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	 Parkinson’s disease (PD) is a chronic, non-fatal, and well-known progressive 
neurological disorder, the symptoms of which often overlap with other diseases. Effective 
treatment of diseases also requires accurate and early diagnosis, a way that patients can lead 
healthy and productive lives. The main PD signs are resting tremors, muscular rigidity, akinesia, 
postural instability, and non-motor signs. Clinician-filled dynamics have traditionally been 
an essential approach to monitoring and evaluating Parkinson’s Disease (PD) using checklists. 
Accurate and timely diagnosis of Parkinson’s disease (PD), a chronic and progressive neurological 
ailment, can be difficult due to its symptoms overlapping with those of other disorders. Effective 
therapy and improvement in the quality of life for patients depend on early and accurate 
detection. To improve classification performance, this study investigates transfer learning, 
which uses pre-trained models to extract features from massive datasets. Transfer learning 
improves generalization and permits domain adaptation, especially for small or resource-
constrained datasets, while lowering training time, resource needs, and overfitting concerns. 
This work aims to design and assess a general transfer learning paradigm for the reliable 
prognosis of Parkinson’s disease based on DaTscan images that consider feature extraction and 
the performance of a variety of ML algorithms. This work aims to explore the use of transfer 
learning with pre-trained deep learning models to extract features from DaTscan images in 
order to improve classification accuracy. The sample of this study is made up of 594 DaTscan 
images from 68 participants, 43 with PD and 26 healthy. Out of the four algorithms employed; 
the Random Forest, Neural Network, Logistic Regression, and Gradient Boosting models, transfer 
learning-based features were applied.  Four indices of accuracy, namely Area Under the Curve 
(AUC), Classification Accuracy (CA), F1 Score, Precision, Recall and Matthews Correlation 
Coefficient (MCC) were used to evaluate four machine learning models on a PD classification 
task such as Random Forest, Neural Network, Logistic Regression, and Gradient Boosting. Neural 
networks outperformed the other models, showing robustness and reliability with an AUC of 
0.996, CA of 0.973, and MCC of 0.946. Gradient Boosting performed competitively, coming in 
second with an AUC of 0.995 and MCC of 0.925. Random Forest performed the worst, with an 
AUC of 0.986 and an MCC of 0.905, whereas Logistic Regression had an AUC of 0.991 and an 
MCC of 0.926. These results demonstrate how well neural networks perform high-precision 
tasks and point to gradient boosting as a more computationally effective option.
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	 Parkinson’s disease is a clinical condition 
characterized by the progressive degeneration of the 
motor system and is mainly secondary to lowered 
dopamine production in the brain. Dopamine, 
acting as a neurotransmitter, sends signals that 
reach the basal ganglia needed by the brain for 
effective motor control. Dopamine is reduced 
when there appears to be dysfunctions or death 
of dopaminergic neurons from the basal ganglia. 
The motor symptoms of Parkinsonism include 
resting tremors, bradykinesia, postural instability, 
rigidity, akinesia, hypothesia and dyskinesia, and 
changes in speech and writing 1,2. The diagnosis of 
Parkinson’s disease presents a problem since there 
are few biochemical tests, for example, blood tests, 
that can conclusively point to the disease. Even 
though PD predominantly affects people over 60 
years, it may appear in a person of a younger age 
and may be diagnosed only when the disease has 
reached the later stages. Detecting the disease in the 
early stages is useful because it also allows one to 
manage the symptoms that arise from it and slows 
down the disease’s advancement 3. Parkinson’s 
disease onset may cause finger trembling and 
interruptions during speech and the normal flow of 
movement. In most cases, finger tremors result in 
changes in the handwriting to a small and cramped 
writing style known as Micrographia. The above 
micrographia analysis shows that it can be used 
as an early diagnostic marker for Parkinson’s 
disease. Early diagnosis of PD is possible if the 
signs of Micrographia or other abnormalities in 
handwriting patterns are assessed in addition to 
observation of the general condition and medical 
history. Proper diagnosis is crucial in managing and 
treating Parkinson’s disease, so prompt diagnosis 
is important. Conventional diagnostic approaches 
often depend on subjective observations and 
clinical assessments, which may delay identifying 
and addressing the condition. Recent advancements 
in deep learning (DL) and machine learning 
(ML) have revolutionized the diagnostic process, 
especially through transfer learning. This method 
speeds up the training process and improves 
model performance by utilizing features learned 
from prior tasks. Recently, it was established 
that transfer learning works in various domains, 
including image and speech processing, making 
it a promising technique for early detection of 

