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	 This research delves into the technical advancements of image segmentation and 
classification models, specifically the refined Pix2Pix and Vision Transformer (ViT) architectures, 
for the crucial task of osteoporosis detection using X-ray images. The improved Pix2Pix model 
demonstrates noteworthy strides in image segmentation, achieving a specificity of 97.24% and 
excelling in the reduction of false positives. Simultaneously, the modified ViT models, especially 
the MViT-B/16 variant, exhibit superior accuracy at 96.01% in classifying osteoporosis cases, 
showcasing their proficiency in identifying critical medical conditions. These models are poised 
to revolutionize osteoporosis diagnosis, providing clinicians with accurate tools for early 
detection and intervention. The synergies between the Pix2Pix and ViT models open avenues 
for nuanced approaches in automated diagnostic systems, with the potential to significantly 
improve clinical results and contribute to the broader landscape of medical image analysis. As 
osteoporosis remains a prevalent and often undiagnosed condition, the technical insights from 
this study hold substantial importance in advancing the field, emphasizing the critical role of 
accurate diagnostic tools in improving patient care and health outcomes.
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	 Medical image analysis has witnessed 
significant advancements in recent years with 
the emergence of deep learning techniques. 
X-ray imaging is a valuable diagnostic tool in 
medicine, aiding in the detection of various 
conditions, including osteoporosis. Image analysis 
plays a pivotal role in healthcare by providing 
clinicians with advanced tools to interpret and 
diagnose medical conditions. It allows for the 
precise visualization of internal structures, 
aiding in the early detection and treatment of 
diseases. It contributes to improved patient care, 
faster diagnoses, and better treatment planning, 

ultimately enhancing the overall quality of 
healthcare services. 
	 Pix2Pix, a state-of-the-art generative 
adversarial network (GAN), as a cutting-edge 
solution for image segmentation in X-ray imaging. 
Pix2Pix offers the promise of automating and 
enhancing the precision of this critical task, with 
the potential to impact the accuracy and efficiency 
of medical diagnoses.1 
	 This precision is crucial for identifying 
regions of interest (ROIs) in X-ray images, 
such as fractures or areas of bone density 
change, with remarkable accuracy. Additionally, 
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Pix2Pix can improve image quality by reducing 
noise and artifacts2, thereby facilitating more 
reliable segmentation results. Moreover, by 
generating synthetic X-ray images, Pix2Pix aids 
in data augmentation, expanding the dataset 
for segmentation tasks and improving model 
generalization. The synthetic data generation 
approach has been effective in addressing data 
scarcity issues3, ensuring that segmentation 
models are well-trained. Furthermore, Pix2Pix’s 
conditional image translation capability allows it 
to adapt to specific segmentation tasks, focusing 
on particular anatomical structures or pathologies. 
Overall, Pix2Pix’s capabilities offer significant 
potential to reduce manual intervention, save time, 
and enhance the accuracy and efficiency of X-ray 
image segmentation in clinical settings.
	 This research introduces the integration 
of ViT into the field of X-ray image classification, 
presenting a state-of-the-art solution with the 
potential to elevate the precision and efficiency of 
medical diagnoses. This research aims to explore 
the feasibility, advantages, and implications of 
employing ViT for the classification of X-ray 
images, thereby advancing the capabilities of 
medical image analysis and ultimately improving 
patient care. The effectiveness of the ViT model 
in classifying X-ray images for osteoporosis 
detection has demonstrated remarkable potential, 
as evidenced by several prominent studies in the 
field. ViT, initially developed for natural image 
classification, has displayed its adaptability in 
medical imaging applications4. Its self-attention 
mechanism empowers ViT to obtain intricate 
patterns and relationships within X-ray images, 
making it particularly suited for discerning subtle 
features indicative of osteoporotic conditions.
	 One notable study investigated ViT’s 
performance in classifying X-ray images into 
normal and osteoporotic categories. The findings 
revealed that ViT achieved competitive accuracy 
and sensitivity levels, approaching radiologist-
level performance in osteoporosis detection.5 
This underscores ViT as a tool for enhancing the 
diagnostic capabilities of medical practitioners in 
the realm of X-ray image analysis. Furthermore, 
extended ViT’s application in medical imaging 
by addressing issues related to data scarcity. The 
author proposed a transfer learning approach using 
pre-trained ViT models on large-scale natural 

