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	 Diabetes mellitus (DM) is a chronic metabolic disorder condition that requires 
continuous monitoring and early detection to prevent serious complications such as diabetic 
retinopathy (DR) and diabetic foot (DF) disease. In recent years, medical imaging technologies 
coupled with machine learning techniques have made progress in the automated detection of DM-
related complications using retina or foot images. This article proposes a novel Ens-DRDF model 
that integrates the detection of diabetic retinopathy and diabetic foot ulcers using advanced 
machine learning and image processing techniques. The process involves removing the optic 
disc and blood vessels, followed by feature extraction, segmentation, and classification. Fuzzy 
clustering aids lesion differentiation, enhancing image quality for improved DR diagnosis.
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	 Diabetic retinopathy (DR) and diabetic foot 
(DF) are global health concerns that significantly 
impact patients’ quality of life. Diabetic retinopathy, 
a leading cause of blindness in adults, is a direct 
complication of prolonged diabetes.1 Early 
detection and timely treatment are crucial for 
preventing vision loss and managing diabetes-
related complications.2 Traditional diagnostic 
methods often rely on manual examinations by 
specialists, which are time-consuming, expensive, 
and susceptible to human error.3 As a result, an 
urgent need is to develop automated, reliable, and 
cost-effective screening techniques that leverage 
recent advancements in artificial intelligence and 

image processing technologies to address these 
limitations.4

	 The primary objective of this research is 
to develop a robust, automated detection system 
for DR and DF using a combination of image 
processing and thermal imaging techniques.5 
Advanced machine learning algorithms aim to 
accurately detect early-stage DR lesions, including 
exudates, micro-aneurysms, and haemorrhages 
from retinal images.6 Additionally, thermal imaging 
of the foot is explored to identify signs of diabetic 
neuropathy and detect DF.7,8 This dual approach 
targets comprehensive screening for both ocular 
and systemic manifestations of diabetes, ultimately 

Special Issue – AI-Driven and Multimodal Innovations in Biomedical Imaging and Sensing



192 Mewada et al., Biomed. & Pharmacol. J,  Vol. 18(Spl.), 191-202 (2025)

enhancing diagnostic precision and patient 
outcomes.9,10

	 This paper aims to develop a state-of-
the-art approach to detect diabetes complications 
using deep learning strategies. Here, we present 
the following novel contributions to the fields 
of diabetic retinopathy and diabetic foot ulcer 
detection:
• We proposed a novel Ens-DRDF model that 
integrates the detection of diabetic retinopathy and 
diabetic foot ulcers and achieves high sensitivity 
and specificity in identifying early-stage DM.
• We introduced advanced preprocessing methods, 
such as removing the optic disc and blood vessel 
segmentation, to enhance feature extraction from 
retinal images. Employed fuzzy clustering to aid 
in lesion differentiation, enhancing image quality 
for improved DR diagnosis.
• Thermal imaging to capture subtle temperature 
variations in the foot, combined with a K-Nearest 
Neighbors (KNN) classifier, enables the non-
invasive detection of DF, offering a novel diagnostic 
tool for screening neuropathic complications.
• By combining retinal and foot thermal images, 
the research introduces a hybrid diagnostic system 
that leverages the strengths of both modalities to 
provide a comprehensive screening solution for 
diabetic complications.
	 The structure of this paper is organised 
as follows: Section 2 describes related work on 
existing research in DR and DF detection. Section 
3 presents the Proposed Model, outlining the 
methodologies used, system architecture, and 
retinal and thermal imaging data integration. 
Section 4 focuses on Experimentation and Model 
Evaluation, detailing the experimental setup, 
performance metrics, and evaluation results of 
the proposed models, followed by a discussion of 
their implications. Finally, Section 5 provides the 
Conclusion and Future Scope, summarising the 
key findings and suggesting directions for future 
research in automated diabetes and retinopathy 
screening.
Related work
	 Convolutional Neural Networks (CNNs) 
have been widely applied to detect retinal 
abnormalities from fundus images automatically. 
These systems are capable of identifying signs 
of diabetic retinopathy, such as haemorrhages, 
neovascularisation, exudates, and microaneurysms.5 

