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	 Stress affects mental and physical health, contributing to cardiovascular diseases 
and cognitive disorders, and early detection plays a crucial role in mitigating these risks. This 
study enhances stress detection by analyzing electroencephalography (EEG) signals from the 
DEAP ( A Database using Physiological Signals) data set and electrocardiogram (ECG) signals 
from the WESAD (Wearable Stress and Affect Detection) data set, with EEG offering a cost-
effective solution and ECG providing detailed cardiovascular insights. It compares individual 
sensor analysis with multi-sensor fusion, demonstrating that fusion improves accuracy, as the 
ECG model achieves 91.79% accuracy, the EEG model reaches 96.6%, the feature-level fusion 
model achieves 98.6%, and the score-level fusion model achieves 97.8%. Using the Archimedes 
Optimization Algorithm (AoA) and Analytical Hierarchical Process (AHP) for feature selection 
and a hybrid Deep Convolutional Neural Network-Long Short-Term Memory (DCNN-LSTM) 
model for processing, the study highlights the effectiveness of a multi modal approach for real- 
time, accurate stress monitoring in clinical and industrial settings. It also integrates additional 
modalities and refines methods to enhance the system further, positioning AI-driven multimodal 
systems as powerful tools for early intervention and improved mental health management.

Keywords: Archimedes optimization algorithm (AOA), Deep Convolution Neural Network DCNN), 
Electrocardiogram (ECG), Electroencephalography (EEG), Long Short Term Memory (LSTM).

	 Stress significantly impacts health, 
leading to issues such as anxiety, accelerated 
heartbeat rate, and hypertension1. Financial 
pressures and demanding workloads worsen 
stress, creating emotional imbalances in adults 
and children. While various detection methods, 
including audio, video, and physiological sensors 
exist, physiological methods offer the most reliable 
results2. EEG signals effectively detect early-stage 

stress and improve clinical interventions, although 
artifact management and pattern interpretation 
challenges persist3. Acute stress also affects 
heart rate variability and ECG, highlighting 
stress management’s importance in preventing 
arrhythmia 4. Combining EEG and ECG for stress 
detection holds promise, as stress impacts the brain 
and cardiovascular system5. Multi modal bio-signal 
analysis enhances stress detection by clarifying 
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bio-signal behavior under stress6. The research 
underscores the need for cost-effective, user-
friendly systems that optimize machine-learning 
models and biological features7. Sensor fusion 
techniques, especially feature-level and score-level 
fusion, improve the accuracy and consistency of 
detection8. Hybrid models that combine Deep 
Convolutional Networks (DCNN) with Recurrent 
Neural Networks (RNN) offer enhanced accuracy 
9. This paper explores multi modal stress detection 
using EEG and ECG to improve classification 
accuracy over single-modality methods.
	 The paper is organized into four sections: 
Section 1 reviews the literature on mental stress 
detection, Section 2 presents the proposed methods 
for automated stress detection strategies, Section 
3 analyses and evaluates the experimental results, 
and Section 4 concludes the study.

Materials and methods

Automated stress detection strategies
	 The research compares two automated 
stress detection strategies: the single-sensor 
strategy analyzes data from one source, and the 
multi-sensor fusion strategy combines data from 
multiple sensors to improve accuracy.
Dataset
	 This study detects stress by combining 
EEG data from the DEAP and ECG data from the 
WESAD datasets. It collects EEG signals from 32 
participants (50% female, aged 19–37) using 32 
active AgCl electrodes at 512 Hz during a 2-minute 
baseline and 40 video trials with self-assessments. 
Researchers record ECG data from 15 participants 
(average age 28) using a RespiBAN chest device. 
They preprocess and filter the data (0.5–40 Hz), 
remove artifacts, and segment it into epochs. With 
244 paired samples (104 normal and 140 stress), 
the study examines how stress impacts brain and 
heart activity.
EEG\ECG Preprocessing
	 Preprocessing methods like filtering and 
artifact rejection eliminate noise and artifacts from 
raw EEG and ECG signals27. After preprocessing, 
the wavelet packet method splits the data into 
spectral components and reconstructs it to reduce 
interference and enhance clarity 28.