image datasets, followed by fine-tuning on limited 
medical image data. This strategy improved ViT’s 
generalization and adaptability to specific medical 
imaging tasks, such as osteoporosis detection.6 
In addition, The interpretability of ViT-based 
models in medical image analysis, shedding light 
on how ViT’s self-attention mechanisms can aid 
radiologists in understanding and verifying the 
model’s decisions. Their findings suggest that 
ViT not only excels in classification but also 
provides valuable insights into the image features 
contributing to its decisions.15 Furthermore, 
its application can extend healthcare access to 
underserved regions through telemedicine and 
generate valuable data-driven insights to inform 
public health initiatives. Overall, this research has 
the power to improve patient outcomes, streamline 
healthcare delivery, and drive advancements in 
medical imaging, making it a pivotal asset in the 
pursuit of early disease detection and enhanced 
healthcare. This paper consists of sections 1. 
Introduction 2. Literature Review 3. Method 4. 
Results 5. Discussion and Conclusion.
Literature Review
	 This study aims to assess bone mineral 
density (BMD) in postmenopausal women using 
standard lumbar spine X-ray imaging. This 
technique presents a promising alternative by 
reducing both radiation exposure and costs for 
individuals at heightened risk of osteoporosis 
or osteopenia who may require more extensive 
screening11.
	 Although deep learning models are not a 
replacement for Dual-energy X-ray absorptiometry 
(DXA), they offer a viable substitute when lumbar 
spine X-rays are available, and DXA has not 
been conducted. To ensure robust evaluation, 
retrospective data may be necessary to validate the 
model’s capacity to predict fracture risks before 
initiating prospective clinical trials9.

	 Osteoporosis is a metabolic disorder that 
leads to decreased BMD, weakened bone structure, 
and deterioration of the extracellular matrix, 
increasing the likelihood of fractures. Typically, this 
condition affects women and men over the ages of 
55 and 65, respectively, causing fractures, chronic 
pain, and diminished quality of life. Biomarkers 
such as bone alkaline phosphatase (BALP), 
collagen, osteocalcin, and cathepsin-K have 
been shown to effectively monitor osteoporotic 
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progression. Diagnostic techniques like dual-
energy X-ray absorptiometry (DEXA) are critical 
for measuring BMD and bone mineral content 
(BMC), thereby facilitating effective disease 
management. Treatment strategies primarily focus 
on anabolic agents and anti-resorptive medications 
that enhance bone formation, decrease bone loss, 
and regulate bone remodeling. However, side 
effects of these drugs necessitate novel approaches, 
including combination therapies. This study 
highlights the need for an integrated approach to 
osteoporosis management, encompassing lifestyle 
changes, pharmaceutical solutions, advanced drug 
delivery systems, and emerging technologies such 
as artificial intelligence and machine learning 
to mitigate complications and reduce the risk of 
fractures [7].

	 Accurate osteoporosis classification 
plays a vital role in diagnosing skeletal disorders 
related to aging. This research introduces a 
hybrid classification model based on a Gradient-
Particle Swarm Optimization (HSG) framework 
and a Deep Belief Network. By combining the 
strengths of the Particle Swarm Optimization 
(PSO) algorithm with Gradient Descent (GD), the 
method enhances classification accuracy while 
minimizing computational effort. The proposed 
system involves five stages: data preprocessing, 
segmentation using an Active Shape Model, 
geometric analysis via a novel template search 
method, feature extraction to capture relevant 
attributes, and final classification using the 
HSG-based Deep Belief Network. The template 
search method effectively updates geometric 
points in femur segments, improving efficiency. 
Experimental results, validated on real-world 
datasets, showed exceptional performance with an 
accuracy of 0.9724, as well as high sensitivity and 
specificity, demonstrating its potential for reliable 
osteoporosis classification8.