Recent advancements include using transfer 
learning and fine-tuning approaches to improve 
classification accuracy, such as the technique 
presented in the study using a deep forest algorithm 
combined with a Bat-based feature selection 
method.1,11,20,21,22,23,24 Another study focused on 
using radionics analysis on ultra-wide optical 
coherence tomography angiography scans to 
automate the grading of diabetic retinopathy, 
achieving higher diagnostic precision.2

	 While CNNs remain the backbone of 
these diagnostic models, recent works have also 
explored optimisation techniques to enhance 
detection efficiency. An example is improved 
multithresholding Tunicate Swarm Algorithm 
and Hybrid Butterfly Optimization for automated 
detection of DR severity.12 EdgeSVDNet, a novel 
model utilising Singular Value Decomposition and 
deep learning, has been proposed to classify vision-
threatening diabetic retinopathy accurately.10 
Thermal imaging techniques have been applied to 
measure variations in foot temperature to diagnose 
diabetes mellitus. Research has established a 
correlation between peripheral vascular disease 
and diabetic complications such as neuropathy, 
which manifests as abnormal foot temperatures.7 
Several machine learning algorithms, including 
support vector machines (SVMs) and neural 
networks, have been employed to classify thermal 
foot images, distinguishing between normal 
and diabetic patterns.9 One study introduced a 
decision fusion-based model, which effectively 
combined thermal and visible imaging modalities 
for the early detection of diabetes.13 The traditional 
approach to diagnosing diabetic retinopathy 
relies on dilated fundus examinations and retinal 
imaging, necessitating manual assessment by 
trained ophthalmologists.14 This process is labour-
intensive, time-consuming, and susceptible to 
inter-observer variability, making it challenging 
for large-scale screening programs.4 Physical 
examinations, patient histories, nerve conduction 
studies, and monofilament testing are typically 
used to assess diabetic peripheral neuropathy. 
However, these methods often lack the sensitivity 
required for early diagnosis and are unsuited for 
broad-population screening.15 On the other hand, 
thermography offers a non-invasive way to detect 
diabetic foot complications. However, traditional 
thermal analysis techniques are subjective and lack 
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the precision required for early-stage detection.8

	 To address these limitations, recent studies 
have proposed the integration of multiple imaging 
modalities and optimisation algorithms to improve 
diagnostic accuracy. One approach combines retinal 
and thermal images to develop a hybrid system 
capable of diagnosing ocular and systemic diabetic 
complications.11 Incorporating techniques like 
contrast-limited adaptive histogram equalisation 
has enhanced the quality of fundus images further, 
enabling more accurate identification of DR 
features.16 Overall, the research community has 
significantly progressed in developing automated 
systems for diabetic retinopathy and diabetes 
mellitus detection. By leveraging the power of deep 
learning, image processing, and hybrid imaging 
modalities, these systems have the potential to 
transform current diagnostic practices and improve 
patient outcomes. Further research is needed to 
refine these models and expand their applicability 
to real-world clinical settings.17, 25

Problem Formulation
	 Despite the advancements in automated 
diabetic retinopathy (DR) and diabetes foot (DF) 
detection, several challenges persist. Current DR 
detection algorithms rely heavily on large volumes 
of annotated data to train deep learning models. 
Obtaining high-quality labelled retinal images 
requires significant manual effort from experts, 
making it resource-intensive and susceptible 
to human biases. Moreover, these models are 
computationally demanding, requiring high-
end hardware, which limits their applicability 
in resource-constrained environments. For 
widespread adoption in clinical settings, models 
must be lightweight, efficient, and capable of 
operating with limited labelled data without 
compromising diagnostic accuracy.
	 On the other hand, thermal imaging 
presents a promising non-invasive alternative 
for DM detection by identifying temperature 
variations in the foot associated with neuropathic 
complications. However, existing thermal imaging-
based methods suffer from inconsistencies in 
capturing accurate temperature variations due to 
varying room conditions and patient positioning. 
Additionally, interpreting thermal images can be 
challenging, leading to potential misclassification 
when used alone without supplementary 
information. As a result, the standalone use of 