Extracting multiple EEG /ECG features
	 This study combines 513 EEG and 72 
ECG features to assess stress levels efficiently. 
Critical brain signal properties associated with 
stress are captured by EEG features, which 
include statistical metrics, temporal patterns, and 
frequency-domain parameters. ECG characteristics 
reflect heart activity changes, which provide 
essential information on cardiovascular reactions to 
stress. These characteristics offer a thorough study 
that improves the suggested detection system’s 
accuracy. 
Multiple EEG features
	 Several EEG features, such as variance, 
mean, local gradient pattern (LGP), local neighbor 
difference patterns (LNDP), local binary patterns 
(LBP), Hjorth parameters, intensity-weighted mean 
frequency and bandwidth (IWBF and IWBW), and 
wavelet packet decomposition, are extracted from 
the temporal and frequency domains in this stress 
detection study. As indicated in Table 1, these 
methods improve the representation of EEG signals 
by adding different time-domain and frequency-
domain components.
	 This research extracts 513 EEG features 
that comprehensively capture the spectral, 
temporal, and spatial characteristics of brain 
signals. These features are vital for identifying 
patterns associated with stress.
Multiple ECG features
	 The ECG features essential for stress 
detection and monitoring include morphological 
features, which reveal structural changes in 
the heart. Hjorth’s parameters capture dynamic 
behavior, while wavelet transform features and 
statistical parameters provide detailed insights 
into the signal. Researchers use impulsive metrics 
to detect sudden variations in heart activity. These 
features collectively reflect changes in heart 
function, enhancing the effectiveness of stress 
monitoring through ECG.
	 Analyzing 513 EEG features and 72 
ECG features improves stress detection accuracy. 
EEG features like mean, variance, and wavelet 
packet transform (WPT) capture diverse brain 
signal properties, while ECG features such as 
morphological metrics and Hjorth’s parameters 
reflect changes in heart activity.
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Relevant features selection using the optimized 
Algorithm
	 Feature selection plays a crucial role in 
analyzing high-dimensional EEG and ECG data. 
Principal Component Analysis (PCA) reduces 
dimensionality but may discard valuable features, 
while Genetic Algorithms (G.A.) and Recursive 
Feature Elimination (RFE) effectively identify 
features but demand significant computational 
resources. The Archimedes Optimization 
Algorithm (AoA) addresses these challenges by 
balancing exploration and exploitation through a 
robust fitness function, optimizing convergence, 
and avoiding local minima. AoA generates 
and refines feature subsets to optimize feature 
selection for stress detection. Integrating AoA 
with the Analytical Hierarchy Process (AHP) 
further enhances this process by structuring 
decision-making hierarchically, assessing criteria 
like Covariance, Entropy, and the Ratio of Inter 
to Intra-class Variability. AHP conducts pairwise 
comparisons to prioritize the most indicative 
stress features and includes a consistency check to 
ensure reliable outcomes. This combined approach 
provides a robust, optimized feature selection for 
effective stress detection.
Classification techniques
	 Effective stress detection relies on 
advanced classification techniques that can 
accurately interpret complex patterns within 
physiological data, such as ECG and EEG signals. 
Two of the most prominent methods used for this 
purpose are Deep Convolutional Neural Networks 
(DCNNs) and Long Short-Term Memory (LSTM) 
networks.
Deep Convolutional Neural Networks (DCNNs)
	 Enhance stress detection by automatically 
learning and extracting spatial and temporal features 
from EEG and ECG signals. Each layer in a DCNN 
applies filters to generate feature maps highlighting 
stress-related patterns. The ReLU (Rectified Linear 
Unit) activation function applies a non-linear 
transformation, enabling the model to capture 
complex patterns in the data. Pooling layers reduce 
the spatial dimensions of feature maps, simplifying 
the model and improving computational efficiency.
DCNNs adapt directly from the data, eliminating 
the need for predetermined features. Stacking 

deeper CNN layers improves feature correlation 
and representation. The convolution process uses 
w × w filters on the spectrogram to extract features.
	 From a 1D vector selected by AOA-AHP, 
the operation at each position ( 5ØeÜ, 5ØfÜ) is 
detailed in Equations 1.

	 ...(1)

	 Where Feat represents the feature input, 
and K represents the convolutional kernel. The 
convolution process for a single dimension appears 
as follows:

	 ...(2)

	 The Conv filter ’s weights start as 
random values and are optimized using the Adam 
algorithm. The B)N. layer normalizes the Conv 
layer’s output, reducing internal covariance 
variation and lessening layer dependency. Negative 
values in the Conv layer output decrease feature 
non- linearity, so ReLU replaces negative values 
with zero, as shown in Equation 3.