	 Osteoporosis is a prevalent condition 
in older adults and postmenopausal women, 
characterized by reduced BMD and compromised 
bone microarchitecture, which significantly increase 
fracture risks and complicate spinal surgeries. This 
study explores the use of transfer learning in deep 
learning models for diagnosing and predicting 
osteoporosis using sagittal spine X-rays obtained 
from patients with spinal disorders. A retrospective 

analysis was conducted using 256 images from 
2,300 patients who underwent both DXA and 
lumbar spine X-rays between 2013 and 2021. 
Models including VGG16, VGG19, ResNet50, and 
Xception were evaluated, with ResNet50 delivering 
the best results. The model achieved an accuracy 
of 82%, a precision of 80%, a recall of 86%, and 
an F1-score of 83%. It also outperformed other 
models, as reflected by an area under the curve 
(AUC) of 0.76. These findings underscore the 
growing role of artificial intelligence, particularly 
deep learning, in enhancing osteoporosis diagnosis 
and aiding clinical decision-making10.

	 Research indicates that osteoporosis in 
skeletal areas such as the spine, hip, knee, hand, and 
leg has been less studied compared to other regions 
like the teeth and vertebrae32. Accurate diagnosis 
in these regions is critical for minimizing radiation 
exposure to organs like the kidneys and pancreas 
during imaging. X-ray imaging, as an affordable 
diagnostic tool, presents a cost-effective alternative 
for developing medical imaging systems. In this 
study, knee X-rays were used to train convolutional 
neural network (CNN) models, which classified 
the images as normal or osteoporotic based on 
T-scores obtained through DXA. Despite the 
limited dataset, transfer learning enabled CNNs to 
achieve significant performance improvements12.

	 Additionally, the study evaluates the 
use of Vision Transformer (ViT) models in 
analyzing medical images, specifically for 
diagnosing osteoporosis using X-ray radiographs. 
A comparison between ViT and traditional CNN 
models, known for their reliability in image 
classification, revealed that ViT demonstrated 
superior accuracy in addressing this diagnostic 
challenge. Both methods showed improved 
performance when larger datasets were available, 
highlighting their potential for delivering accurate, 
reliable solutions in critical diagnostic tasks13.

	 This research paper explores the integration 
of X-ray imaging’s effectiveness and cost-
efficiency with the capabilities of Convolutional 
Neural Network (CNN) architectures to create a 
tool for the early diagnosis of osteoporosis. We 
introduced an annotated dataset derived from X-ray 
images, meticulously classified into normal and 
osteoporosis categories based on T-score values 
obtained from DEXA scans.
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Materials and Methods
	
	 This section details the methodology and 
approach used in the research. It describes the data 
collection process, data preprocessing steps, the 
application of Pix2Pix for image segmentation, 
and the utilization of ViT for image classification. 
It serves as a guide to understanding how the study 
was conducted
Datasets
	 X-ray image datasets covering the knee, 
hand, leg, hip, and spine, comprising both normal 
and osteoporosis-affected images, are valuable 
resources in medical research and clinical practice 
as shown in Figure 1 obtained by Zydus Hospital, 
Dahod. These datasets enable the training of 
deep-learning models to identify subtle signs of 
osteoporosis, thereby improving accuracy and early 
detection.17 This approach is crucial in preventing 
fractures and related complications, ultimately 
contributing to enhanced healthcare diagnosis.18 
The OXRAY dataset comprises 858 images where 
normal images are 320 and osteoporosis images are 
538. The database is prepared by annotating and 
marking as required for the research to be carried 
out.16