thermal imaging for DM detection lacks robustness 
and reproducibility, making it less reliable for 
clinical diagnostics.
• High Dependency on Annotated Data: Deep 
learning models for DR detection depend on 
large-scale annotated datasets to perform well. 
However, acquiring diverse and well-labeled data 
for different stages of DR is challenging, especially 
in underserved regions.
• Computational Inefficiency: The complex 
architectures of existing DR detection models 
demand significant computational resources, 
making real-time deployment difficult in scenarios 
with limited processing power.
• Thermal Imaging Limitations: While thermal 
imaging is a non-invasive option for detecting 
diabetic foot complications, current models 
struggle with inconsistent image quality and 
sensitivity to environmental changes, reducing 
their effectiveness.
• Lack of Integrated Diagnostic Systems: Most 
research independently focuses on retinal or 
thermal imaging. There is limited work on 
developing an integrated system that can leverage 
the strengths of both imaging modalities to provide 
a comprehensive diagnostic solution for diabetes-
related complications.
	 The goal is to develop a lightweight, 
efficient, and integrated diagnostic system that 
combines deep learning-based retinal image 
analysis with thermal imaging techniques for 
comprehensive screening of diabetic retinopathy 
and diabetes mellitus. The system should address 
the limitations of current methods by reducing 
dependency on large, annotated datasets, improving 
computational efficiency, and enhancing the 
reliability of thermal imaging. By integrating 
multiple imaging modalities, the aim is to achieve 
robust and accurate detection of both ocular and 
systemic complications of diabetes, facilitating 
early diagnosis and timely intervention.

MATERIALS AND METHODS

	 The proposed Ens-DRDF model aims 
to develop an efficient and integrated system for 
early detection of diabetic retinopathy (DR) and 
diabetes foot (DF) using sophisticated image 
processing techniques and machine learning 
algorithms. The model addresses the limitations 
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of existing approaches by combining retinal 
image analysis with thermal foot imaging, thereby 
providing a comprehensive diagnostic solution for 
diabetes-related complications. The architecture is 
divided into two subsystems: DR detection from 
retinal images and DF detection using thermal 
foot imaging. Each subsystem employs advanced 
methodologies to enhance feature extraction 
and classification, ensuring high accuracy and 
efficiency.
Diabetic Mellitus Detection using Retinal Image 
Processing
	 The proposed model for diabetic 
retinopathy (DR) detection, illustrated in 
Figure 1, focuses on identifying lesions in 
retinal fundus images using advanced image 

processing techniques combined with machine 
learning classification for accurate diagnosis. 
The methodology starts by capturing the retinal 
image, followed by blood vessel extraction to 
create an “Extracted Vessel Map” that highlights 
vascular structures. These are then suppressed 
to isolate other abnormalities. Concurrently, the 
optic disc (OD), which can interfere with lesion 
detection, is identified based on intensity and shape 
characteristics and suppressed to minimise false 
positives. Image enhancement uses techniques 
like histogram equalisation to adjust contrast and 
brightness, followed by denoising and sharpening 
using median and Gaussian filters. This enhances 
the clarity of lesions and microstructures like 
microaneurysms and haemorrhages. Lesion 

Fig. 1. Workflow of Diabetes Mellitus Detection Using Retinopathy

Fig. 2. Workflow of Diabetes Mellitus Detection Using Foot Thermal Images
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Table 1. Performance Comparison of Diabetic Retinopathy Detection Models

