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	 This paper introduces a new deep learning paradigm using the Denoising 
Convolutional-Neural Network (DnCNN) model for denoising Gaussian noise in Computed 
Tomography (CT) images. By nature, Gaussian noise is inherently random and additive, 
potentially obscuring vital diagnostic features and significantly reducing image quality, resulting 
difficulties in medical interpretation. Initially, the distorted images are sourced from addition 
of Gaussian noise with different intensity levels (ó = 5,10,15,20). The denoising process of 
DnCNN model employs a deep convolutional neural network that maps the noisy image to 
clean image, focusing on residual learning to prevent loss of detail. The CT images obtained 
after denoising are assessed using quantitative measures like Peak signal to noise ratio (PSNR), 
Signal to noise ratio (SNR), Structural similarity index measure (SSIM) and Entropy difference 
(ED). The proposed DnCNN model is evaluated using quantitative metrics, such as PSNR, SNR, 
SSIM, and ED, demonstrating better performance than standard denoising algorithms, including 
Total Variation, BM3D, Guided, Bilateral, and Anisotropic Diffusion filters. The experimental 
results show that the proposed DnCNN model outperforms conventional methods. The model 
achieves a PSNR of 35.66 dB, an SNR of 30.16 dB, SSIM of 0.91 and ED of 0.35. Additionally, 
zooming analysis and intensity profile evaluations confirms that the proposed method effectively 
suppresses noise while preserving sharper edges and finer anatomical structures. This ensures 
superior visual quality and greater efficacy compared to traditional methods. These experimental 
findings confirm that the proposed method is a robust denoising strategy in medical imaging 
for predicting accurate diagnostic outcomes. 
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	 CT imaging is a diagnostic imaging 
technology used to acquire cross-sectional 
images of radiation-sensitive organs. However, 
the radiation risks associated with X-rays have 
raise concerns about cancer. To address this, Low 
dose CT (LDCT) minimizes radiation exposure by 
diminishing X-ray flux, which can notably impact 

the image quality acquired from sensors. The 
minimization of radiation dose inherently increases 
noise and potentially compromises diagnostic 
precision.1 LDCT images are normally associated 
with greater noise and artifacts than images 
produced using normal dose CT, which influences 
imaging quality. LDCT medical images are often 
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contaminated by various kinds of noise such as 
Gaussian and salt-and-pepper noise. Gaussian blur 
noise caused by electronic interference, as well as 
image processing, reconstruction, and quantization, 
affects image quality. Gaussian noise is caused by 
random changes in pixel values, resulting pixel 
blurring and weakened image sharpness and fine 
detail preservation.2,3 Hence, denoising LDCT 
images is crucial to obtain clear image for better 
disease diagnosis.
	 The major objective of denoising CT 
images is to suppress noise while preserving 
structural information like textures, edges, and 
artifact suppression. The major categories of CT 
image denoising methods comprise of conventional 
methods, deep learning approaches, and hybrid 
approaches.4-6 Conventional methods such as 
mean, Gaussian, bilateral, nonlocal mean filters, 
Block matching 3D filtering (BM3D) and wavelet 
based denoising, perform noise suppression. The 
Discrete Wavelet Transform (DWT) is also used for 
noise suppression and fine detail preservation, but 
choosing the right wavelet basis and thresholding 
method is important for achieving a balance 
between noise elimination and fine detail retention. 
However, conventional filtering methods struggle 
to preserve fine details in images, face difficulties 
in managing intricate noise patterns, requires 
parameter tuning, and generate artifacts, which 
limit their efficacy in medical diagnosis.
	 Consequently, recent advancements in 
deep learning technology contribute a powerful 
substitute, leveraging large datasets to train superior 
noise reduction patterns, such as Convolutional 
Neural Networks (CNNs) for denoising LDCT 
images.7 CNNs can extract features from raw 
inputs, reducing the need to manually select 
features from the dataset. They detect complex 
image patterns and handle different kinds of noise, 
making them suitable for denoising. CNNs improve 
processing speed and throughput with their end-
to-end learning methodology. They preserve fine 
image details and can be easily scaled and adjusted 
to different applications and datasets. CNNs are 
preferably used in image processing applications 
such as refinement and denoising. A CNN consists 
of several convolutional layers, pooling layers and 
fully-connected layers. The CNN layer uses kernels 
to capture image features by utilizing raw data 
and also suppresses noise effectively. However, 