Pix2Pix Architecture
	 Creating a custom Pix2Pix framework 
for segmenting X-ray images of normal and 
osteoporotic conditions encompasses various 
technical elements. The Pix2Pix model, which relies 
on conditional Generative Adversarial Networks, 
comprises a generator and a discriminator.19 
	 The generator transforms input images 
into output images, while the discriminator 
identifies authentic images from generated ones.21 
In the realm of X-ray image segmentation, the 
generator strives to generate segmented images 
from the input X-ray images, distinguishing 
between normal and osteoporotic areas.
Generator Architecture
	 The generator processes the input 
X-ray image to create segmented images. When 
segmenting X-ray images, a customized U-Net 
architecture is used.[34] This U-Net features an 
encoder-decoder structure using skip connections 
to maintain fine details throughout segmentation. 
The encoder captures features from the input 
image, and the decoder generates the segmented 
image. The final layer utilizes a sigmoid activation 

function to produce pixel-wise values ranging from 
0 to 1. The generator aims to generate segmented 
images that closely match real X-ray segmented 
images as shown in Figure 4.
Discriminator
	 The discriminator acts as a binary classifier 
by assessing the segmented images generated by 
the generator and real X-ray segmented images. Its 
purpose is to differentiate between these two image 
types using convolutional layers to extract features 
and a final fully connected layer with a sigmoid 
activation function to determine the image’s 
authenticity. The discriminator’s loss function is 
binary cross-entropy, which measures the variance 
between predicted probabilities and actual labels 
as shown in Figure 5.
Adversarial Training
	 The Pix2Pix t raining process is 
adversarial, with the generator and discriminator 
competing against each other. The generator creates 
segmented images that deceive the discriminator 
into classifying images as real meanwhile, the 
discriminator works to become more accurate in 
distinguishing real from generated images.[22] 
Algorithm: Pix2Pix for Image Segmentation
Input: X-ray images, ground truth masks
Output: Segmented osteoporotic regions
Step 1: Data Preparation
- Normalize pixel values to [0, 1].
- Resize X-ray images and masks to 512x512.
Step 2: Initialize Models
- Initialize Pix2Pix generator (G) and discriminator 
(D).
- Design encoder-decoder structure with skip 
connections.
- Define discriminator with sigmoid activation.
Step 3: Loss Function
- Define Tversky Focal Loss (TFL) for G:
TFL = - S((1 - p) ** b * (p_hat ** a) * log(p_hat)).
Step 4: Generator Loss
- Combine TFL and adversarial loss (L_adv):
L_G = l_tfl * TFL + l_adv * L_adv.
Step 5: Training
- Split dataset into training and validation.
- Forward pass through G for segmented image.
- Compute TFL, L_adv, and update G’s weights.
- Train D to distinguish real from generated masks.
Step 6: Validation
- Periodically evaluate on validation set with 
metrics (IoU, F1-score).
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- Fine-tune hyperparameters and architecture.
Step 7: Inference
- Deploy trained Pix2Pix for new X-ray images.
- Use G to segment osteoporotic regions.
Step 8: Post-processing
- Apply morphological operations for noise 
removal and smoothing.
Step 9: Visualization
- Visualize segmented masks and results.
Overlay segmented masks on original X-ray images 
to visualize segmented regions.
Vision transformer (ViT) architecture
	 The Visual Transformer, an architecture 
that harnesses the capabilities of transformers 
initially created for natural language processing 
(NLP), is designed for processing visual data. 
It is specifically tailored for tasks involving the 
categorization of images.23 The Visual Transformer 
introduces a novel angle by utilizing self-attention 
to model extensive dependencies and relationships 
within the image.24

	 The Visual Transformer relies on a self-
attention mechanism to assess the different image 
regions for predictions. This mechanism allows 
the model to effectively obtain global context and 
semantic information by focusing on key areas, 
leading to more dependable classifications.25 
The architecture comprises multiple layers of 
transformer blocks, also known as self-attention 

modules, which process the image hierarchically. 
As the model enhances its understanding of the 
visual content, each transformer block applies 
self-attention procedures to different parts of the 
image.26 The Visual Transformer’s ability to handle 
images of different sizes is a valuable advantage, 
as it leverages the inherent flexibility of the self-
attention mechanism, unlike traditional CNNs that 
mandate fixed input dimensions.27

	 It has showcased the capability to identify 
intricate patterns in images and obtain valuable 
representations, leading to a top-notch performance 
on ImageNet and other image classification 
benchmarks.28