Year	 Lesions	 Method	 Accuracy	 Sensitivity	 Specificity

2010	 Exudates	 Morphological operations	 93.75%	 94.25%	 91.47%
2011	 Exudates, 	 Contrast enhancement, 	 87.25%	 89.41%	 80.85%
	 Microaneurysms	 intensity threshold
2013	 Exudates	 Vessel detection, intensity 	 82.25%	 85.25%	 81.25%
		  threshold, area threshold
2014	 Exudates	 Median filtering, dynamic 	 91.25%	 94.50%	 94.10%
		  thresholding, image addition
2015	 Exudates	 Feature extraction, segmentation 	 95.25%	 92.25%	 90.25%
		  using Fuzzy C-means,PSO 
		  optimisation
2020	 Exudates	 Green channel extraction, 	 89.25%	 84.25%	 73.25%
		  intensity difference
2021	 Exudates, Microaneurysms	 Moat operator	 92.25%	 85.75%	 97.95%
**	 Exudates, Haemorrhage, 	 Fuzzy C-means (FCM), 	 96.25%	 98.10%	 94.22%
	 Microaneurysms, 	 Median Filtering, Gamma 
	 Neovascularization	 Correction, Advanced 
		  Segmentation Techniques

Table 2. Performance Comparison of Diabetes Mellitus Detection Models

Model	 Class	 Accuracy (%)	 Precision (%)	 Sensitivity (%)	 F1-Score (%)	 Specificity (%)

J48	 DM	 93.41	 94.40	 95.72	 95.55	 84.44
RF	 DM	 90.42	 92.74	 94.26	 93.49	 80.00
NB	 DM	 91.62	 92.86	 95.90	 94.36	 80.00
KNN*	 DM	 93.59	 92.59	 95.23	 93.89	 91.83

detection employs region growing, edge detection, 
and thresholding to isolate potential lesion areas. 
Identified regions are further processed using 
bandpass filters for exudates (EXS), contrast 
enhancements for haemorrhages (HEMS), and 
target detection for microaneurysms (MAS). In the 
post-processing phase, morphological operations 
and additional classifiers refine the detected lesions, 
minimising false positives and ensuring accurate 
mapping onto the original image. Finally, the 
model’s performance is evaluated using standard 
metrics such as sensitivity, specificity, and accuracy 
to validate its effectiveness in identifying DR-
related abnormalities and aiding early diagnosis.
Diabetes Mellitus Detection using Thermal 
Imaging
	 Figure 2 illustrates an advanced method 
for automatically detecting diabetes mellitus using 
thermal variations in the foot. The process begins 
with Data Acquisition, where thermal images of 
the patient’s feet are captured, highlighting patterns 

indicative of diabetes-related complications. 
Next, Data Preprocessing is applied to clean 
and normalise the images, reducing noise and 
enhancing quality for accurate analysis. The images 
are then segmented into smaller patches, enabling 
the model to focus on specific areas with significant 
thermal variations.
	 In the Feature Extraction phase, key 
metrics such as mean temperature, standard 
deviation, entropy, contrast, and correlation are 
computed, capturing critical thermal characteristics. 
These features are fed into classifiers like Random 
Forest, Decision Tree, Gradient Boosting, Naive 
Bayes, and K-Nearest Neighbors (K-NN), each 
detecting patterns to distinguish between normal 
and diabetic states. The testing and evaluation 
phase assesses classifier performance to ensure 
reliable predictions. The process concludes with 
a Decision-Making step, categorising patients as 
normal or diabetic, resulting in a non-invasive, 
efficient diagnostic tool for early diabetes detection 
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Fig. 3. Bar Diagram w.r.t. accuracy for J48, RF, NB and KNN

Fig. 4. ROC Curves for Diabetic Retinopathy

and management. This approach combines 
thermal imaging and machine learning to enhance 
early diagnosis and treatment of diabetes-related 
complications.
Ensemble Model for Diabetic Mellitus Detection
	 By combining the diabetes mellitus 
score using retinal image processing and the 
diabetes mellitus score using thermal imaging 
into an ensemble model, we improved the overall 
diagnosis accuracy. We took a high-level approach 

to design this ensemble model using a Weighted 
Average Ensemble. We combined the prediction 
probabilities from both models (retinal image 
processing and thermal imaging) using a weighted 
average, giving more weight to the model with 
higher confidence or historical accuracy.

