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	 Integrating Artificial Intelligence (AI) in medical imaging has revolutionized 
diagnostics by enhancing accuracy and efficiency. However, challenges related to interpretability, 
domain shifts, and trust hinder clinical adoption. This study introduces a fuzzy set theoretic 
based framework to address these issues, focusing on real-world applications. We used aa case 
study, where fuzzy membership grades (ranging from 0.1 to 0.9) were employed to classify tumor 
pixels, with a threshold of 0.6 indicating higher likelihood. Weighted average defuzzification 
techniques were used to integrate parameters such as pixel intensity, grayscale, and texture 
coefficient. Results demonstrated that pixels exceeding the threshold consistently aligned 
with tumor regions, validating the framework’s reliability. Additionally, we explored domain 
shifts through feature distribution analysis between source and target datasets, highlighting 
the need for adaptive models. This research emphasizes the role of fuzzy sets in improving 
interpretability and adaptability in clinical settings, contributing to AI’s trustworthiness and 
clinical acceptance.

Keywords: AI Adaptation, domain shift, interpretability, medical imaging, trustworthiness.

	 The Amalgamation of  Art i f ic ia l 
Intelligence into medical imaging streak an 
everchanging era in diagnostic medicine where 
technology meets healthcare which promises 
enhanced patient outcomes and improved clinical 
workflows. The Combined & crucial role of 
Fuzzy and AI’s in medical imaging can be seen 
through their competence in analysing complex 
data with precision and speed that were previously 
impassable, heralding a new age of diagnostic 
precision and efficiency1.However continuous 
advancement brings some threats, too. The clinical 
deployment of AI systems in medical imaging 

accommodates a multifaceted approach that 
marks interpretability, domain shift, adaption, 
and trustworthiness to ensure their efficacy and 
assimilation into patient care (RSNA,2023)
	 In the examination for interpretability, 
the black-box nature of AI systems often poses a 
compelling barrier, and we use fuzzy logic for the 
same. The acceptance of clinicians to interpret and 
trust AI decision-making processes is preeminent, 
mainly when such decisions encounter patient 
diagnosis and treatment (NCBI, 2023). This trust 
can only be settled through transparent AI models 
that provide intuition into their reasoning, thereby 
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providing an environment of informed clinical DM 
and adequate patient communication  
	 Moreover, the domain shift presents 
a hefty obstacle. AI models, often trained on 
peculiar datasets, may fail when applied to new 
datasets from various clinical environments, a 
certainty that is prevalent in the distinct landscape 
of healthcare2,3. Addressing this problem requires 
a robust adaptation procedure that enables AI 
systems to maintain steady performance across a 
spectrum of medical imaging modalities and patient 
populations, conflicting the need for wide-ranging 
retraining4.
	 Lastly, the trustworthiness of AI systems 
in medical imaging extends beyond accuracy. 
It encompasses the reliability, fairness, and 
ethical considerations that are integral to clinical 
acceptance. Ensuring that AI systems adhere to 
these principles is not only a technical challenge 
but also a moral imperative, as the main goal of AI 
in healthcare is to benefit patient safety and well-
being5  .
	 As the field of medical imaging continues 
to evolve, the need for AI systems that are 
technologically advanced and the application of 
interdisciplinary approaches is much required.  In 
the coming section of this article, the historical 
context of AI is presented. The next section deals 
with interpretability, presenting the case study 
using fuzzy sets where the parameters taken as 
pixel intensity, greyscale, and texture coefficient, 
and we took the threshold value as 0.6. Further, 
we analyzed the domain shift with four features. 
The article concludes with the final conclusion and 
future studies.
Historical context of AI in medical imaging
	 Artificial Intelligence (AI) in medical 
imaging is not a cutting-edge phenomenon but 
rather an growing one, with its inception dating 
back to the mid-20th century. The thought of AI 
was first described in 1950, and it aimed to mimic 
human cognitive functions. However, the practical 
implementation of AI in medicine was stalled due 
to technological inadequacies of initial models. 
These limitations persisted until the early 2000s, 
when the advent of deep learning significantly 
propelled the capabilities of AI systems, thus 
overcoming many previous barriers and setting the 
stage for their integration into medical imaging.6