	 The Vision Transformer (ViT) is a deep 
learning model for image classification that divides 
images into patches, treats them as sequences, and 
processes them with a Transformer architecture14. 
Unlike traditional CNNs, ViT treats images 
similarly to text by flattening patches into vectors 
and applying attention mechanisms to learn spatial 
relationships. It outperforms CNNs on large 
datasets but requires substantial data for optimal 
performance. The ViT architecture leverages self-
attention for capturing long-range dependencies in 
the image, offering high flexibility and efficiency 
for visual tasks as shown in Figure 6.
	 The input image is separated into N = HW/
P2 patches for the vision transformer component 

Fig. 1. Shows Normal X-ray images

Fig. 2. Shows Osteoporosis X-ray images
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of the architecture, which was influenced by ViT. 
Each patch has a resolution of (P, P).
	 The algorithm begins by extracting 
patches of size P×P from the input image and 
flattening them into a sequence xp . The patches 
are then projected into a higher-dimensional 
space using a learnable matrix E, resulting in 
patch embeddings zp . A position embedding 
matrix Epos is added to the sequence, followed 
by the application of multiple transformer encoder 
layers. After processing, the final representation 
undergoes global average pooling (GAP), which 
is passed through a fully connected layer with 

softmax activation for binary classification. Finally, 
majority voting is applied across patch-wise 
predictions to determine the final classification of 
the image.
	 Similar to the original ViT design, the ViT 
architecture uses the same configuration notation. 
Different picture patch sizes are utilized for the 
“Base” and “Large” models. ViT-B/16 denotes 
the “Base” variant with a 16x16 image patch size 
while ViT-L/32 denotes the “Large” variant with 
a 32x32 image patch size. Table 2 provides more 
information about the original ViT variants and the 
suggested ViT variants.

Fig. 3. The Pix2Pix architecture diagram

Fig. 4. The Generator architecture                    Fig. 5. The Discriminator architecture



209 Dodamani et al., Biomed. & Pharmacol. J,  Vol. 18(Spl.), 203-216 (2025)

Algorithm: Image Transformation using Patch-
based Visual Transformer for Classification
Input: Image of size H × W × C.
Step 1: Patch Extraction

- Divide the image into patches of size P × P.
- Flatten patches into a sequence xp of size N × (P² 
· C), where N = H × W / P².
Step 2: Patch Embedding

Fig. 6. ViT architecture 

Fig. 7. a,b,c shows Input image, ground and predicted 
segmentation results

c. Knee

a. Knee

b. Leg

- Create a projection matrix E of size (P²·C) × D.
- Compute patch embeddings zp by xp · E, resulting 
in zp of size N × D.
Step 3: Position Embedding
- Create a position embedding matrix Epos of size 
(N+1) × D.
- Prepend a learnable embedding xclass and add to 
the position embedding: z0 = [xclass, zp] + Epos.
The sequence z0 has dimensions (N+1) × D.
Step 4: Transformer Encoder Layers
- Stack L transformer encoder layers.
- For each layer l:
- Concatenate the previous output zl with image 
embedding ximg: zˆl = [zl, ximg].
- Feed zˆl to the next layer.
- Output: The final transformed representation zˆL 
from the last encoder layer.
Step 5: Classification Head
- Apply Global Average Pooling (GAP) to zˆL.
- Flatten the pooled representation.
- Pass through a fully connected layer with softmax 
activation for binary classification: Normal or 
Osteoporosis.
Step 6: Majority Voting
- Split the image into patches and classify each 
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patch as “normal” or “osteoporosis”.
- Apply majority voting across patch-wise 
predictions.
- The class with the majority votes is the final 
classification for the image.
	 This algorithm outlines the process of 
transforming an input image into a sequence of 
patch embeddings, followed by their integration 
into a multi-layered transformer architecture to 
generate a final transformed representation suitable 
for various computer vision applications.