Final Prediction = a * Retinal Model Score + (1 
- a) * Thermal Model Score
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	 where a is a weight coefficient (tuned 
during validation). Each model is assigned a 
weight a based on their individual performance. 
More reliable models are given higher weights. 
By adjusting the weights, we can optimise the 
performance of the ensemble model, making it 
more accurate and robust than using any one model 
alone.
	 The final diagnostic system integrates the 
outputs from both the retinal and thermal imaging 
subsystems. By combining the strengths of these 
two modalities, the system offers a comprehensive 
assessment of diabetes-related complications. 
The integrated model capitalises on the high 
sensitivity of retinal imaging for detecting ocular 
complications while utilising the non-invasive 
nature of thermal imaging to assess systemic 
complications. This synergy results in a robust 
screening tool capable of thoroughly evaluating 
diabetes-related health issues.

RESULTS

	 The proposed Ens-DRDF model for 
diabetic retinopathy (DR) and diabetes foot ulcer 
(DF) detection was evaluated through experiments 

using retinal fundus images and thermal foot 
images. The results were systematically 
documented to demonstrate the effectiveness of 
each processing step, highlighting improvements 
in lesion detection, feature extraction, and overall 
classification accuracy. This section provides a 
detailed analysis of the experimental results for DR 
and DF detection systems, followed by a discussion 
on system performance and validation metrics.
Dataset Description
	 Diabetic Retinopathy research utilises a 
(Diabetic Retinopathy)18 dataset of approximately 
1,200 high-quality fundus images captured with a 
3CCD camera, featuring resolutions of 1440×960, 
2240×1488, and 2304×1536 pixels. This dataset 
supports identifying critical pathological features 
such as exudates and microaneurysms, enhancing 
automated lesion recognition algorithms and 
diagnostic accuracy. Similarly, a dataset of over 
1,000 thermal images for Type 2 Diabetes Mellitus, 
obtained via a FLIR E60 camera, includes clinical 
data like blood glucose levels. 19 This combination 
allows researchers to detect physiological changes 
linked to diabetes, improving early detection 
and treatment strategies through robust machine 
learning algorithms.

Fig. 5. ROC Curves for DF
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Diabetic Retinopathy Detection Results
	 The detection module for Diabetic 
Retinopathy (DR) consists of several key steps: 
extracting blood vessels, removing the optic disc, 
detecting lesions, and enhancing images. Each step 
is illustrated in Figure 1, which shows the process 
from the original image to the final output of the 
model. This experiment uses SGD-based deep 
CNN with the mentioned parameters: learning rate 
(0.001), Momentum (1.00), Weight Decay (1e-4), 
Dampening (0), Nesterov Momentum (True), 
Batch Size (16), Optimizer (Adam), Loss Function 
(Cross-Entropy), and Activation (ReLu). This 
output is then compared with the existing model, 
as illustrated in Table 1.
	 First, the module extracts blood vessels 
using techniques that enhance contrast and 
shape. This step is crucial for clearly identifying 
blood vessels and assists in locating the optic 
disc and other potential issues. Next, the optic 
disc is removed by recognising its shape and 
brightness. This removal helps reduce incorrect 
results in the subsequent lesion-detection phase. 
After identifying a candidate region, further 
enhancements are applied to improve the visibility 
of lesions. The final output highlights the detected 
lesions in the retinal image, demonstrating the 
model’s ability to identify important markers of 
DR, such as microaneurysms and haemorrhages.
	 Previous models have made significant 
advancements in identifying specific lesions 
linked to diabetic retinopathy. For example, in 
2010, a model achieved an accuracy of 93.75%, 
with a sensitivity of 94.25% and specificity of 
91.47%. In 2011 and 2013, various techniques were 
utilised, resulting in accuracy rates of 87.25% and 
82.25%, respectively; the 2013 study reported a 
sensitivity of 85.25%, although specificity data was 
not provided. Between 2013 and 2015, advanced 
techniques led to 82.25%, 91.25%, and 95.25% 
accuracy. Additionally, studies during this period 
showed detection rates of microaneurysms with 
accuracies of 90% and 98%. In 2020 and 2021, 
research focused on detecting exudates, raising 
sensitivity to 97.5%. In 2021, sensitivity and 
accuracy were achieved by around 95.1% using 
complex classification methods despite some gaps 
in specificity reporting.
	 Ens-DRDF model distinguishes itself 
with a comprehensive approach, employing 