	 ReLU(x,y)=max  (C(x,y),0)	
...(3)

	 The MaxPool layer selects significant 
features and minimizes size by choosing the highest 
value in a 2x2 pixel frame. Equation 4 calculates 
the maximum possible value from the ReLU layer 
output as follows.

...(4)
	 These processes illustrate how DCNNs 
extract, refine, and condense relevant stress-related 
features from EEG and ECG data, creating a more 
effective stress detection model.
B) Long Short-Term Memory (LSTM) 
	 LSTM enhances recurrent neural networks 
(RNNs) by addressing vanishing and exploding 
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gradient issues, common challenges in learning 
long-term dependencies in sequential data. It 
operates with the following equations at any time 
step t:
ft =σ (Wf • [ht-1 ,xt ]+bf )	 ...(5)
it =σ (Wi • [ht-1 ,xt ]+bi )	 ...(6)
ot =σ (Wo • [ht-1 ,xt ]+bo)	 ...(7)
Ct~ = tanh (c • [ht-1, xt ] +bc)	 ...(8)
Ct = ft • Ct-1+ it • Ct~	 ...(9)
ht = ot • tanh(Ct)	 ...(10)

	 The forget gate ft determines what 
information to discard from the cell state, while 
the input gate decides which values to update. The 
output gate controls the cell’s current output, and 
the candidate cell Ct

~serves as a potential update. 
The updated cell state Ct combines the old.
	 State with the candidate state based on the 
gates’ decisions, resulting in the hidden state output 
!t at time t. LSTM updates and outputs information 
from sequential data to detect stress using given 
equations. It captures complex patterns and 
retains essential information over long sequences. 
Combined with DCNNs, it improves reliability 
and accuracy by leveraging spatial and temporal 
features.
Multiple Sensor Fusion Strategy
	 Stress responses vary by individual, with 
some reacting differently to the same situation. A 
single sensor may detect stress in some but not 
others. Using multiple sensors improves detection, 
providing richer data for machine learning 
algorithms to create a more robust model10.
	 The multiple-sensor fusion strategy 
includes two types: feature-level fusion, which 
combines data before feeding it into the model, 
and score-level fusion, applied after the model 
determines the outcome11. This study uses feature-
level fusion through concatenation and score-level 
fusion with a weighted technique.
Feature-level fusion
	 Fusion technologies such as concatenation, 
PCA, LDA, and Min-Max fusion enhance model 
performance by integrating diverse data sources. 
Concatenation merges all feature sets into a single 
vector, preserving the complete information 
from different sources and often leading to better 
accuracy. Unlike PCA and LDA, which reduce or 
transform data and may lose essential details, or 

Min-Max fusion, which only normalizes scales, 
concatenation keeps all original features intact, 
providing a richer and more comprehensive input 
for models. As shown in Figure 2, the methodology 
of the Feature-level fusion approach combines 
features extracted from EEG and ECG signals to 
form a unified feature set.
	 The proposed system uses concatenation 
fusion to combine EEG and ECG feature vectors 
into a unified vector, preserving the original data. 
This method aims to improve model accuracy 
and robustness in stress detection by retaining 
all relevant features and enabling the learning of 
intricate patterns and interactions between EEG 
and ECG signals, as illustrated in Figure 3
	 As shown in Figure 3, Concatenation 
fusion merges raw feature vectors directly, 
preserving all data without transformation. The 
concerted fusion data passes to the classifier model 
for stress detection.
Score-level fusion
	 In score-level fusion, researchers 
independently train separate models on EEG and 
ECG data. Each model generates a stress detection 
score, which they merge using methods such as 
weighted fusion, averaging fusion, majority voting, 
or adaptive fusion. This study focuses on weighted 
fusion, applying weights to EEG and ECG scores, 
as illustrated in Figure 4.
	 Efficient fusion technology is critical in 
enhancing multimodal stress detection systems 
by integrating data from multiple physiological 
sources, such as EEG and ECG signals. This 
study implements feature-level fusion using a 
concatenation technique and score-level fusion 
through a weighted score-level technique.