Parkinson’s disease. For example, convolutional 
neural networks (CNNs) and transformer-based 
models have been effectively used to analyze 
voice recordings and neuroimaging data, achieving 
high accuracy in differentiating individuals with 
Parkinson’s disease from healthy controls 4,5,6. 
Integrating transfer learning into Parkinson’s 
disease detection strategies enables the development 
of more robust models capable of handling the 
complexities of diverse datasets, including self-
reported voice recordings and MRI scans. These 
models enhance diagnostic precision and support 
early detection, critical for timely intervention and 
effective disease management. As advancements in 
research progress, the transformative potential of 
transfer learning in Parkinson’s disease diagnosis 
becomes increasingly apparent, offering innovative 
approaches to improve patient care and outcomes. 
Deep learning techniques have recently achieved 
significant success in classification tasks. Several 
techniques, such as convolutional neural networks 
(CNNs), have shown optimum accuracy rates in 
classification problems. CNNs have been used 
in image, audio and video classification since 
they are good at identifying different features of 
the inputs to provide the right classification. The 
accessibility and ease of use make convolutional 
neural networks (CNNs) an ideal choice for 
classification tasks. Previous studies have shown 
that deep learning algorithms, particularly CNNs, 
can outperform traditional machine learning 
methods, especially when applied to transfer 
learning. This learning involves using pre-trained 
CNNs for new applications to fine-tune the 
model for specific tasks 2,7. Certain deep learning 
architectures, such as ResNets, EfficientNets, and 
MobileNets, have attracted much attention in the 
present world. With deep learning models, medical 
applications have been analyzed based on medical 
data such as X-ray pictures and MRI scans, and 
a helpful diagnostic capacity is provided in the 
medical field. In the last 10 years, for instance, 
there has been fast advancement in Artificial 
intelligence, which has enhanced the use of AI in 
the healthcare industry and resulted in astonishing 
improvements in medical diagnosis and treatment 
of patients. Artificial intelligence is a promising 
medical tool widely used to diagnose and predict 
various diseases. Research suggests that deep 



163 Pant et al., Biomed. & Pharmacol. J,  Vol. 18(Spl.), 161-177 (2025)

learning methods often outperform other high-
performing algorithms, offering superior accuracy 
and efficiency in medical applications 8,9. Applying 
deep learning techniques for detecting Parkinson’s 
disease from handwriting data is possible as 
it holds high accuracy, as most deep learning 
methodologies do. To implement an efficient 
classification of patients as healthy or Parkinson 
‘s-affected patients, deep transfer learning models 
and machine learning techniques are used in the 
proposed model. This system uses features from the 
DaTscan images to improve the detection of these 
abnormalities. This paper reviews diverse transfer 
learning-based approaches used in detecting 
Parkinson’s disease, including their assessment 
criteria, strengths, and possibilities to affect clinical 
management. By synthesizing current research and 
suggesting future directions, we aim to contribute 
to the ongoing efforts to improve diagnostic 
techniques for neurodegenerative diseases. 
	 PD is a clinical condition of the motor 
system that deteriorates due to decreased 
synthesis of dopamine in the brain. Dopamine, 
a neurotransmitter, is involved in motor control, 
and the shortage of dopamine is known to directly 
cause resting tremor, bradykinesia, postural 
instability, rigidity, and akinesia. Other symptoms, 
such as slowness in speaking and writing (e.g., 
micrographia) and impaired cognition, also make 
diagnosis and treatment difficult in patients with 
PD. Diagnosis of PD is difficult as few biochemical 
tests are available to confirm this disease. Also, the 
characteristic manifestations are similar to those in 
other neurodegenerative diseases, which can cause 
confusion and delay the diagnosis at the initial 
stages. This is especially important as PD can be 
diagnosed in its early stages, and the progression 
of the disease may be minimized apart from 
enhancing patients’ quality of life. Historically, 
diagnosis depends on clinical evaluation, and 
although they can provide useful information, they 
are relatively inaccurate and less standardized. 
	 New approaches in the field of AI and 
DL have revitalized emergency diagnostics by 
applying limited feature learning from a great 
number of inputs. Specifically, transfer learning 
can be applied to advance DNNs for healthcare-
related tasks, as demonstrated by l. For example, 
there have been quite many investigations proving 
how CNNs can be used in identifying neurological 

conditions, including Alzheimer’s disease, from 
MRI scans, as well as in identifying lung cancer 
from CT scans. Similarly, authors have used 
transfer learning to classify images from SPECT 
and DaTscan for PD diagnosis, demonstrating 
tremendous improvements in classification success 
rates and sensitivity. 
	 For example, Majhi et al.10 obtained an 
AUC of 100% for PD detection using images of 
SPECT that provide evidence of the capability 
of transfer learning-based models handling the 
neuroimaging data. The CNNs were applied to 
distinguish the handwriting patterns by Gazda 
et al. 14, and it was shown that the proposed 
model could successfully evaluate PD-related 
micrographia. These studies emphasize the 
importance of Deep learning methods in improving 
the difficulties of diagnosing the disorder known 
as PD. Based on these developments, this work 
further intends to establish a comprehensive 
framework for Parkinson’s disease detection 
through comprehensive transfer learning-based 
deep learning models and DaTscan images. To this 
end, the study aims to compare various machine 
learning classifiers to establish one that yields high 
diagnostic accuracy and reliability. The findings of 
this study can help to advance the development of 
automated diagnostic systems and suggest a route 
toward improving the detection and treatment of 
PD at the early stages.
Related works
	 In the last few decades, deep learning, 
machine learning, and AI technologies have led 
to adoption in various domains. Deep learning 
approaches have recently been integrated into 
the various aspects of healthcare. Due to the 
constant advances and updates encountered with 
artificial intelligence and deep learning, AI has 
seen a broader scope in the healthcare industry, 
specifically, the diagnosis and prediction of 
diseases. Various studies have used and introduced 
different datasets to diagnose Parkinson’s disease. 
Several signs, including olfactory dysfunction, gait, 
speech, handwriting, and other motor functions, 
have been studied as markers of PD. Fang12 