	 The 1980s marked a resurgence of AI 

due to international competition, but it was also 
a period known as the ‘AI winter’ from 1983 to 
1993, characterized by a collapse of the market 
for the computational power needed at the time, 
leading to a withdrawal of funding. However, 
research and development in AI did not come to a 
complete halt and picked up pace thereafter, setting 
the groundwork for its eventual resurgence and 
integration into the medical field7  .
Current State of the Art and Its Limitations
	 Today, AI applications in medical imaging 
are widespread and continuously growing, with the 
field widely recognizing that AI will completely 
transform medical diagnostics. Current AI 
models have shown remarkable success in the 
interpretation of medical images, and their use has 
been extended to various applications, including 
the detection of abnormalities and quantification 
of disease processes8,9.
	 However, despite these advances, AI in 
medical imaging is not without its limitations. One 
such limitation is the ‘black box’ nature of many AI 
systems, where the reasoning behind AI decisions 
is not transparent, posing a significant challenge 
for clinical acceptance. Additionally, while AI 
aims to replicate human decision-making, it still 
struggles with issues such as domain shift, where 
models trained on one set of data fail to generalize 
to other datasets, often seen in the diverse clinical 
environments encountered in healthcare10.
The Need for Improved AI Interpretability and 
Trust in Clinical Settings
	 The necessity for AI interpretability in 
medical imaging is paramount, as it is crucial for 
clinician trust. Clinicians need to comprehend the 
AI decision-making process to make informed 
decisions and communicate effectively with 
patients. The paradigm change that AI is bringing 
to healthcare is driven by the enlarging availability 
of healthcare data and enhancements in analytics 
methods. The future of AI in healthcare is 
envisioned to address these interpretability issues, 
thereby increasing trust and reliability in clinical 
settings11  .
	 Recent advancements in artificial 
intelligence (AI) have demonstrated the potential 
to transform medical diagnostics, particularly 
through techniques like fuzzy logic and explainable 
AI 12, 13 frameworks. Fuzzy soft set theory, for 
example, has been extensively reviewed for its 
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applications in medical diagnosis and decision 
making14, offering a structured approach to 
handle uncertainty in complex medical data15. 
Furthermore, explainability and transparency are 
critical to the adoption of AI in clinical settings, as 
many AI models, particularly in radiology, struggle 
with the “black box” problem, which undermines 
clinicians’ trust16, 17. To address these issues, 
recent research has emphasized the importance 
of harmonized data infrastructures and federated 
learning models, which facilitate secure and 
efficient data sharing across healthcare systems, 
enabling the development of robust AI models for 
medical imaging18. Additionally, innovations in 
fuzzy logic, such as the intelligent saline control 
valve, highlight the practical applications of AI 
in patient care, providing solutions to optimize 
clinical procedures19. 
Interpretability
	 In machine learning, interpretability is 
specified as the degree to which a human can 
envision the reasons behind a model’s decision. 
This is not only a technical prerequisite but an 
ethical imperative, especially in sectors where 
decisions have deep implications on human 
lives, such as healthcare. Trust in these systems 
comes from their capacity to bring transparent 
reasoning for their decisions, which arouses higher 
acceptance and fidelity to clinical decision-making 
facilitated by AI.
Approach for Model Interpretability 
	 The quest for interpretability has given 
acceleration to different techniques. Inherently 

interpretable models like logistic regression and 
decision trees offer clarity through their elimination 
and the direct way they can be charted to human-
understandable rules. However, with the arrival 
of complex models like deep neural networks, the 
field has moved toward a post-hoc interpretability 
approach. Model agnostic approaches like LIME 
quip local interpretability, providing explanations 
for certain indicators heedless of the model’s 
complexity. SHAP values boost this by allocating 
each attribute a value for certain predictions, 
depiction from cooperative game theory to 
establish consistency and precision in featuring 
crucial attribution 
	 Visual techniques are also instrumental; 
for instance, Class Activation Mapping (CAM) and 
its variants allow for the envision of regions in the 
input image that are essential for predictions by a 
convolutional neural network, providing clinicians 
with a visual rationale for the AI’s decision.
Interpretability in Medical Imaging
	 The utilization and significance of 
interpretability in medical imagining are illustrated 
through specific case studies. For instance, a study 
on interpreting AI decisions in mammography 
has shown that using heatmaps to indicate areas 
of interest helps radiologists to quickly focus on 
potential issues and corroborate the AI’s findings 
with their expertise. In another case, the use of 
AI to diagnose diabetic retinopathy was greatly 
enhanced by interpretability techniques that 
allowed ophthalmologists to understand the basis of 
the AI’s diagnostic suggestions, thus integrating AI 