when dealing with shallow networks, might 
be insufficient to adequately learn and capture 
inherent complexity of very deeper networks. 
Residual encoder-decoder CNN (RED-CNN) 
and UNet framework overcome the challenge of 
training deeper networks and solving the vanishing 
gradient problem. RED-CNN effectively focusing 
on learning the residuals between noisy and clean 
images, thereby the network improves denoising 
effectiveness.8 However, the resulting image is 
overly smooth and has some areas in the image 
are locally distorted. U-Net, originally intended for 
medical image segmentation, exhibits impressive 
performance in denoising CT images as a result 
of its encoder-decoder model is accompanied 
by skip-connections, which maintain the spatial 
relationship between image features.9 These 
methods are very effective because they can give a 
global context of the images which gives superior 
results in minimizing noise.
	 LDCT image reconstruction enhancement 
has greatly improved with the utilization of 
Generative Adversarial Networks (GANs) to 
minimize distortion effects. However, issues such 
as instability in training and mode collapse and slow 
convergence have led researchers to constantly work 
on optimizing GAN architectures and algorithms. A 
variant of GANs, like WGAN (Wasserstein GAN), 
suppress noise while maintaining image details 
and also avoid vanishing gradient problems. Deep 
learning-based neural networks can suffer from the 
vanishing gradient problem when the gradients of 
the loss function become minuscule as they are 
backpropagated through the layers of the deep 
neural network, making it difficult for the network 
to learn features effectively. WGAN employs the 
use of Wasserstein distance to represent distribution 
loss and perceptual loss. While traditional GANs 
use Jensen-Shannon divergence, WGAN uses 
earth-mover’s distance, which provides smoother 
gradients. An enhanced GAN combines various 
loss functions, such as perceptual loss, adversarial 
loss and structural-similarity loss, to improve 
training stability and speed.10 CycleGAN is a kind 
of GAN developed for unsupervised image-to-
image translation tasks.11 It improves the training 
stability, convergence and resolves problems 
relating to vanishing gradients in deeper networks. 
However, these methods predominantly aim at 
extracting features and modifying the network 
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structure using convolutional layers to detect only 
local-regions, making it difficult to capture the 
global context.
	 To overcome these issues, Transformer 
models, such as Vision Transformer (ViT), work 
well for denoising CT images. ViT leverages the 
self-attention mechanism to recognize long-range 
contextual relationships and global dependencies 
across the whole image, which is particularly useful 
in MRI scans. However, ViT faces computational 
bottlenecks since it requires full-image attention.12 
In the case of ultrasound imaging, where images 
are significantly affected by speckle noise, 
Transformers have demonstrated improved 
performance in handling noise owing to their 
capability to learn various patterns of noise. Various 
enhancements have been made to the vision 
transformer to enhance local feature learning and 
suppress computational overhead. These include 
local and mixed attention models, which have led 
to the development of Pyramid Vision Transformer 
and Uformer. However, these models often overlook 
local details, and the image after noise-mitigation 
can still interfere clinical diagnostic assessments. 
Compared to CNN architectures, Transformers 
generally perform better in recognizing long-
range dependencies recognition but require more 
computational time. Denoising autoencoders 
(DAEs) are another deep learning technique 
for denoising tasks. The major disadvantage of 
DAEs is that they are computationally lightweight 
architectures. However, they lack the ability to 
capture global patterns like the Transformers. 
Nevertheless, Transformers outperform CNNs 
in tasks involving complex noise reduction. At 
the same time, CNNs are efficient, work better in 
extracting local features, and remain a relevant 
choice in terms of efficiency.
	 Hybrid methods play a crucial role in 
CT image denoising. These methods combine 
traditional approaches with deep learning 
techniques to leverage the advantages of both. For 
instance, hybrid methods may use a CNN as a pre-
processing step for noise removal, followed by a 
conventional algorithm for further enhancement. A 
new and improved hybrid architecture called Swin-
Conv-UNet (SCUNet) is proposed to minimize 
interference in X-ray fluorescence computed 
tomography (XFCT) images, particularly at low 
tracer concentrations. The model, trained using 

augmented data, utilizes deep learning frameworks 
to optimize image quality, achieving 39.05 PSNR 
and 0.86 SSIM compared to traditional and 
advanced methods such as BM3D, BM4D, and 
DnCNN. This approach is one of the primary 
methods for enhancing XFCT imaging while 
minimizing radiation exposure.13