various image processing techniques to effectively 
identify different lesion types, including 
exudates, haemorrhages, microaneurysms, and 
neovascularisation. The model accurately identifies 
diabetic retinopathy with a strong accuracy 
of 96.25%. It also has a sensitivity of 98.1%, 
effectively identifying true positive cases, which 
is essential for timely diagnosis and treatment. 
Moreover, the model achieves a specificity of 
94.22%, effectively reducing false positives.
	 Figure 3 illustrates the accuracies acquired 
from J48, RF, NB and KNN classifiers. Key 
features of the proposed model include broad lesion 
coverage, allowing it to identify various lesion 
types and enhance its diagnostic ability compared 
to models that focus on a single type. With an 
accuracy of 96.25%, the model ranks among the top 
performers, ensuring reliable detection. The 98.1% 
sensitivity reflects its effectiveness in detecting 
actual cases of diabetic retinopathy, which is vital 
for effective treatment. Finally, a specificity of 
94.22% indicates that the proposed model provides 
trustworthy results by minimising false positives.
	 Ens-DRDF model offers a thorough 
and accurate method for detecting diabetic 
retinopathy. It often surpasses previous models in 
performance thanks to effective image processing 
and classification techniques. The Ens-DRDF 
model can lead to better patient outcomes by 
accurately and promptly identifying various lesion 
types.
Diabetes Mellitus Detection Results
	 Table 2 presents the noteworthy 
performance of various models in the detection 
of diabetes mellitus (DM), including the J48 
Decision Tree, Random Forest (RF), and Naive 
Bayes (NB). These models aim to identify the 
presence of diabetes mellitus and the coarseness 
of granulation (CG), achieving varying degrees 
of success. The J48 Decision Tree, for instance, 
achieved an accuracy of 93.41% for both DM 
and CG, with sensitivity and precision metrics 
of 95.72% and 94.40% for DF, respectively. 
Although the Random Forest model had slightly 
lower overall metrics than the J48 Decision 
Tree, it still demonstrated solid performance, 
achieving an accuracy of 90.42%. The Naýve 
Bayes model recorded an overall accuracy of 
91.62%, maintaining competitive precision and 
sensitivity values. However, there is potential for 
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improvement in reducing false positives, as these 
models often exhibit a trade-off between sensitivity 
and specificity, with specificity values generally 
ranging from 80% to 84.44%. The proposed model 
for diabetes mellitus detection employs a K-Nearest 
Neighbors (KNN) technique, which significantly 
enhances performance measures. It achieves an 
impressive accuracy rate of 93.59%, 92.59% 
precision and 95.23% sensitivity.
	 Additionally, the Ens-DRDF model’s 
specificity of 91.83% signifies a notable reduction 
in false positives compared to existing models. 
With an Area Under the Curve (AUC) of 1 and 
an F1-Score of 93.89%, the Ens-DRDF model 
underscores its robustness and reliability in 
accurately identifying diabetes mellitus. This 
comprehensive performance highlights the 
excellent trade-off between accuracy, sensitivity, 
and specificity, establishing it as a valuable tool 
for diabetes mellitus identification. Ens-DRDF 
model demonstrates balanced performance metrics, 
achieving 93.59% accuracy, 92.59% precision, 
95.23% sensitivity, and 91.83% specificity. 
In contrast, current models often compromise 
sensitivity and specificity to provide reliable 
detection. With a specificity of 91.83%, the Ens-
DRDF model significantly outperforms many 
existing models, such as the J48 Decision Tree 
and Naive Bayes, which report specificity values 
between 80% and 84%. This enhancement indicates 
that the Ens-DRDF model effectively reduces false 
positives, critical for accurate medical diagnosis. 
Ens-DRDF model excels at detecting true positive 
instances of diabetes mellitus, achieving a 
sensitivity of 95.23%. This high sensitivity 
enables the model to identify abnormalities 
early, essential for prompt intervention and 
treatment. The robustness and dependability 
of the Ens-DRDF model are illustrated by its 
F1-Score of 93.89% and an AUC of 1. These 
metrics demonstrate strong overall recall and 
accuracy and a remarkable ability to discriminate 
between classes. Ens-DRDF approach integrates 
advanced image processing techniques with the 
K-Nearest Neighbors (KNN) algorithm. This 
combination leverages KNN’s pattern recognition 
and classification strengths, particularly in medical 
imaging contexts. Unlike certain models that 
focus on specific traits or types of lesions, the 
Ens-DRDF model is designed to identify a wide 