Table 1. Parameter influence on the final defuzzified value

Pixel	 Membership 	 Pixel 	 Grey 	 Texture 	 Threshold 	 Defuzzified 
	 Grade	 Intensity	 Scale 	 Coefficient	 (Grade > 0.6)	 Value

1	 0.10	 35	 120	 0.30	 0.00	 0.000000
2	 0.30	 45	 130	 0.35	 0.00	 0.000000
3	 0.50	 60	 145	 0.40	 0.00	 0.000000
4	 0.20	 20	 110	 0.20	 0.00	 0.000000
5	 0.40	 40	 125	 0.25	 0.00	 0.000000
6	 0.60	 55	 150	 0.45	 0.00	 0.000000
7	 0.80	 80	 200	 0.60	 0.80	 0.141933
8	 0.70	 75	 190	 0.55	 0.70	 0.101391
9	 0.90	 90	 210	 0.65	 0.90	 0.204334
10	 0.85	 85	 205	 0.70	 0.85	 0.191607

Pixels 7, 8, 9, and 10, with defuzzified values of 0.141933, 0.101391, 0.204334, and 0.191607, respectively, 
suggest a likelihood of being part of a tumor.
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assistance seamlessly into their clinical workflow. 
Fig.1 simulate the appearance of an AI-generated 
heatmap on a medical image for illustrative 
purposes.

MATERIAL AND METHODS

Case study 1
	 Consider the problem of an MRI scan 
analysis for tumor detection. The challenge is 
to accurately identifying tumor tissues amidst a 
variety of other factors. 
	 In this example, an MRI scan with 
10 distinct pixels, each characterized by four 
parameters: Membership Grade, Pixel Intensity, 
Grey Scale, and Texture Coefficient is taken into 
consideration. The task is to analyze these pixels 
using Fuzzy Logic to determine the likelihood of 
each pixel being part of a tumor. 
• We assume 10 pixels, each with four parameters.

• Each pixel’s membership grade (0.1 to 0.9) 
reflects its likelihood of being tumor tissue.
• A threshold of 0.6 indicates higher tumor 
likelihood.
• Pixel Intensity, Grayscale, and Texture Coefficient 
are integrated with membership grades for tumor 
detection.
• The Weighted Average defuzzification method 
computes a single value for each pixel.
• Higher defuzzified values indicate a greater 
likelihood of tumor presence.
Case Study 2
	 Consider two domains of medical imaging 
data for tumor detection, Domain A (Source) and 
Domain B (Target), each domain comprises data 
points with four features: Feature 1 (e.g., tumor 
size), Feature 2 (e.g., texture), Feature 3 (e.g., 
shape irregularity), and Feature 4 (e.g., presence 
of specific markers). 

Fig. 1. A medical scan with a heatmap overlay, to illustrate AI interpretability in medical diagnostics
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Table 2. Domain A (Source)

Feature 1	 Benign Grade	 Malignant Grade	 Feature 2	 Feature 3	 Feature 4

4.1	 1.00	 0.00	 2.08	 7.42	 7.85
4.42	 0.89	 0.11	 2.59	 7.64	 7.99
4.74	 0.78	 0.22	 3.11	 7.85	 8.14
5.07	 0.67	 0.33	 3.62	 8.07	 8.29
5.39	 0.56	 0.44	 4.13	 8.29	 8.44
5.71	 0.44	 0.56	 4.65	 8.50	 8.58
6.03	 0.33	 0.67	 5.16	 8.72	 8.73
6.36	 0.22	 0.78	 5.67	 8.94	 8.88
6.68	 0.11	 0.89	 6.19	 9.15	 9.02
7.00	 0.00	 1.00	 6.70	 9.37	 9.17

Table 3. Domain B (Target)