Major contributions
	 This paper explores a DnCNN-based 
model which is employed for the suppression of 
Gaussian noise in CT images while maintaining 
relevant diagnostic features. The deep learning 
model is capable of rapidly adapt to complex noise 
patterns derived from the information extracted 
during the image processing, considerably 
improving the overall imaging quality. Medical 
imaging applications provide a scalable solution 
for noise suppression effectively. Deep learning-
based denoising guarantees a secure and impactful 
method for noise suppression, contributing to the 
development of accurate clinical diagnoses.
Literature review
	 Medical  imaging approaches are 
categorized based on the imaging modality 
used, the type of image produced, and their 
relevance to diagnosis or investigation. These 
techniques include X-ray, CT scan, magnetic 
resonance imaging (MRI), ultrasound, and positron 
emission tomography (PET).3 The most effective 
denoising methods vary across modalities due to 
differences in spatial detail, temporal-resolution, 
cost, and the characteristics of each scanning 
technique. Spatial and temporal resolution are 
two essential aspects that characterize medical 
image quality and the performance of denoising 
algorithms. High spatial resolution can increase 
noise levels, and high temporal resolution can 
cause motion artifacts. Spatial and temporal 
resolution are especially important for LDCT 
and dynamic CT images, as well as clinical 
studies, involving spatial and temporal analysis. 
Several deep learning techniques, such as CNNs, 
Transformers, and CNN with Recurrent Neural 
Network (RNN) integrated models, have been 
investigated to address these problems. These 
approaches have exhibited superior results in 
effectively suppressing noise while maintaining 
fine image features. Spatial resolution is crucial in 
imaging as it makes it helps to distinguish small 
structures in images. In lung cancer screening 



142 Katta et al., Biomed. & Pharmacol. J,  Vol. 18(Spl.), 139-159 (2025)

using LDCT, high spatial resolution is critical for 
early-stage detection of small pulmonary nodules, 
while low spatial resolution causes blurriness, 
complicating early detection. Temporal resolution, 
essential for dynamic imaging, plays a vital role in 
coronary CT angiography, especially in visualizing 
the beating heart and coronary arteries. High 
temporal resolution reduces motion artifacts that 
interfere with diagnosis, while transformer-CNN 
architectures improve the images by minimizing 
noise as well as capturing temporal dependencies 
across frames.
	 Each medical imaging modality introduces 
various types of noise, requiring tailored approaches 
for optimal noise suppression. CT scans use X-rays 
to generate sliced grayscale images of the human 
body, characterizing tissue densities. In LDCT 
images, reduced radiation increases noise due to 
fewer X-ray photons being detected by the scanner, 
resulting in lower signal strength and higher noise 
levels. The increased noise compromises image 
quality, making it more difficult to detect subtle 
features. The lower radiation levels, while limiting 
patient exposure, result in both Gaussian and 
Poisson noise in CT images. Gaussian noise arises 
from electronic imperfections or noise during the 
image reconstruction process, while Poisson noise 
occurs due to the statistical randomness of photons 
detected by the CT scanner. These types of noise 
degrade image quality and diagnostic proficiency. 
CT image denoising methods are required to 
suppress the noise, there by producing cleaner 
images to improve diagnostic accuracy. 
	 Denoising can be achieved using 
traditional methods, iterative reconstruction 
methods and deep learning-based methods. 
Traditional methods include spatial and frequency 
domain filters.14 Spatial filters manipulate the 
image pixels, such as Gaussian, median, mean 
filter and bilateral filters, while frequency domain 
filters transform the image into frequency domain 
using Fourier transform. Examples of frequency 
domain filters include anisotropic diffusion, wiener 
filter and nonlocal means filter. These traditional 
denoising methods effectively suppress noise but 
can also blur fine details of CT images. Advanced 
noise suppression methods, such as iterative 
reconstruction (IR) and deep learning-based 
approaches, are employed to enhance overall image 
quality in LDCT images. Iterative reconstruction 