introduced an enhanced KNN algorithm based on 
entropy for Parkinson’s disease detection. The UCI 
dataset was used for this study, and a comparative 
analysis of existing approaches was performed to 
assess the efficiency of the improved algorithm. 
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The study results showed that the entropy 
weighting KNN algorithm was better than ordinary 
KNN based on accuracy improvement. Kuplan 13 
developed a new method for predicting the severity 
of symptoms of Parkinson’s disease from MRI 
images. This study aimed to enhance the detection 
efficiency of Parkinson’s disease with the aid of 
AI based on clinical information. The research 
involved three classification tasks, each focusing 
on the stages and key symptoms of the disease. 
The symptoms included the extent of the disease 
stage and the presence or absence of dementia 
or motor impairments. The model has proven to 
perform excellently for every classification task 
considered. Subsequently, more recently, Gazda14 
proposed an ensemble of deep neural networks to 
classify PD from isolated handwritten characters. 
This literature survey examines key studies 
utilizing transfer learning techniques across various 
modalities, including voice signals, neuroimaging, 
and EEG data, focusing on their methodologies and 
findings. One study demonstrated the effectiveness 
of machine learning (ML) and deep learning 
(DL) techniques in detecting Parkinson’s disease 
through voice signals. It employed a multiclass ML 
approach, incorporating feature selection methods 
like Recursive Feature Elimination, and reported 
that Support Vector Machines (SVM) achieved 
an accuracy of 93.84%. These findings highlight 
the potential of voice features in Parkinson’s 
diagnosis, emphasizing ML techniques’ significant 
role in facilitating early diagnosis and intervention 
strategies for the disease4. Several studies have 
investigated deep learning models for analyzing 
neuroimaging data, focusing on SPECT DaTscan 
images. This approach achieved an outstanding 
Area Under the Curve (AUC) score of 100% 
for Parkinson’s disease detection from SPECT 
images, highlighting the effectiveness of transfer 
learning in enhancing diagnostic accuracy10. 
Another study employed a CNN model to analyze 
1,390 DaTscan images, achieving a classification 
accuracy of 94.7%. This approach also utilized soft 
attention mechanisms to pinpoint regions of interest 
within the images10. Similarly, in an innovative 
method, transfer learning was applied to classify 
resting-state EEG data, offering a novel avenue 
for Parkinson’s disease monitoring. A modified 
VGG-16 architecture was employed to map EEG 
data into deep latent space, enabling effective 

differentiation between Parkinson’s disease patients 
and healthy controls. The study highlighted that 
fine-tuning pre-trained models can achieve accurate 
classifications by leveraging prior knowledge from 
large datasets11. Including fully connected layers 
customized for specific classification tasks further 
improved model performance. Additionally, some 
researchers have investigated ensemble methods 
that integrate multiple deep-learning architectures 
to enhance Parkinson’s disease detection. These 
studies suggest that ensemble techniques can 
boost predictive accuracy10. For instance, an 
ensemble deep-learning approach was designed 
to predict patient outcomes by integrating clinical 
assessments and neuroimaging features extracted 
from the PPMI database. In another study15, 
recognizing the importance of rapid disease 
diagnosis, researchers focused on developing 
deep convolutional neural networks (CNNs) for 
automated Parkinson’s disease identification using 
biomarker-derived voice signals. For instance, an 
ensemble deep-learning approach was designed 
to predict patient outcomes by integrating clinical 
assessments and neuroimaging features extracted 
from the PPMI database. In another study15, 
recognizing the importance of rapid disease 
diagnosis, researchers focused on developing 
deep convolutional neural networks (CNNs) for 
automated Parkinson’s disease identification using 
biomarker-derived voice signals. The proposed 
CNN methods consisted of two main stages: 
data preprocessing and the transfer learning 
method known as fine-tuning. The data sets 
were obtained from the mPower Voice database 
to train and evaluate the proposed technique. 
The researchers proposed transfer learning16 and 
sparse learning methods to estimate the parameter 
posterior distributions in the Hierarchical Bayesian 
framework and facilitate quantifying prediction 
uncertainty. They proposed an empirical Bayes 
transfer learning (ebTL) model that would correct 
for between-patient variability and knowledge 
transfer between modelling processes for the 
patients in question. Notably, the ebTL model 
features automatic hyperparameter estimation, 
eliminating the need for extensive manual tuning. 
They further demonstrated its application in 
predicting Parkinson’s disease severity levels 
using speech signal features from PD patients. 
The proposed strategy17 incorporates HT-WVD 
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Fig. 1. The architecture of VGG16 [20]

Fig. 2. The proposed architecture of VGG19

Fig. 3. Architecture of SqueezeNet[22]

and transfer learning with an SVM classifier based 
on ResNet-50. This work proposed novel methods 
for feature representation of voice and showed that 
PD could be classified from speech signals. With a 
5-fold cross-validation (CV) approach, the model 
achieved a peak accuracy of 92.13%. Additionally, 
through a blind test interface, the method shows 
potential for distinguishing new PD patients 
from healthy individuals in clinical settings. 
This research18 explored MRI datasets related to 
Alzheimer’s disease (AD) and Parkinson’s disease 
(PD) using neural network transfer architectures for 
disease classification. ADNI, OASIS, and NTUA 
datasets common in the literature were used, and 

seven state-of-the-art transfer learning paradigms 
were assessed. The results established the feasibility 
of transfer learning in dementia diagnostics for 
Alzheimer’s and Parkinson’s classifications. 
Specifically, it is essential to mention the highest 
achieving outcomes of the neural network 
models, InceptionV3 and InceptionResNetV2, 
for the OASIS and ADNI datasets and the NTUA 
transfer learning architectures of ResNet50 and 
EfficientNetB0.The reviewed literature highlights 
the promising potential of transfer learning 
in improving the detection and diagnosis of 
Parkinson’s disease across different modalities. 
Researchers are creating robust systems that 

enhance diagnostic accuracy and enable early 
detection by utilizing pre-trained models and 
optimizing feature extraction techniques. Future 
research should explore multimodal approaches 
and address current challenges to refine these 
methodologies further.

