 
MultiQC, which provided a combined view of the 
overall data quality.
Mapping Reads to the Reference Genome
	 RNA STAR was utilized to align RNA-
Seq reads to the reference genome. The trimmed 
FASTQ files were input into RNA STAR, and 
paired-end reads were selected for alignment. The 
Ensembl gene annotation file (GTF) for Danio 
rerio was imported, and a temporary index of the 
reference genome was created. The output included 
a STAR log file, a splice junctions file in BED 
format, and a BAM file containing the mapped 
reads. To combine the results of all sample files, 
STAR log results were used, and the MultiQC 
tool was performed for further compilation and 
comparison. The BAM files were visualized using 

the UCSC Genome Browser and IGV viewer to 
examine the alignment quality further.
Gene Expression Quantification
	 The featureCounts tool was used to 
quantify the number of read sequences mapped 
and aligned to each gene. The aligned BAM files 
generated from RNA STAR served as the input. 
FeatureCounts calculated the number of reads 
per annotated gene using the reference GTF file. 
Default parameters were used, and the quality of 
this count data was assessed using MultiQC, which 
aggregated the featureCounts summary files for all 
samples.
Identification of Genes with Differential 
Expression
	 Differentially expressed genes (DEGs) 
prediction and statistical analysis were done using 
the DESeq2 tool, designed to analyze count data 
from high-throughput sequencing experiments. 
The count matrix generated by featureCounts was 
input into DESeq2, and experimental conditions 
(e.g., Control vs. ACR) were specified. DESeq2 
normalized the data and computed fold changes and 
p-values for gene expression differences. The data 
was filtered using the Filter tool to retain genes with 
an adjusted p-value < 0.05 and an absolute log2 
fold change greater than 1. The Annotate DESeq2 
tool was used to add additional information, 
including gene names and genomic coordinates. 
To visualize these results, the heatmap2 tool was 
employed, generating heatmaps of the top DEGs. 
Log2 transformation and data clustering were 
applied to represent gene expression patterns across 
conditions better.
Functional Enrichment and Pathway Analysis
	 Functional enrichment of the differentially 
expressed genes was done using different databases 
such as the Gene Ontology (GO) database (https://
geneontology.org/ ), the DAVID database, and the 
KEGG pathway database, which gives complete 
annotation of genes. The gene list was uploaded to 
DAVID, an online tool for functional annotation. 
GO terms related to biological processes, molecular 
functions, and cellular components were identified, 
providing insights into the biological significance 
of the DEGs. KEGG pathway analysis further 
revealed key pathways affected by differential gene 
expression.
Genetic Variant Calling and Annotation
	 The FreeBayes tool was used to call 
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Fig. 3. MA plot for brain samples illustrating the fold change in relation to the mean of normalized counts derived 
from the DESeq2 dataset.

variants from the aligned BAM files to identify 
genetic variants. The reference genome for Danio 
rerio was selected, and a VCF file containing the 
identified variants was generated. The SnpEff tool 
annotated these variants, predicting their potential 
functional impact. A pre-built SnpEff database for 
Danio rerio was downloaded and used for variant 
annotation, providing insights into the effects of 
these genetic variations.
Homology Modelling and Molecular Docking
	 Homology modeling was performed using 
Schrodinger software29, which involved importing 
the target sequence, identifying model templates, 
and building the model. Following homology 
modelling, molecular docking was conducted to 
predict the gene’s structure-function relationship. 
The docking process included protein and ligand 
preparation, docking simulations, and visual 
inspection of binding interactions. These steps 
provided structural insights into the gene and its 
potential interactions with ligands.
	 This comprehensive workflow integrates 
multiple tools for RNA-Seq data analysis, ensuring 
high-quality gene expression profiling, variant 
discovery, and structural prediction.