Feature 1	 Benign Grade	 Malignant Grade	 Feature 2	 Feature 3	 Feature 4

7.1	 0.0	 1.0	 13.07	 13.96	 8.18
7.37	 0.0	 1.0	 13.25	 14.03	 8.90
7.63	 0.0	 1.0	 13.44	 14.11	 9.61
7.9	 0.0	 1.0	 13.62	 14.18	 10.33
8.17	 0.0	 1.0	 13.80	 14.25	 11.05
8.43	 0.0	 1.0	 13.99	 14.33	 11.76
8.7	 0.0	 1.0	 14.17	 14.40	 12.48
8.97	 0.0	 1.0	 14.35	 14.47	 13.20
9.23	 0.0	 1.0	 14.54	 14.55	 13.91
9.5	 0.0	 1.0	 14.72	 14.62	 14.63

	 The challenge is to adapt an AI model 
trained on Domain A to maintain its diagnostic 
accuracy when applied to Domain B, addressing 
the domain shift numerically represented by 
differences in feature distributions and associations 
with tumor characteristics.
	 In this example (hypothetical data), we 
use fuzzy logic for Feature1 classification, and 
apply domain adaptation techniques for Feature 
2, Feature3, and Feature4.
	 The Fuzzy Logic Parameters used are: 
benign threshold for Feature 1 is 5; malignant 
threshold for Feature 1 is 7. The domain shift is 
shown in Fig. 2.
Case Study 3
	 Application of Intuitionistic Fuzzy Sets 
in Medical Imaging for Tumor Detection
Step 1: Data Preprocessing
1. Normalization of Pixel Intensity Values:
Normalize pixel intensity values I to a standard 
range, typically [0, 1], using the formula:

Inorm  = (I - Imin) / (Imax  - Imin)

2. Segmentation of Medical Images:
Apply segmentation algorithms such as Otsu’s 
method or k-means clustering to identify Regions 
of Interest (ROIs) within the medical images.
Step 2: Fuzzy Logic for Interpretability
1. Definition of Fuzzy Membership Functions:
Define membership functions µ for key features x 
(e.g., pixel intensity, grayscale, texture coefficient). 
For example, a Gaussian membership function can 
be used:

2. Calculation of Membership Grades:
Compute membership grades µ(xi) for each pixel i 
based on the defined fuzzy membership functions.
3. Threshold Application for Classification:
Apply a threshold τ to classify pixels as part of the 
tumor or not:
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Fig. 2. Domain shift across all four features, highlighting the differences in distributions and relationships that 
characterize the two domains. The blue dots (Domain A) and red crosses (Domain B)

Fig. 3. Normalization of Pixel Intensity Values
Segmentation of MRI scans to identify Regions of Interest (ROIs).

Step 3: Domain Adaptation
1. Identification of Source and Target Domains:
Identify the source domain Ds (training dataset) 
and target domain DT (new clinical dataset).

2. Transfer Learning:
Fine-tune the pre-trained model Ms, from the 
source domain using labeled data from the target 
domain:
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Table 4. Calculation of Membership, Non-membership, and Hesitancy Grades

Pixel Value	 Membership (µ)	 Non-membership (ν)	 Hesitancy (π)

0.1	 0.0	 1.0	 0.0
0.3	 0.14	 0.86	 0.0
0.5	 1.0	 0.0	 0.0
0.7	 0.14	 0.86	 0.0
0.9	 0.0	 1.0	 0.0

Table 5. Threshold Application for Classification

Pixel Value	 Membership (µ)	 Non-membership (ν)	 Hesitancy (π)	 Classification

0.1	 0.0	 1.0	 0.0	 Non-Tumor
0.3	 0.14	 0.86	 0.0	 Non-Tumor
0.5	 1.0	 0.0	 0.0	 Tumor
0.7	 0.14	 0.86	 0.0	 Non-Tumor
0.9	 0.0	 1.0	 0.0	 Non-Tumor

Fig. 4. Segmentation of Medical Images
Intuitionistic fuzzy membership, non-membership, and 

hesitancy functions for key features.
Calculation of membership, non-membership, and 

hesitancy grades for each pixel.

3. Domain-Invariant Feature Learning:
	 Employ domain-invariant feature learning 
techniques to learn features f that are robust across 
both domains DS and DT:

minf maxD  Ex-Ds [log D(f(x))] + E(x-DT) [log 
(1 - D(f(x)))]

where D is a domain discriminator.
Step 4: Model Evaluation
1. Cross-Validation on Target Domain:
	 Perform k-fold cross-validation on the 
target domain  to evaluate model performance. 
Calculate metrics such as accuracy, precision, 
recall, and F1 score.