MATERIALS AND METHODS

	 In this section, various materials and 
methods used in the development of the proposed 
PD detection model are discussed. The present 
research would help increase the identification 
rate of PD disease by implementing an image 
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Table 1. Performance matrices of the models used after feature extraction using SqueezeNet to 
Parkinson’s class

Model	 AUC	 CA	 F1	 Prec	 Recall	 MCC

Logistic Regression	 0.992	 0.963	 0.967	 0.952	 0.982	 0.926
Neural Network	 0.996	 0.973	 0.975	 0.975	 0.975	 0.946
Gradient Boosting	 0.995	 0.963	 0.966	 0.969	 0.969	 0.925
Random Forest	 0.985	 0.953	 0.957	 0.963	 0.951	 0.905

Table 2. Performance matrices of the models used after feature extraction using SqueezeNet to non-
Parkinson's class

Model	 AUC	 CA	 F1	 Prec	 Recall	 MCC

Logistic Regression	 0.992	 0.963	 0.958	 0.977	 0.941	 0.926
Neural Network	 0.996	 0.973	 0.97	 0.97	 0.97	 0.946
Gradient Boosting	 0.995	 0.963	 0.959	 0.963	 0.956	 0.925
Random Forest	 0.985	 0.953	 0.949	 0.942	 0.956	 0.905

Fig. 4. Block Diagram for PD classification

classification methodology, which will incorporate 
the deep features extracted based on popular 
VGG16, VGG19 and Squeeze Net feature 
extraction methods. Further, the features obtained 

from these methods are inspected and sorted out 
through other integral forms of machine learning 
involving logistic regression, neural networks, and 
gradient boost and random forest algorithms.
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Table 3. Average Accuracy of the used model for both classes 

Model	 AUC	 CA	 F1	 Prec	 Recall	 MCC

Logistic Regression	 0.991	 0.963	 0.963	 0.963	 0.963	 0.926
Neural Network	 0.996	 0.973	 0.973	 0.973	 0.973	 0.946
Gradient Boosting	 0.995	 0.963	 0.963	 0.963	 0.963	 0.925
Random Forest	 0.986	 0.953	 0.953	 0.953	 0.953	 0.905

Fig. 5. Scatter plot for predicted class

Fig. 6. ROC Curve for Parkinson’s Predicted Class
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Table 4. Performance matrices of the models used after feature extraction using VGG-16 to 
Parkinson’s class

Model	 AUC	 CA	 F1	 Prec	 Recall	 MCC

Gradient Boosting	 0.995	 0.966	 0.970	 0.964	 0.975	 0.932
Logistic Regression	 0.991	 0.933	 0.940	 0.923	 0.957	 0.865
Neural Network	 0.998	 0.973	 0.976	 0.970	 0.982	 0.946
Random Forest	 0.984	 0.926	 0.933	 0.927	 0.939	 0.851

Table 5. Performance matrices of the models used after feature extraction using VGG-16 to non-
Parkinson's class

Model	 AUC	 CA	 F1	 Prec	 Recall	 MCC

Gradient Boosting	 0.995	 0.966	 0.963	 0.970	 0.956	 0.932
Logistic Regression	 0.991	 0.933	 0.924	 0.946	 0.904	 0.865
Neural Network	 0.998	 0.973	 0.970	 0.977	 0.963	 0.946
Random Forest	 0.984	 0.926	 0.918	 0.925	 0.911	 0.851

Table 6. Average Accuracy of the used model for both classes 

Model	 AUC	 CA	 F1	 Prec	 Recall	 MCC

Gradient Boosting	 0.995	 0.966	 0.966	 0.966	 0.966	 0.932
Logistic Regression	 0.990	 0.933	 0.933	 0.933	 0.933	 0.865
Neural Network	 0.997	 0.973	 0.973	 0.973	 0.973	 0.946
Random Forest	 0.984	 0.926	 0.926	 0.926	 0.926	 0.851

Transfer Learning
	 It would be observed that transfer 
learning presents attractive gains in cost and 
performance by allowing the reuse of pre-trained 
networks for new objectives. The basic idea can 
be described as exploiting prior learning and 
solving a new problem with new information2. It 
is particularly useful if there is little data to train 
the general model due to the shortcut required to 
build a model from fundamental building blocks. 
Transfer learning enables users to transform the 
neural networks from one domain to another 
with an entirely different data set, whereby the 
dimensions of the output layers can be adjusted 
as desired. Besides, users can use techniques to 
tweak hyperparameters, and even the weights of 
some layers can make the model more flexible. 
Normally, the early levels of the pre-trained model 
are not trained or are ‘frozen’ so as not to lose 
pre-trained features. In contrast, the other levels 
are trainable to accommodate the other tasks so 

that they can be learned efficiently and effectively. 
Transfer learning in machine learning is one of the 
biggest innovation techniques that involve reusing 
a formation learned in one application for use in 
other related applications. This approach seeks 
to enhance the performance and robustness of 
the target task by leveraging knowledge from the 
source dataset, particularly when the target dataset 
is limited or lacks diversity. This results in transfer 
learning with low computational costs and time 
since it retrains new models on new data instead 
of training a model from scratch. There are three 
main applications of semi-supervised learning; 
image classification, natural language processing 
and medical diagnostics where annotated datasets 
are difficult or costly to acquire. Transfer learning 
can also find application in healthcare by improving 
the ability of pre-trained models to be fine-tuned 
for specific tasks such as classifying Parkinson’s 
diseases effectively extracting features and 
improving the accuracy of the predictive models.
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Table 7. Performance matrices of the models used after feature extraction using VGG-19 to 
Parkinson's class