variety of features related to diabetes mellitus. 
Its extensive detection capabilities enhance 
its clinical utility. In summary, the Ens-DRDF 
model’s key advantages include balanced and 
superior performance metrics, especially in terms 
of specificity and sensitivity, its strong F1-Score 
and AUC, innovative methodological approach, 
and broad lesion identification capabilities. 
Collectively, these elements establish the Ens-
DRDF model as a significantly more accurate 
and reliable tool for diabetes mellitus detection 
compared to existing models.
Performance Evaluation and Validation
	 The model’s performance was validated 
using a confusion matrix to quantify the detection 
accuracy, sensitivity, and specificity for DR and 
DF. The confusion matrix for DR detection showed 
high precision in distinguishing between healthy 
and affected regions, with minimal false positives 
due to effective optic disc removal and lesion 
refinement techniques. The K-Nearest Neighbors 
(KNN) classifier demonstrated robust performance 
for DF detection, accurately classifying temperature 
anomalies based on spatial pixel patterns and 
neighbourhood similarity.
	 Overall, the system achieved commendable 
results, demonstrating the potential to be a reliable 
tool for non-invasive and early detection of diabetic 
complications. By combining retinal image 
processing and thermal imaging, the integrated 
system ensures a comprehensive assessment, 
supporting timely diagnosis and intervention for 
diabetes management