Results

	 The performance analysis of the suggested 
stress detection systems is shown in this section. 
It assesses individual sensor strategies using EEG 
and ECG data as well as numerous sensor fusion 
techniques, such as feature-level and score-level 
fusion. The investigation shows how hybrid 
DCNN-LSTM models, enhanced feature selection, 
and advanced preprocessing methods improve 
stress detection accuracy.
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Table 1. Extracted multiple EEG features

Feature 	 Feature Group Category	 Features
Group

1	 Statistical Measure	 Mean, SD, Variation, Median, Skewness
2	 Temporal Feature	 Activity, Mobility, Mobility
3	 Non-linear &Energy Measure	 Entropy, Non-linear Energy, Line Length
4	 Pattern based feature extraction	 LBP, LNDP, LGP
5	 Energy and Frequency Measure	 Energy, IWMF, IWBF
6	 Wavelet Transform	 WPT

Table 2. Extracted multiple ECG features

Feature	 Feature Group Category	 Features
Group

1	 Morphological Features	 QRS duration, S.T. Segment, and T Wave Amplitude
2	 Wavelet Transform Features	 Mean, Kurtosis, SD, variance of 3rd level WPT
3	 Statistical Features	 Mean, Kurtosis, Shape Factor, and Skewness
4	 Impulsive Metrics Features	 Peak Value, Crest, Impulse, and Clearance Factor
5	 Hjorth’s Parameters	 Activity, Mobility, and Complexity

Fig. 1. Proposed Methodology for Individual Sensor 
Strategy

Experimentation on Individual Sensor Strategy
	 The analysis evaluates stress identification 
using separate EEG and ECG sensors. It highlights 
preprocessing methods, enhances feature selection, 
and applies hybrid DCNN-LSTM models to 
examine their impact on detection accuracy.
EEG Stress Detection Modal Implementation
	 This research detects stress using EEG 
by preprocessing signals and extracting related 
features. The system enhances accuracy using 

Wavelet Packet Transform, selects features with 
the AoA-AHP algorithm, and employs a hybrid 
DCNN-LSTM approach. Figure 5 presents the 
results, showing accurate stress detection based on 
features extracted from denoised EEG signals. The 
performance metrics confirm that increasing the 
number of relevant EEG features to 350 improves 
accuracy, recall, precision, and F1-score. The 
system achieves peak performance at 350 features, 
with 95.25% accuracy, 97 recall, 98 precision, and 
98 F1-scores. Performance slightly declines beyond 
350 features due to the inclusion of non-relevant 
features, confirming that selecting approximately 
350 key features optimizes EEG-based stress 
detection.
ECG Stress Detection Modal Implementation
	 The proposed ECG stress detection model 
enhances ECG signals using a Wavelet Packet.
	 T r a n s f o r m  b e f o r e  e x t r a c t i n g 
morphological, statistical, time-domain, and 
frequency-domain features. It then selects 
prominent features with the AOA-AHP optimization 
algorithm. It applies a hybrid of DCNN and LSTM 
deep learning techniques to improve feature 
distinctiveness and capture long-term temporal 
dependencies in the ECG signal.
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Fig. 2. Feature-level fusion

Fig. 3. Concatenation Feature level fusion

Fig. 4. Score-level fusion

	 The proposed ECG stress detection 
model, shown in Figure 6, steadily improves 
performance metrics as the number of relevant 
features increases. With 50 features, it achieves 
peak performance, delivering 91.79% accuracy, 
92 recall , 95 precision, and a 93 F1 score. Even 

as metrics slightly decline beyond this point, the 
model consistently detects stress effectively using 
distinct ECG features.
Experimentation on multiple sensor fusion 
strategy
	 This  sect ion explores  AI-driven 
multimodal fusion strategies for stress detection 
by combining EEG and ECG data. It focuses on 
feature-level and score-level fusion techniques to 
improve accuracy and enhance stress detection 
performance using machine learning algorithms.
	 Feature-level fusion strategy study 
enhances stress detection by applying feature-
level fusion of EEG and ECG data with machine 
learning algorithms. It combines features from 
both modalities to capture stress-related patterns. 
It evaluates traditional models like Decision Trees 
(C.T.), K-Nearest Neighbors (KNN), Support 
Vector Machines (SVM), and Ensemble methods, 
as well as advanced deep learning models.
	 Figure 7 shows that the DCNN-LSTM 
algorithm achieves 97.3% accuracy in detecting 
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Fig. 5. Performance Metrics of EEG Stress Detection Modal