Model	 AUC	 CA	 F1	 Prec	 Recall	 MCC

Gradient Boosting	 0.960	 0.883	 0.897	 0.860	 0.939	 0.765
Logistic Regression	 0.956	 0.883	 0.896	 0.868	 0.926	 0.763
Neural Network	 0.965	 0.876	 0.890	 0.862	 0.920	 0.750
Random Forest	 0.934	 0.852	 0.872	 0.829	 0.920	 0.704

Table 8. Performance matrices of the models used after feature extraction using VGG-19 to non- 
Parkinson's class

Model	 AUC	 CA	 F1	 Prec	 Recall	 MCC

Gradient Boosting	 0.960	 0.883	 0.863	 0.917	 0.815	 0.765
Logistic Regression	 0.956	 0.883	 0.865	 0.903	 0.830	 0.763
Neural Network	 0.965	 0.876	 0.857	 0.895	 0.822	 0.750
Random Forest	 0.934	 0.852	 0.825	 0.889	 0.770	 0.704

Fig. 7. Scatter plot for predicted class

Feature extraction models
	 Feature extraction is one of the most 
important steps when building an image 
classification system. Considering the results 
presented in Table 10, the classification task’s 
performance heavily depends on the decision-

making based on the most significant features in 
the images. Convolutional features are extracted 
from a pre-trained convolutional neural network 
recently proposed and already in use (VGG16 and 
VGG19, and SqueezeNet).
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Table 9. Average Accuracy of the used model for both classes 

Model	 AUC	 CA	 F1	 Prec	 Recall	 MCC

Gradient Boosting	 0.960	 0.883	 0.882	 0.885	 0.883	 0.765
Logistic Regression	 0.956	 0.883	 0.882	 0.884	 0.883	 0.763
Neural Network	 0.964	 0.876	 0.875	 0.877	 0.876	 0.750
Random Forest	 0.932	 0.852	 0.851	 0.856	 0.852	 0.704

Fig. 8. ROC Curve for Parkinson’s Predicted Class

VGG 16
	 VGG1620,25, is an abbreviation for Visual 
Geometry Group 16 in simple terms, is a deep 
convolutional neural network (CNN) model, 
created by the Visual Geometry Group of the 
University of Oxford in 2014. Originally this 
network was developed for image classification 
problems and for some of them it reached one of 
the best results with the help of ILSVRC dataset. 
The structure of the network is as follows: the 
first is a convolutional layer, and the second is a 
fully connected layer, there are 13 convolutional 
layers and 3 fully connected layers in total; The 
input layer takes an image of size for example 
224 × 224 × 3. All the 13 convolutional layers are 
applying 3X3 filters with the stride 1. It must also 
be mentioned that after the max-pooling layer the 
number of filters is doubled starting from the first 

layer with 64 filters and a stride of 2 to increase the 
brightness of the filter. The employment of max-
pooling layers useful in perfecting the decrease of 
the spatial dimensions of the output pattern by a 
factor of 2 so as to reduce cases of overfitting due 
to increased number of parameters. To this end, 
padding is added to all convolutional layers in a 
way that the output volume has the same spatial 
dimensions as the input volume. ReLU is one of 
the activation functions that introduces nonlinearity 
to the model once every convolutional layer has 
been accomplished. For this model, there are two 
layers with 256 neurons in the first layer and 128 
neurons in the second layer with full connection. 
The last layer consists of 128 neurons, or the 
output layer corresponding to T1, T2-weighted, 
and SPECT DaTscan; for the current work, there 
are two classes. In order to produce the probability 
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Table 10. Comparison of different models in terms of performance

Feature 	 Classifiers	 AUC	 CA	 F1	 Prec	 Recall	 MCC
Extraction 
Models

SqueezeNet	 Gradient Boosting	 0.995	 0.963	 0.963	 0.963	 0.963	 0.926
	 Logistic Regression	 0.991	 0.973	 0.973	 0.973	 0.973	 0.946
	 Neural Network	 0.996	 0.963	 0.963	 0.963	 0.963	 0.925
	 Random Forest	 0.986	 0.953	 0.953	 0.953	 0.953	 0.905
VGG-16	 Gradient Boosting	 0.995	 0.966	 0.966	 0.966	 0.966	 0.932
	 Logistic Regression	 0.990	 0.933	 0.933	 0.933	 0.933	 0.865
	 Neural Network	 0.997	 0.973	 0.973	 0.973	 0.973	 0.946
	 Random Forest	 0.984	 0.926	 0.926	 0.926	 0.926	 0.851
VGG-19	 Gradient Boosting	 0.960	 0.883	 0.882	 0.885	 0.883	 0.765
	 Logistic Regression	 0.956	 0.883	 0.882	 0.884	 0.883	 0.763
	 Neural Network	 0.964	 0.876	 0.875	 0.877	 0.876	 0.750
	 Random Forest	 0.932	 0.852	 0.851	 0.856	 0.852	 0.704

Fig. 9. Scatter plot for predicted class

distribution of the classes a sigmoid function is 
used. It is well documented that the VGG16 is 
really easy to use while at the same time it can 
provide additional information regarding the 
image in question. However, training and using 
computationally can be costly as computationally 
is a very deep network with a vast parameter. The 
architecture of VGG16 is shown in Fig: 1.