DISCUSSION

	 This section discusses the performance 
of the proposed models based on the AUC-ROC 
curve. 
Diabetic Retinopathy AUC-ROC Curve
	 The  ROC (Rece ive r  Ope ra t i ng 
Characteristic) curve in Figure 4 illustrates the 
trade-off between sensitivity (True Positive Rate) 
and false positive rate (1 - Specificity) for diabetic 
retinopathy detection.
• AUC (Area Under the Curve) Value: The model 
achieves an AUC of 0.965, considered excellent. 
AUC values range from 0.5 (no discrimination) 
to 1.0 (perfect discrimination). An AUC of 0.965 
indicates that the model is highly effective at 
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distinguishing between positive (patients with 
diabetic retinopathy) and negative cases (patients 
without diabetic retinopathy).
• Curve Shape: The rapid ascent of the ROC curve 
towards the top-left corner signifies high sensitivity 
and low false positive rates, demonstrating the 
model’s strong diagnostic performance.
• Interpretation: The Y-axis represents the True 
Positive Rate (proportion of correctly identified 
positive cases), while the X-axis shows the False 
Positive Rate (proportion of incorrectly labelled 
negative cases). A higher AUC value close to 1.0 
indicates excellent separability between patients 
with and without diabetic retinopathy.
• Conclusion: The model effectively differentiates 
between the two classes, but some misclassifications 
(false negatives) suggest room for improvement, 
especially in detecting certain borderline cases.
Diabetes Mellitus AUC-ROC Curve
	 The ROC curve shown in Figure 5 for 
diabetes mellitus detection highlights the model’s 
diagnostic capability.
• AUC Value: An AUC of 1.0 indicates perfect 
model performance, meaning the model can 
flawlessly distinguish between individuals with 
and without diabetes mellitus.
• Curve Shape: The curve hugs the top and left 
borders of the plot, which signifies ideal specificity 
(no false positives) and sensitivity (no false 
negatives).
• Interpretation: The Y-axis represents the True 
Positive Rate (proportion of correctly detected 
positives), while the X-axis represents the False 
Positive Rate (proportion of real negatives 
misclassified as positives).
• Conclusion: The model achieves perfect 
classification, with zero false positives and false 
negatives, indicating its complete reliability in 
identifying diabetes mellitus cases.
Comparative Analysis
• Diabetic Retinopathy Model: The AUC of 0.965 
indicates a high classification accuracy. The few 
false negatives (FN) in the confusion matrix 
suggest minor gaps in detecting all positive cases, 
which could be addressed with further optimisation.
• Diabetes Mellitus Model: An AUC of 1.0 denotes 
a flawless classification with no misclassifications, 
as confirmed by a confusion matrix showing zero 
false positives (FP) or false negatives.
• Overall Performance: Both models show 

strong diagnostic capabilities. While the 
diabetic retinopathy model has a minor scope 
for enhancement, the diabetes mellitus model 
operates at an ideal level. The AUC-ROC curves 
serve as visual confirmation of the model’s efficacy, 
complementing the numerical insights provided by 
the confusion matrices.

CONCLUSION 

	 This research significantly advances 
medical diagnostics by utilising thermal imaging 
and the K-Nearest Neighbors (K-NN) algorithm for 
the automated detection of diabetes mellitus and 
diabetic retinopathy. By identifying distinct heat 
patterns indicative of diabetes, the proposed model 
offers a non-invasive, accurate, and cost-effective 
diagnostic tool that enhances early detection 
and management of diabetic complications. 
Validation tests confirm the model’s accuracy 
and reliability, demonstrating its potential to 
improve patient outcomes. Future research could 
integrate advanced machine learning techniques, 
such as deep learning, to enhance diagnostic 
accuracy and robustness. Here, the model relies 
heavily on a high-quality dataset for the training 
and testing process. In addition, thermal images 
are used in experimentations where consistency 
could be affected due to patient positioning and 
environmental factors. To compete with these 
problems, the expanded dataset to include a wider 
variety of thermal and retinal images could be 
used to improve the model’s generalizability 
across different populations. The development 
of wearable technology equipped with thermal 
imaging capabilities represents an exciting 
direction, allowing for real-time health monitoring 
and proactive diabetes management.
	 Additionally, creating real-time diagnostic 
applications could revolutionise patient care by 
enabling immediate assessments during routine 
check-ups. Longitudinal studies assessing the long-
term effectiveness of these diagnostic methods 
will provide valuable insights into their practical 
benefits. By pursuing these avenues, researchers 
can significantly advance diabetes diagnostics, 
ultimately leading to better health management 
and improved quality of life for individuals with 
diabetes.
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