Training 
	 To compare our model MViT with the 
ViT model on the X-ray datasets, we evaluated 
various variants of both architectures.25 Transfer 
learning was employed, where the ViT models and 
components of our models were initialized with 
pre-trained weights from the ImageNet dataset.29 
The additional parts of the proposed architecture 
were initialized randomly during the fine-tuning 
process and their weights were trained. For each 
dataset, the classifier on top of each model was 

Table 1. Shows the performance of Pix2Pix architecture

Model	 Test Specificity	 Test Accuracy	 Test dice	 Test precision	 Test recall

Unet	 0.70234332	 0.812878779	 0.782389033	 0.728787879	 0.839899091
Modified Unet	 0.97239274	 0.9534569	 0.874814379	 0.825526981	 0.932980788
(Pix2Pix)

Fig. 8. Visual comparison of Unet and modified Unet

Table 2. ViT and MViT model Classification performance on OXRAY Dataset

Model	 Accuracy	 Recall	 Precision	 F1-Score

ViT-B/16	 87.55	 90.01	 85.79	 87.01
ViT-B/32	 84.22	 83.41	 84.77	 84.12
ViT-L/16	 80.18	 78.41	 82.53	 80.30
ViT-L/32	 86.69	 88.41	 85.53	 86.95
MViT-B/16	 96.01	 95.49	 95.01	 95.51
MViT-B/32	 95.20	 95.26	 94.50	 94.52
MViT-L/16	 91.70	 92.95	 94.82	 91.22
MViT-L/32	 93.32	 91.72	 94.79	 93.22
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Fig. 9. Shows a comparative analysis of the ViT model

configured based on the number of classes in the 
dataset, and end-to-end training was performed for 
fine-tuning.
	 During training, the Focal Tversky loss 
function (Eq. (1)) uses the Adam optimizer, a 
batch size of 16, and a learning rate of 0.0001. The 
lower learning rate was chosen to facilitate better 
adaptation of the pre-trained weights to the new 
data.
	 The Focal Tversky loss function is defined 
as follows:

Loss=(1-Tversky)γ log (Tversky/(1-Tversky))	
...(1)

	 In equation 1, the Tversky index measures 
the similarity between the predicted and target 
classes. It represents the ratio of the intersection 
to the union of the two classes. The parameter 
ã controls the balance between the contribution 
of false positives and false negatives in the loss 
function.
	 By utilizing the Focal Tversky loss 
for binary classification, the model focuses 
on challenging examples and addresses class 
imbalance during training.[30] The loss function 
encourages the model to give more weight to 
difficult examples, thus improving the overall 
performance of the classifier on the two-class 
classification problem.35

	 Data augmentation, which has been 
widely acknowledged as a successful method in 
image classification20, was used during the training 
procedure. In deep learning systems, it is frequently 
used to supplement the training data, boost its 
diversity, and aid in preventing overfitting.31 In 
this investigation, additional training images 
were produced by utilizing several augmentation 
methods to the first training images, as shown in 
Figure 3.
	 In training the Pix2Pix model for 
osteoporosis image segmentation, a dataset of 
paired X-ray images and corresponding segmented 
masks is utilized. The Pix2Pix architecture employs 
a conditional Generative Adversarial Network 
(cGAN) with a U-Net generator and PatchGAN 
discriminator.36 The training objective includes 
adversarial loss to ensure realistic image generation 
and pixel-wise loss for precise alignment with 
ground truth masks. The model is optimized 
using the Adam optimizer, and training involves 
iterative forward and backward passes with 
periodic validation for performance assessment. 
On the other hand, training the ViT model for 
osteoporosis classification requires a dataset of 
X-ray images labeled with osteoporosis status. 
The ViT architecture incorporates self-attention 
mechanisms and is trained using cross-entropy loss. 
Hyperparameters such as learning rate and batch 
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size are tuned, and ensemble learning is employed 
for improved robustness. Both models undergo 
extensive training, involving careful consideration 
of architecture, loss functions, and hyperparameters 
to achieve optimal performance in their respective 
tasks.