VGG 19
	 VGG1924, developed by Simonyan and 
Zisserman in 2014, is a convolution neural network 
with 19 layers, 16 convolution layers and three fully 
connected, which assists in categorizing the images 
into 1000 object classes. They argue that VGG19 
has been trained on the ImageNet database, which 
they say has one million images of a thousand 
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classes. This is a very common approach for image 
classification since many 3 × 3 filters are used in 
each convolutional layer. The structure of VGG19 
is presented in Fig. 2.
	 A dropout of 0.5 was incorporated into the 
new FC head. Dropout is a form of regularization 
that lets weights get the minimum value to make the 
distribution of weights of the model more regular. 
An epoch has been defined as a pass through the 
network, and a dropout of 0.5 means that 50% of 
the neurons will be randomly omitted from the 
training process during each epoch pass. It helps 
remove cases of overfitting for the model meant 
for the small training set. This work used category 
cross-entropy as a loss function to solve multi-class 
classification.
SqueezeNet
	 Another smaller CNN structure is 
the SqueezeNet 21,22, which has an equally 
efficient number of parameters to other much 
more conventional structures. Several strategies 
are employed on the CNN basis to design the 
SqueezeNet: 1) to replace 3 * 3 filters by 1 * 1 
filters, 2) to decrease the input channel size for 3 
* 3 filters, 3) to down sample relatively late in the 

network, so that the convolution layers can have big 
activations. This structure of SqueezeNet includes 
ten fire layers, which squeeze the layers containing 
one-dimension filters. They’re then fed into an 
additional layer with 1×1 and 3×3 convolution 
layers, as the Fig 3 displays.
Proposed methodology
	 This section will explain the plan for PD 
identification through image information. This 
section briefly describes the dataset used before 
presenting a detailed description of the proposed 
methodology.
	 This dataset currently consists of DaTscan 
from 68 individuals, with 43 suffering from 
Parkinson’s, while 26 serve as normal control 
subjects. A total of over 594 images are available. 
We have limited images, so transfer learning is 
the best choice. The data on DaTscan images was 
collected from a secondary source23. 

Imagetype	 PD	 NPD	 Total
DaTscan	 330	 264	 594

	 The presented methodology lays out a 
strategy to classify Parkinson’s disease (PD) into 
different types based on image processing and 

Fig. 10. ROC Curve for Parkinson’s Predicted Class
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a transfer learning-based Convolutional Neural 
Network (CNN) model. Here’s a step-by-step 
breakdown:
1. Input Data: The dataset is medical images of 
Parkinson’s disease. These images are usually 
scans of DaTscan that can differentiate patients 
with Parkinson’s disease-PD from patients with 
no Parkinson’s disease-NPD.
2. Image Pre-Processing: - Image Resizing: Any 
input image is first scaled to a certain size, 224×224 
pixels in this study. This step ensures uniformity 
in input size, which is necessary for CNN models 
like pre-trained networks. Pre-processing also 
involves preparing images for downstream 
tasks by normalizing pixel values or applying 
transformations.
3. Data Augmentation: Data augmentation is 
applied to improve model generalization and 
overcome limitations caused by a small dataset. 
Techniques like rotation, flipping, or brightness 
adjustments may artificially increase the variety 
of training data.
4. Pre-trained Transfer Learning CNN Model: A 
pre-trained CNN model (e.g., VGG16, VGG19 
and SqueezeNet) is employed. These models have 
been trained on large datasets (e.g., DaTscan) and 
possess robust feature extraction capabilities. 
Transfer learning leverages the existing knowledge 
of the pre-trained model to extract relevant features 
from the medical images.
5. Additional Fully Connected Layers: After feature 
extraction, two new fully connected layers are 
incorporated for fine-tuning the learned features 
according to the target classification problem (PD 
vs NPD). These layers filter the extracted features, 
giving better results in the prediction.
	 Classification: The final output layer 
predicts whether the input image corresponds to 
a Parkinson’s disease (PD) or a non-Parkinson’s 
disease (NPD). This step involves a binary 
classification, where the model outputs the 
probability of the image belonging to each class.  
We have used ML models for classification. The 
methodology discussed is described in Fig4.