Results and Discussion

Comprehensive Analysis and Detection of 
Differentially Expressed Genes (DEGs)
	 The DESeq2 tool was employed to 
identify differentially expressed genes. The input 
data comprised a count table created through 
feature counting. The analysis generated three 
outputs: a normalized count matrix detailing each 
gene’s expression across samples, a graphical 
representation of all comparisons between samples, 
and an Annotation file for each gene that includes 
gene ID, statistical values like log fold change, 
normalized counts value, p-value, and adjusted 
p-value.
	 Figure 2 presents the estimation of 
variance-mean dependence derived from high-
throughput sequencing assays. It specifically 
features a PCA plot that illustrates the first two 
dimensions resulting from a principal component 
analysis performed on the samples’ normalized 
counts. In this visualization, blue dots correspond 
to the control dataset, whereas red dots denote the 
ACR dataset.
	 The MA plot Figure 3 illustrates the 
logarithm of fold change plotted against the mean 
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Table 2. Top 20 DEGs that are downregulated identified from DESeq2 tool

S.No	 GeneID	 log2(FC)	 P-value	 Gene name

1	 ENSDARG00000025428	 -3.97916	 3.34E-71	 socs3a
2	 ENSDARG00000087303	 -3.11943	 2.16E-34	 cebpd
3	 ENSDARG00000106267	 -2.88055	 7.14E-17	 CR388042.1
4	 ENSDARG00000058094	 -2.723	 8.73E-29	 ciarta
5	 ENSDARG00000037121	 -2.70408	 3.77E-19	 mat2ab
6	 ENSDARG00000089429	 -2.66139	 1.19E-14	 si:dkey-205h13.2
7	 ENSDARG00000090814	 -2.64608	 5.27E-15	 si:dkey-18a10.3
8	 ENSDARG00000053554	 -2.63851	 1.32E-22	 wdr76
9	 ENSDARG00000055186	 -2.63194	 6.72E-16	 ccr9a
10	 ENSDARG00000001882	 -2.61866	 3.05E-18	 kbtbd12
11	 ENSDARG00000091234	 -2.53925	 1.14E-19	 si:ch73-335l21.4
12	 ENSDARG00000033160	 -2.51107	 1.16E-24	 nr1d1
13	 ENSDARG00000018077	 -2.49002	 3.66E-13	 rbp1.1
14	 ENSDARG00000059054	 -2.44832	 7.71E-22	 pdk2b
15	 ENSDARG00000043281	 -2.44376	 1.50E-12	 stap2b
16	 ENSDARG00000068374	 -2.43835	 4.48E-23	 si:ch211-132b12.7
17	 ENSDARG00000056885	 -2.41226	 9.33E-26	 per1a
18	 ENSDARG00000002396	 -2.36435	 5.72E-25	 cry-dash
19	 ENSDARG00000094210	 -2.3461	 6.10E-29	 fthl31
20	 ENSDARG00000010519	 -2.32356	 4.68E-32	 per3

Fig. 4. Heatmap plot of DEG in both samples representing gene ids

of the normalized counts. Analysis of the plot 
reveals that significant gene regulation occurs 
within the range of -2 to +2. Notably, an important 
finding is evident for downregulated genes, 
indicated by red dots in the lower portion of the 
plot, which exhibit a fold change ranging from -4 

to -8. Conversely, the upper half of the plot displays 
upregulated genes, indicated by red dots, with fold 
changes ranging from +2 to +6
	 Figure 4 displays a heatmap plot that 
illustrates the expression levels of genes across 
each sample, highlighting the top 20 expressed 
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Table 3. Differentially Expressed Upregulated Genes Analyzed Using DESeq2

S.No	 GeneID	 log2(FC)	 P-value	 Gene name

1	 ENSDARG00000037738	 2.039536	 4.00E-12	 fbxl3l
2	 ENSDARG00000017780	 2.19036	 4.61E-34	 rorcb
3	 ENSDARG00000103025	 2.211373	 9.20E-30	 hmgcs1
4	 ENSDARG00000054202	 2.287135	 3.66E-11	 hbl4
5	 ENSDARG00000024488	 2.287906	 1.54E-15	 top2a
6	 ENSDARG00000103996	 2.366167	 9.90E-22	 spdl1
7	 ENSDARG00000045453	 2.370726	 7.24E-12	 f13a1a.1
8	 ENSDARG00000026904	 2.383684	 2.88E-12	 cbln13
9	 ENSDARG00000080675	 2.386276	 5.25E-12	 si:dkey-71b5.7
10	 ENSDARG00000061274	 2.446954	 3.09E-23	 lss
11	 ENSDARG00000039069	 2.468816	 2.65E-13	 slx4ip
12	 ENSDARG00000103285	 2.474278	 3.71E-13	 CCDC134
13	 ENSDARG00000076573	 2.553463	 1.57E-13	 si:dkey-88j15.3
14	 ENSDARG00000015476	 2.705268	 1.92E-16	 iqch
15	 ENSDARG00000115830	 2.713027	 3.62E-15	 BX465228.2
16	 ENSDARG00000097373	 2.759375	 1.34E-20	 ftr90
17	 ENSDARG00000104672	 3.109382	 6.33E-24	 CABZ01074397.1
18	 ENSDARG00000095522	 3.545447	 1.20E-25	 si:dkey-71b5.3
19	 ENSDARG00000092801	 3.71282	 2.06E-28	 CR855277.2
20	 ENSDARG00000087193	 3.867054	 5.86E-55	 prrg2