2. Interpretability Assessment: Use techniques 
like Class Activation Mapping (CAM) or LIME 
for visual explanations.
Step 5: Incremental Data Integration
	 Continuously integrate new data D{new} 
into the model to update its parameters:

M{new}  = IncrementalUpdate(MT, D{new})

Result and Discussion

	 The results from the case studies illustrate 
the effectiveness of the fuzzy logic framework in 
addressing key challenges in AI-based medical 
imaging, such as interpretability and domain 
shift. Fuzzy logic provides a transparent way 
to manage complex datasets, making it easier 
for clinicians to trust AI outputs. The weighted 
average defuzzification method ensured the 
accurate classification of tumor pixels, with 
higher defuzzified values correlating with tumor 
likelihood.
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Fig. 5. Tumor Regions Highlighted

Fig. 6. A reliability framework for developing trustworthiness

	 For case study 1, the analysis helps in 
understanding and enhancing interpretability in 
AI for medical imaging, demonstrating a practical 

application of fuzzy logic in a complex, real-
world scenario. Intuitionistic fuzzy sets extend 
traditional fuzzy sets by incorporating a degree 
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of hesitancy, which offers a more nuanced way to 
handle uncertainty and improve the robustness of 
AI models. The following pictorial representation 
in Fig. 3 and 4 gives a visual understanding of case 
study 3.
	 Normalization of pixel intensity values to 
a standard range [0, 1].
Alternative Methods and Hypotheses
	 While fuzzy logic enhances interpretability, 
other AI techniques, such as explainable neural 
networks and decision trees, also aim to provide 
transparent decision-making. Methods like SHAP 
(Shapley Additive Explanations) and LIME (Local 
Interpretable Model-Agnostic Explanations) 
offer feature-level insights but may struggle with 
generalization across diverse datasets. Additionally, 
non-fuzzy models may outperform fuzzy logic in 
cases where pixel-level precision is less critical, 
such as in broad pattern recognition tasks.
Limitations
	 One limitation of our approach is the 
reliance on predefined membership functions and 
threshold values, which may need adjustment 
for different imaging modalities. Moreover, the 
framework has been tested primarily on a single 
case study with simulated data, meaning further 
validation on real-world clinical datasets is required 
for broader applicability.
Uncertainties and Sensitivity of Results
	 The sensitivity of the fuzzy logic 
framework to changes in membership grades and 
defuzzification parameters presents a potential 
source of variability. Small variations in these 

parameters may alter the classification outcome, 
highlighting the need for robust parameter 
optimization. Additionally, domain shift remains 
a challenge, as the model’s accuracy may decrease 
in clinical settings with significant differences in 
equipment or patient demographics. Continuous 
fine-tuning and adaptive learning mechanisms are 
necessary to mitigate these effects.
Implications for Clinical Practice
	 The application of fuzzy logic provides 
a promising pathway for improving the 
interpretability and trustworthiness of AI models in 
medical imaging. However, collaboration between 
data scientists and clinicians will be essential to 
tailor these models to specific clinical workflows. 
Future work should focus on integrating fuzzy 
logic with other adaptive AI techniques to further 
enhance model robustness and generalizability 
across diverse clinical environments.
Domain shift
Understanding Domain Shift in AI
	 Domain shift refers to the switch in 
data distribution that a machine learning model 
encounters when applied to new environments 
or scenarios different from the training data. 
This phenomenon is critical in AI, as it can 
remarkably impact a model’s performance due to 
the distinction between the source (training) and 
target (application) domains.
Impacts on Medical Imaging Analysis
	 In medical imaging, domain shift can be 
extremely challenging, as models trained on data 
from one set of equipment or demographic might 