Fig. 6. Performance Metrics of ECG Stress Detection Modal

Fig. 7. Performance of Feature-level fusion Stress Detection Modal

stress from EEG and ECG signals, proving 
its effectiveness for real-time mental health 
monitoring. The model improves accuracy by 
denoising signals and applying the AoA-AHP 
technique to select critical features. Experiments 
reveal that AoA-AHP with 350 features achieves 
98.6% accuracy, surpassing the 97.3% accuracy 

achieved with 586 features. This approach 
optimizes feature selection, reduces dimensionality, 
and enhances performance.
Score-level fusion strategy
	 This strategy improves stress detection 
accuracy by combining EEG and ECG scores using 
Equation 12
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Fig. 8. Impact of Weight Factor α on Score-Level Fusion Performance

Fig. 9. Score-Level Fusion Performance at α = 0.5

	 ...(11) 

Where, (α) -Weight for the EEG score, (1-α) - 
Weight for the ECG score
	 The results demonstrate that á = 0.5 
achieves the highest accuracy, as shown in Figure 8. 
Deviating from this value decreases performance, 
highlighting the importance of selecting the optimal 
weight factor for effective stress detection. With α 
= 0.5 yielding the best results, the system applies 
equal weights to EEG and ECG modalities across 
different algorithms, as presented in Figure 9.

Discussion

	 This research investigates stress detection 
using advanced machine learning techniques and 
sensor fusion approaches to enhance accuracy and 

reliability. The study evaluates stress detection 
systems employing individual sensors (such 
as EEG and ECG) and multiple sensor fusion 
methods. The fusion strategies involve feature-
level integration and score-level fusion, utilizing 
optimized algorithms such as DCNN-LSTM (Deep 
Convolutional Neural Network-Long Short-Term 
Memory) and AOA-AHP (Arithmetic Optimization 
Algorithm-Analytic Hierarchy Process). The 
comparison focuses on accuracy to assess the 
system’s effectiveness in detecting stress.
	 The suggested stress detection systems, 
particularly those that incorporate feature-level and 
score-level fusion of EEG and ECG signals, surpass 
current leading methods regarding accuracy. The 
model achieves an impressive accuracy of 98.6% 
through feature-level fusion and 97.8% with score-
level fusion, higher than the previous maximum 
accuracy of 93.27% reported by studies using 
a two-layer LSTM. This approach effectively 
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Table 3. Performance Evaluation of Proposed Stress Detection Systems vs. State-of-the-Art

Reference	 Biosignal used	 Deep learning model	 Accuracy

[12]	 EEG	 CNN	 60.21%
[13]	 EEG	 Deep CNN	 64.20%
[14]	 EEG	 CNN	 77.90%
[15]	 EEG	 EEG-Conv	 82.95%
[16]	 EEG	 3-D AlexNet CNN	 86.12%
[17]	 EEG	 Symmetric DCAN	 87.62%
[18]	 EEG	 2-D CNN	 93.00%
[19]	 EEG	 Two-layer LSTM	 93.27%
[20]	 EEG	 ConNet + LSTM	 84.48%
[21]	 EEG	 GWO+ BLSTM	 82.57%
[22]	 ECG, EDA	 FDA	 87.5%
[23]	 ECG,EDA, BVP	 ANN	 79%
[24]	 EEG, ECG	 PCA, SVM	 79.54%
[25]	 EEG, ECG, EMG	 LDA	 86.0%
[26]	 EEG, ECG, EDA	 PCA,SVM	 86.0%
Proposed modal	 ECG	 PDCNN+LSTM	 91.79
	 EEG		  96.5
	 EEG+ECG (FeatureLevel fusion )		  98.6
	 EEG+ECG (ScoreLevel fusion )		  97.8

identifies stress by utilizing cutting-edge deep-
learning models and techniques that integrate data 
from multiple sensors.

CONCLUSION

	 The comparison of AI-powered multi 
modal stress detection demonstrates the crucial 
advantages of combining several sensors and 
sophisticated feature selection methods. The stress 
detection accuracy is increased by combining 
EEG and ECG signals with the Archimedes 
Optimization Algorithm (AoA) and Analytical 
Hierarchical Process (AHP) for feature selection 
and by employing a hybrid DCNN-LSTM model. 
The accuracy of feature-level fusion reaches 
98.6%, score-level fusion reaches 97.8%, ECG 
stress detection increases from 88.6% to 91.79%, 
and EEG detection improves from 95% to 
96.6%. These findings highlight the multi modal 
approach’s efficacy in enhancing precise, real-time 
stress monitoring in clinical and industrial contexts. 
By incorporating more modalities and improving 
techniques, the study demonstrates the possibility 
of further improvements, solidifying AI-driven 
multi modal stress detection as a viable instrument 
for early intervention and better mental health.
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