Table 4. List of differentially expressed genes and their corresponding 
signaling pathways identified through the Gene Ontology (GO) database

Sr.no	 Gene Identifier	 Biological Pathway

1	 ccr9a	 Cytokine- Cytokine receptor interaction 
2	 Mat2ab	 Methionine adenosyl transferase II alpha beta
3	 Per3	 Herpes simplex infection
4	 Hmgsc1	 Metabolic pathway
5	 Tubb5	 Gap junction and phagosome

genes. Additionally, Table 2 presents the top 10 
differentially expressed genes (DEGs), their log 
fold change (log FC), p-values, and annotations, 
including Gene ID and Gene name. 
	 In Table 2, a summary for each gene is 
shown based on a model using the negative binomial 
distribution. The top 20 differentially expressed 
genes are shown, which are downregulated. Here, 
the socs3a gene has a minimum log(FC) value 
of—3.97916 and a p-value of 3.34E-7.  
	 Table 3 highlights the upregulated genes, 
among which HMGSC130 and TUBB531 have 
been linked to neurotoxicity pathways, according 
to research. The TUBB5 gene is associated with 
abnormal neuronal migration disorders and 
impaired axonal guidance. Individuals affected 

by TUBB5 mutations exhibit microcephaly, 
ataxia, and severe damage to the development 
of psychomotor skills. Brain imaging shows that 
patients suffering from these diseases uncover 
various malformations in the development cortical 
region, like white matter and basal ganglia, 
abnormalities in the development of the corpus 
callosum, damage in the brainstem and cerebellum 
region, etc..Functional Profiling and Enrichment of 
Differentially Expressed Genes
	 Gene annotation was conducted using the 
DAVID tool and the Gene Ontology (GO) database. 
Functional annotation of identified DEGs was 
identified from the DAVID database (Database 
for Annotation, Visualization, and Integrated 
Discovery https://david.ncifcrf.gov ). Further, GO 
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Fig. 5. Homology modeled structure of PER3_
DANRE Uniprot accession number Q9I8L4 .

Fig. 6. Acrylamide interaction with per3 protein
Fig. 7. Homology modeled Structure of ccr9a Uniprot 

id Q568F5

(Gene Ontology http://geneontology.org ) was used 
to study the biological function of these genes. It 
provides information on genes in three different 
categories: MF (Molecular Function), CC (Cellular 
Component), and BP (Biological Process), which 
includes detailed information about genes.
Annotation of Biological Pathways
	 Pathway enrichment analysis was 
performed to identify the genes associated with 
tumor- or cancer-related pathways. This analysis 
was applied to differentially expressed genes, with 
the most significant genes highlighted in Table 4. 
The genes identified include ccr9a, mat2ab, per3, 
hmgsc1, and tubb5. These genes were examined 
utilizing the Gene Ontology (GO) database to 
determine their involvement in specific pathways. 
Table 4 below presents the pathways associated 
with these differentially expressed genes.