Fig. 7. Various factors in regulatory and security landscape
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not execute well when applied to data from another, 
due to difference in image acquisition protocols, 
patient populations, or disease prevalence. This can 
lead to decreased precision in automated diagnosis 
systems and likely impact patient outcomes.
	 To address domain shift, various domain 
adaptation strategies have been developed. 
These include transfer learning, where a model 
trained on one domain is redesign to another, 
and domain-invariant feature learning, which 
targets to learn aspect that are robust to the switch 
between domains. Additionally, data augmentation 
and synthetic data generation can be employed 
to simulate a variety of domain shifts during 
the training process, strengthen the model’s 
generalizability.
Adaptive AI Systems in Medical Imaging
Continuous Learning and Model Updating
	 In medical imaging, adaptive AI systems 
must incorporate machine learning techniques 
such as online learning, where the model is 
incrementally trained on new data, or transfer 
learning, where a pre-trained model is fine-tuned 
with data from a new domain. This enables the 
model to reshape to new patterns in the data, such 
as novel imaging biomarkers or advancing disease 
presentations.
Cross-Modality and Cross-Institutional 
Transformation 
	 These arrangements require deploying 
domain variation techniques to ease issues resulting 
from contrast in imaging modalities example CT, 
MRI, PET and institutional practices. This may 
encompass the use of GANs- generative adversarial 
networks to execute image-to-image translation, 
authenticating model robustness and transferability 
across numerous imaging technologies and 
healthcare framework. 
Trustworthiness
	 Reliability in AI systems, particularly in 
medical imaging, needs a multifaceted approach, 
as depicted by Fig 6.
Current regulatory landscape
	 A complex international guidelines, 
national laws, and industry standards defines 
the ongoing regulatory landscape for AI in 
medical imaging. In the U.S., the Food and Drug 
Administration (FDA) give oversight through its 
regulatory framework for Software as a Medical 
Device (SaMD), which includes AI and machine 

learning-based software. The FDA’s risk-based 
approach target on the software’s intended use. 
In Europe, the European Union’s Medical Device 
Regulation (MDR) classifies and regulates AI as 
a medical device, with an identical risk-based 
approach. Both frameworks demand strict clinical 
evaluation, post-market surveillance, and a quality 
management system aligned with standards 
such as ISO 13485. Various factors affecting 
this is shown in Fig 7. AI is not a threat but a 
tremendous opportunity to assist radiologists in 
quickening the backend processes, improving 
workflow, increasing accuracy, and quantification 
of findings20. Borys K studied a common ground 
for cross-disciplinary understanding and exchange 
across disciplines between deep learning builders 
and healthcare professionals21.

Conclusion

	 In this study, we used a fuzzy based 
framework to address key challenges in AI-driven 
medical imaging, particularly in improving 
interpretability, handling domain shifts, and 
enhancing trustworthiness in MRI-based tumor 
detection. Our case study demonstrated that 
applying fuzzy membership grades and weighted 
average defuzzification techniques can effectively 
classify tumor pixels, offering clinicians a more 
transparent decision-making tool compared 
to conventional AI methods. This approach 
underscores the potential of fuzzy logic to bridge 
the gap between AI’s ‘black-box’ nature and the 
need for explainability in clinical environments.
	 However, it is essential to recognize that 
this research was limited to a single case study 
focusing on MRI scans. The predefined fuzzy 
membership functions and threshold values may 
need to be adjusted for different imaging modalities 
and clinical datasets. Furthermore, while the 
framework showed promise in managing domain 
shifts between source and target datasets, its 
robustness across varied real-world clinical settings 
remains to be tested.
	 Future research should focus on extending 
this framework to larger and more diverse datasets, 
testing it across other medical imaging techniques 
such as CT and PET scans, and refining the fuzzy 
parameters to suit different clinical environments. 
By integrating fuzzy logic with adaptive learning 
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models and domain-invariant feature extraction, the 
applicability of this approach could be broadened 
significantly. These advancements would contribute 
not only to better AI interpretability but also to the 
establishment of more trustworthy, reliable AI 
systems in medical diagnostics. The future of AI in 
medical imaging holds promising research avenues, 
including:
1.	 In both case studies, a number of 
additional features may be given, and the threshold 
value can be adjusted and varied from case to case.
2.	 Focusing on developing interpretable AI 
systems that provide transparency in decision-
making processes and ethical considerations in 
deployment.
3.	 Investigating the use of AI in integrating 
different imaging modalities to provide a 
comprehensive view of patient pathology.
	 While fuzzy logic offers a promising 
pathway for addressing some of the core challenges 
in AI-based medical imaging, further empirical 
studies are required to validate its generalizability 
and clinical utility. The framework presented here 
serves as a foundational step toward developing 
interpretable and trustworthy AI solutions that can 
be seamlessly integrated into clinical workflows, 
ultimately benefiting patient care and clinical 
decision-making.
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