Results

	 In the experimental study, the efficacy 
of the ViT and Pix2Pix models for the critical 
task of osteoporosis detection using X-ray 
images was performed. The Pix2Pix model 
underwent meticulous experimentation, involving 
the exploration of various hyperparameter 
configurations, such as learning rates and batch 
sizes, alongside the augmentation techniques. 
The final Pix2Pix architecture adopted a U-Net 
generator coupled with a PatchGAN discriminator, 
with training focusing on adversarial and pixel-
wise L1 loss functions to ensure both realism 
and precision in image segmentation37. Figure 
7 shows the results obtained using a modified 
Pix2Pix model when given the input image and 
corresponding GrounthTruth, the segmented image 
closely matched the Groundtruth image with an 
accuracy of 95.34% and a Dice score of 87.48% 
on Test samples as shown in Table 1.
	 In parallel ,  the ViT experiments 
encompassed studies on different architectural 
configurations, including ViT-B/16, ViT-B/32, 
ViT-L/16, and ViT-L/32. 

	 Hyperparameter tuning, covering learning 
rates and batch sizes, was performed, and an 
ensemble approach was explored to enhance model 
robustness.38 The standout performer, MViT-B/16, 
featured a modified architecture resembling a 
U-Net structure, incorporating additional attention 
mechanisms critical for capturing intricate features 
essential in osteoporosis detection. 
	 The training utilized cross-entropy loss, 
and a suite of metrics—accuracy, recall, precision, 
and F1-score— as shown in Table 2. formed the 
basis for the evaluation of ViT models.33

	 Throughout the training and evaluation 
processes, both models underwent iterative 
refinement, with careful consideration of 
hyperparameters and model architectures as 
shown in Figure 9. Pix2Pix excelled in accurately 
segmenting osteoporotic regions, achieving an 
impressive specificity of 97.24%. ViT experiments 
revealed the MViT-B/16 variant as the most 
accurate, attaining an outstanding accuracy of 
96.01%. Figure 10 shows the Comparative of test 
data on different models’ confusion matrix results.

Discussion

	 In this study, we present the Pix2Pix 
model, evaluation metrics revealed a marked 
improvement, with the model achieving a 
specificity of 97.24%, indicating a remarkable 
reduction in false positives. 
	 The overall accuracy reached 95.35%, 

Fig. 10. Shows the confusion matrix
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demonstrating the model’s proficiency in correctly 
classifying both normal and osteoporotic instances. 
Notably, the Dice coefficient, a measure of 
segmentation accuracy, exhibited a substantial 
boost to 87.48%, emphasizing the model’s 
improved ability to delineate regions of interest. 
Precision and recall metrics at 82.55% and 93.30%, 
respectively, further underscored the model’s 
balanced performance. The modified ViT models, 
implemented with architectural enhancements and 
ensemble learning, outperformed their baseline 
counterparts across various configurations. 
	 Notably, the MViT-B/16 variant achieved 
the highest accuracy at 96.01%, showcasing the 
effectiveness of the modified ViT architecture 
Future Scope
	 Future research on the identification of 
osteoporosis using improved Pix2Pix and ViT 
models focuses on developing a unified framework 
that combines the benefits of both models for 
comprehensive diagnosis. Multi-center trials will 
be necessary for clinical validation to confirm 
model Performance across various patient groups 
and imaging scenarios. For improved patient 
care and diagnosis, lightweight models are being 
developed for healthcare environments with 
constrained resources.

Conclusion

	 In summary, our investigation into the 
improved Pix2Pix and ViT models for osteoporosis 
detection reveals promising advancements in 
medical image analysis. The refined Pix2Pix 
model showcases notable improvements in image 
segmentation, emphasizing reduced false positives 
and enhanced region delineation, with a remarkable 
specificity of 97.24%. On the classification front, 
modified ViT models, particularly the MViT-B/16 
variant, demonstrate superior accuracy at 96.01%, 
underscoring their effectiveness in identifying 
osteoporosis cases. The ensemble learning approach 
in ViT models consistently enhances performance. 
Collectively, these models present complementary 
strengths, suggesting potential synergies for future 
research and clinical applications. 
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