RESULTS

	 In this part, we shall be showing the 
results obtained from this study through another set 
implicating tests aimed at testing the performance 

of the model that has been advanced herein. The 
experiment evaluated the ability of the proposed 
methodology to predict using the DaTscan dataset 
specifically for PD and how the feature subset 
contributed to an overall feature score and accuracy 
percentage. The results are evaluated according 
to how the algorithm’s effectiveness is measured. 
Accuracy, Recall, Precision, and AUC measure the 
performance of the proposed model detection.
Results of SqueezeNet Image Embedding Model
	 Tables 1 and 2 demonstrate the performance 
metrics of different machine-learning models after 
feature extraction using SqueezeNet. It includes 
two similar tables, each listing evaluation metrics 
for four models: Logistic Regression, Neural 
Network, Gradient Boosting, and Random Forest. 
The table mentions its application to Parkinson’s 
and non-Parkinson’s class accuracy evaluation.
	 With the highest scores on every metric—
including AUC (0.996), CA (0.973), F1 (0.973), 
and MCC (0.946)—the Neural Network is the 
best performer, exhibiting remarkable consistency 
and dependability. With a slightly higher MCC 
(0.926) than Gradient Boosting (0.925), Logistic 
Regression and Gradient Boosting both produce 
performance that is equal and balanced across 
CA, F1, Precision, and Recall (0.963). Despite 
being reliable, Random Forest performed the worst 
overall, with AUC (0.986), CA (0.953), and MCC 
(0.905). For this dataset, a neural network is the 
most reliable option.
	 Two groups of data are shown by the 
scatter plot in Fig 5 “No Parkinson” (blue dots) 
and “Parkinson” (red dots). Each category is 
represented by a horizontal axis called “category,” 
and the vertical axis shows the values that 
correspond to it. 
	 Fig 5 (Scatter Plot) Explains the 
distribution of predicted classes in the scatter plot 
and the clear distinction between the Parkinson’s 
patients and the other patients. Emphasize the fact 
of clusters, groupings, or overlapping of the data 
points. Fig 6 (ROC Curve) Compares the general 
ROC curves of the classifiers about the idea of 
sensitivity and specificity. Explain why gradient 
boosting and neural networks were better and what 
the curves mean to the performance of the models.
	 Individuals without Parkinson’s disease 
are represented by the blue dots gathered on the 
left side of the chart, while those with the disease 
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are represented by the red dots concentrated on 
the right. Although the vertical axis indicates a 
range of values for both groups, the two groups 
are separated, suggesting that the data distribution 
is different. In Fig 6, four classifiers are compared 
using the ROC curve: random forest, gradient 
boosting, neural network, and logistic regression, 
selected as four categories of machine learning 
algorithms. The graph of the first quadrant 
is constructed using the False Positive Rate 
(1-specificity) on the horizontal axis and the True 
Positive Rate (sensitivity) on the vertices. Every 
model performs well; curves around the upper-left 
corner show a high capacity for discrimination. 
The gradient boosting and neural network curves 
are marginally better, indicating higher sensitivity 
and specificity. Although they exhibit variations 
from the best-performing models, Random Forest 
and Logistic Regression perform admirably. With 
just little variations in their ROC curves, the data 
demonstrates the effectiveness of every classifier.
Results for VGG-16 image embedding model
	 Table 4 and 5 demonstrate the performance 
metrics of different machine-learning models after 
feature extraction using VGG-16. It includes two 
similar tables, each listing evaluation metrics for 
four models: Logistic Regression, Neural Network, 
Gradient Boosting, and Random Forest. The Fig 
mentions its application to Parkinson’s and non-
Parkinson’s class accuracy evaluation.
	 Table 6 presents the average accuracy 
metrics of models used for both classes in the 
classification task, summarizing their performance 
comprehensively.
	 Using parameters like AUC, CA, F1, 
Precision, Recall, and MCC, the table assesses 
four machine learning models: Random Forest, 
Neural Network, Logistic Regression, and Gradient 
Boosting. With the highest AUC (0.997), CA 
(0.973), F1 (0.973), and MCC (0.946), the Neural 
Network performs better than the others. Gradient 
Boosting comes in second with balanced metrics, 
showing good reliability with an MCC of 0.932 
and an AUC of 0.995. Both Random Forest and 
Logistic Regression perform similarly but less 
well; Random Forest trails slightly behind with an 
AUC of 0.984 and MCC of 0.851, while Logistic 
Regression scores an AUC of 0.990 and MCC of 
0.865. For this dataset, the neural network model 
is the most reliable overall.

	 In Fig 7 and Fig 8, the scatter plot and 
ROC curve are shown, respectively.  The ROC 
curve demonstrates the performance of four 
classifiers, including Logistic Regression, Neural 
Network, Gradient Boosting and Random Forest 
for Parkinson’s disease prediction after feature 
extraction using VGG-16.
Results for VGG-19 image embedding model
	 Table 7 and 8 demonstrate the performance 
metrics of different machine-learning models after 
feature extraction using VGG-19. It includes two 
similar tables, each listing evaluation metrics for 
four models: Logistic Regression, Neural Network, 
Gradient Boosting, and Random Forest. The Fig 
mentions its application to Parkinson’s and non-
Parkinson’s class accuracy evaluation.
	 Four machine learning models are 
compared in the table based on six metrics: AUC, 
CA (Classification Accuracy), F1, Precision, Recall, 
and MCC. The models are Gradient Boosting, 
Logistic Regression, Neural Network, and Random 
Forest. In contrast to Gradient Boosting, which 
scored 0.960 in AUC and performed quite well in 
F1 (0.882) and Precision (0.885), Neural Network 
obtained the highest AUC (0.964) but significantly 
lower CA and F1. With an AUC of 0.932 and an 
MCC of 0.704, Random Forest fared the worst 
across all metrics, while Logistic Regression 
closely trails Gradient Boosting. Overall, Neural 
Network performs exceptionally well in AUC 
but somewhat poorly in other metrics, whereas 
Gradient Boosting and Logistic Regression exhibit 
high performance.
	 In Fig 9 and Fig 10, the scatter plot and 
ROC curve are shown, respectively.  The ROC 
curve demonstrates the performance of four 
classifiers, including Logistic Regression, Neural 
Network, Gradient Boosting and Random Forest 
for Parkinson’s disease prediction after feature 
extraction using VGG-19.