	 The table 4 highlights five genes, each 
linked to a specific biological pathway, revealing 
their roles in immune regulation, metabolism, 
viral response, and cellular communication. Ccr9a 
is involved in immune cell migration within the 
Cytokine-Cytokine receptor interaction pathway, 
potentially impacting inflammatory diseases. 
Mat2ab plays a key role in methylation processes 
within cells, essential for gene expression and 
metabolic balance. Per3 is associated with 
immune responses to herpes simplex infection 
and may influence viral susceptibility based on 
circadian rhythms. Hmgsc1 functions in cholesterol 
biosynthesis within the metabolic pathway, with 
implications for cardiovascular health. Finally, 
Tubb5 supports cellular communication and 
pathogen clearance, linking it to immune efficiency 
and neuroprotection. These genes underscore the 
interconnectedness of critical biological pathways 
and may inform future therapeutic targets for 
immune, metabolic, and infectious diseases.
Homology Modeling and Molecular Docking 
	 Homology modelling of the per 3 protein 
was done using the prime tool of Schrodinger 
software. The per3 protein sequence was retrieved 
from the Unipart database with an accession 
number. Two templates, 4DJ3_A and 4DJ2_A, 
were used for multi-template homology modelling, 
with homology scores of 65 and 58%, respectively. 
Figure 5 shows the modelled structure of the per 2 
protein, which was further used for docking.
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	 A glide dock was done between the 
modeled protein of Per2 and Acrylamide. Figure 
6 shows the protein-ligand interaction map, 
which shows two hydrogen bonds were made at 
positions Asparagine 298 and Thionine 217 with 
a glide score of -9 kcal. The docking analysis 
between the modeled Per2 protein and acrylamide 
revealed a strong interaction interaction map 
shows two hydrogen bonds at Asparagine 298 and 
Threonine 217, suggesting potential binding sites 
for acrylamide on Per2. 
	 The protein sequence of ccr9a was 
retrieved from the UniProt database with accession 
number Q568F5. To predict the structure, two 
templates were used with PDB id 5LWE_A and 
6WWZ_R, respectively, with a 67% and 58% 
homology score.
	 Acrylamide’s interaction with the ccr9a 
protein displayed a salt bridge with a glide score 
of -6 kcal. This salt bridge represents a significant 
interaction, involving oppositely charged groups 
in close proximity, which could influence ccr9a 
protein function. Together, these docking results 
provide structural insights into how acrylamide 
binds with Per2 and ccr9a, highlighting possible 
molecular mechanisms of acrylamide-induced 
neurotoxicity.
	 Docking analysis showed that acrylamide 
forms stable interactions with Per2 (two hydrogen 
bonds, glide score -9 kcal) and ccr9a (salt bridge, 
glide score -6 kcal), suggesting these bonds may 
disrupt normal protein functions and signaling 
pathways. The study’s integrative approach 
combining bioinformatics and molecular docking 
highlights potential molecular targets for future 
neuroprotective interventions and therapeutic 
strategies against acrylamide-induced toxicity.

Conclusion

	 The development of abnormal cell clusters 
in the brain can initiate and promote the growth of 
brain tumors. These irregular cells quickly disrupt 
brain function and negatively impact the patient’s 
health.This study analyzed RNA sequencing data to 
identify critical insights, such as which genes show 
upregulation or downregulation when exposed to 
acrylamide treatment and their involvement in 
Gene Ontology (GO) terms or KEGG pathways. 
To address these questions, this study employed a 

reference-based RNA-Seq analysis approach on 
the dataset.
	 Galaxy provides a practical web-based 
scientific analysis used to analyse large datasets. 
The result analysis found sets of down- and up-
regulating genes. These genes were then visualized 
using the UCSC genome browser, showing 
significant variation to the reference genome. 
Pathway enrichment analysis was conducted 
using the DAVID tool and the Gene Ontology 
(GO) database, and a total of 20 down-regulated 
and 20 up-regulated genes were found. PER3 and 
CCR9A genes were down-regulated, and HMGSC1 
and TUBB5 were up-regulated. These genes have 
a significant role in causing neurotoxicity and 
are involved in the signalling pathways. Further, 
homology modelling and molecular docking 
predicted the structure of up-regulated genes using 
the Schrodinger Maestro tool. An acrylamide 
reaction was seen in the per3 and ccr9a proteins.
	 This study highlights neurotoxic 
pathways and identifying specific up- and down-
regulated genes (e.g., PER3, CCR9A, HMGSC1, 
TUBB5). Additionally, homology modeling and 
molecular docking provide structural insights into 
acrylamide’s effects on proteins, making this study 
a valuable foundation for future neurotoxicity 
research and potential therapeutic development.
	 Deepening our understanding of 
acrylamide’s effects on neuronal health paves the 
way for future studies on mitigating its neurotoxic 
impact and safeguarding public health. This study 
on acrylamide-induced gene expression changes in 
the brain has key limitations, including its reliance 
on reference-based RNA-Seq analysis, which may 
overlook novel transcripts. Future work should 
incorporate de novo RNA-Seq to capture novel 
transcripts, validate findings through in vitro or 
in vivo experiments. Additionally, exploring 
the therapeutic potential of key genes (PER3, 
CCR9A, HMGSC1, TUBB5) and using multi-
omics approaches could provide deeper insights 
into acrylamide’s neurotoxic effects and aid in 
developing preventative strategies.
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