DISCUSSION

	 Table 10 compares the performance of 
various classifiers (Gradient Boosting, Logistic 
Regression, Neural Network, and Random Forest) 
across three feature extraction models: SqueezeNet, 
VGG-16, and VGG-19. The analysis is based on 
six performance metrics: AUC, CA, F1, Precision, 
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Recall, and MCC. A detailed comparison of all 
three feature extraction models is explained in the 
paragraph below.
	 SqueezeNet: The best-performing feature 
extraction model across all classifiers. Neural 
Network achieves the highest AUC (0.996), CA 
(0.973), F1 (0.973), and MCC (0.946), making it 
the most effective classifier for features extracted 
by SqueezeNet. Gradient Boosting performs 
similarly but slightly behind Neural Networks, with 
a CA of 0.963 and MCC of 0.926. Random Forest, 
with the lowest AUC (0.986) and MCC (0.905).
	 VGG-16: Slightly better than SqueezeNet 
for Gradient Boosting, achieving the highest CA 
(0.966), F1 (0.966), and MCC (0.932) among 
all combinations. Again, Neural Network leads 
in most metrics, with an AUC of 0.997 and CA 
of 0.973. Random Forest, with the lowest AUC 
(0.984) and MCC (0.851).
	 VGG-19 is the weakest feature extraction 
model overall, as metrics drop significantly across 
all classifiers. Neural Network has high accuracy, 
but its performance is reduced compared to 
SqueezeNet and VGG-16, with AUC (0.964), CA 
(0.876), and MCC (0.746). Gradient Boosting and 
Logistic Regression perform slightly better than 
Random Forest but still deliver lower metrics than 
the other feature extraction models.
	  In the results of this study, deep learning-
based feature extraction is shown to work well with 
machine learning classifiers for Parkinson’s disease 
(PD) prediction. Among all the evaluated feature 
extraction models, which included SqueezeNet, 
VGG-16, and VGG-19, SqueezeNet coupled 
with Neural Networks and VGG-16 coupled with 
Neural Network were shown to have a higher 
AUC, CA, F1-score, and MCC than models 
from other combinations. This study proves that 
Neural Networks outperform other classifiers, 
emphasizing its potential for capturing rich features 
in DaTscan images to classify PD.
	 Key Findings and Implications-
Performance Analysis
SqueezeNet and VGG-16: These models 
demonstrated higher robustness and precision, 
with Neural Networks achieving the highest AUC 
(0.996) and CA (97.3%) using SqueezeNet features. 
Gradient Boosting also showed competitive 
performance, making it a viable alternative for 
scenarios requiring simpler implementations.

VGG-19: Although VGG-19 performed well, its 
metrics were slightly lower than SqueezeNet and 
VGG-16. This suggests that deeper architectures 
like VGG-19 may not always provide significant 
benefits for PD classification, possibly due to 
overfitting or the small dataset size.
Classifiers: Neural Networks had the best 
accuracy score through all the feature extraction 
models compared to Random Forest, Logistic 
Regression, and Gradient Boosting. This goes a 
long way in establishing the appropriateness of 
Neural Networks in high-dimension medical image 
analysis.
Clinical Implications:
• The suggested method allows early and accurate 
diagnosis of PD, which is especially important to 
intervene and manage the symptoms.
• The aspect of transfer learning makes this 
methodology feasible even in areas where it is hard 
to gather large amounts of data.
• Such results are important for creating automatic 
diagnostic instruments that can diminish the usage 
of clinical estimations and increase the accuracy 
of diagnostics.
Limitations
	 The data set employed in this work is 
rather limited, comprising 594 images. While 
transfer learning helps avoid this problem, it is still 
important to work with larger datasets to obtain 
more general and robust models. DaTscan images 
comprise the majority of data samples, leading to 
the problem of multimodal data analysis, which 
includes voice recordings, handwriting, or other 
clinical indicators.
Future Research Directions
	 For future work, the focus must be on 
collecting more significant and diverse datasets 
and expanding the model by including other 
modalities, such as MRI scans data or EEG data 
or voice records data. Perhaps using data from 
different sources, i.e. clinical history, other motor 
scale scores and imaging could be used to form a 
more holistic diagnostic approach in future.

CONCLUSION

	 This paper aims to present a novel 
framework for accurately detecting Parkinson’s 
disease using DatScan images obtained from 
secondary sources. The proposed framework 
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utilizes transfer learning models to minimize 
training time, including squeeze Net, VGG16, 
and VGG-19. The performance of the proposed 
model is evaluated and analyzed through various 
assessments. it demonstrates the importance of 
both extraction models and classifier choice. We 
have used four classifiers for all three deep learning 
feature extraction models, Logistic Regression, 
Neural network, Gradient Boosting and Random 
Forest, to classify and predict Parkinson’s 
disease. Our study shows that SqueezeNet and 
VGG-16 combined with a Neural Network offer 
the best performance for this classification task. 
For slightly simpler implementations, Gradient 
Boosting with VGG-16 offers competitive results. 
The combination of Random Forest and VGG-
19 is the least effective. The loss is minimal, 
and the model demonstrates high precision and 
strong performance metrics. Experimental results 
and comparative performance analysis confirm 
the superior accuracy of the proposed model in 
detecting Parkinson’s disease.
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