methods pass through multiple iterations to refine 
the image by comparing actual measured data 
with estimated projectional data. The IR method 
effectively minimizes noise and artifact intensity 
while preserving the significant image features, 
leading to better resolution in LDCT images. 
However, the iterative reconstruction process 
heavily depends on iterative calculations and the 
quality of input image data and mathematical 
models, making it computationally intensive.
	 Recently, deep learning has played a 
significant influence on image denoising within 
contemporary science. In LDCT images, deep 
learning-based methods such as CNNs, GANs, 
and autoencoders have shown considerable 
improvements in image quality compared to 
conventional techniques. Deep learning-based 
denoising methods like CNNs can learn mappings 
between distorted and clean CT images, while 
GANs generate realistic denoised CT images 
using a generator and discriminator. Autoencoders 
are able to compress and reconstruct image data 
to mitigate noise, whereas Transformer models 
capture long-range dependencies and contextual 
data for enhanced noise suppression. These 
enhanced methods offer high-quality noise 
suppression to improve overall imaging quality.
	 The novel approach for medical image 
denoising, consists of a deep CNN, adaptive 
watershed segmentation, and a hybrid lifting 
scheme, is applied based on modified bi-histogram 
equalization, as suggested by Annavarapu.15 The 
CNN effectively minimizes noise while preserving 
image details necessary for diagnostic analysis. 
Adaptive watershed Segmentation enhances the 
recovery of minute details in the image, increasing 
the probability of extracting detailed information 
from other parts of the image. The hybrid lifting 
scheme improves contrast, making it easier to 
distinguish the important features. Marker-based 
watershed segmentation further reduces the 
occurrence of information loss during denoising. 
The proposed approach achieves a Jaccard index of 
0.95, demonstrating a high segmentation accuracy. 
Additionally, it obtains a PSNR of 43.76 dB, 
highlighting the efficacy of the methodology in 
denoising medical images. However, the method 
may struggle with high-frequency noise, potentially 
resulting in information loss. Its complexity could 
hinder scalability and practical implementation. 
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Furthermore, reliance on specific metrics may not 
fully reflect its effectiveness across diverse medical 
imaging scenarios.
	 A novel hybrid loss function combining 
MSE with a Pearson-based metric to enhance 
texture preservation in LDCT image denoising 
was introduced by Oh et al.16 Experimental results 
show that, significant improvements in texture 
quality over traditional MSE and GAN methods, 
maintaining a balance between noise suppression 
and detail retention. A robust hybrid loss-based 
network (RHLNet) advances LDCT image quality, 
supporting more accurate clinical diagnoses and 
marking a valuable contribution to medical imaging, 
as proposed by Saidulu et al.17 The RHLNet is 
effectively utilized in LDCT denoising, employing 
both shallow and deep structures, along with 
lattice residual blocks, to maintain image details. 
Shallow structures represent the initial layers of 
the RHLNet and extract low-level features such as 
edges and textures, while deep structures extract 
high-level and complex patterns by progressively 
combining and refining the basic features obtained 
from the shallow layers. The lattice residual block 
in RHLNet enhances feature representation and 
improves model’s learning efficiency. The RHLNet 
provides better performance in preserving textures 
due to the introduction of the Huber loss and also 
maintains the desired suppression capability from 
the Charbonnier loss. The Charbonnier loss is 
generally applied in image restoration tasks, like 
denoising, to manage outliers and enhance noise 
minimization.
	 The performance of the model is further 
strengthened by optimizing VGG19 on the NIH-
AAPM-Mayo Clinic low dose CT (LDCT) Grand 
challenge dataset, ensuring that important image 
details are retained. Performance assessments 
on the large-volume dataset prove the RHLNet’s 
effectiveness with significant enhancements 
of LDCT images. However, the methodology 
could have issues with computation and a severe 
dependence on data quality for model training. The 
main challenges to implement RHLNet are high 
computational cost and handling high resolution 
and noisy data, leading to low generalization and 
low texture production in images with high or noisy 
backgrounds. 
	 The low and high-frequency alignment 
(LHFA) model, which addresses domain shift 

challenges related to DL-based low-dose CT image 
denoising by aligning low and high-frequency 
attributes across various datasets, was suggested 
by Huang et al.18 It integrates a Low-frequency 
Alignment (LFA) module to preserve crucial 
semantic information and a High-frequency 
Alignment (HFA) module that recognizes noise 
discrepancies in latent space by applying an 
autoencoder. The integration of the LFA and HFA 
modules can be implemented in either a sequential 
or parallel way. In the sequential approach, LFA 
initially captures global features (smoother features, 
overall anatomical structures), followed by HFA to 
refine high-frequency details (edges and textures). 
This method improves performance. However, it 
could result in increased latency. Conversely, the 
parallel method allows LFA and HFA modules to 
independently process low and high frequency 
components, subsequently fusing their outputs 
for final image reconstruction. Both methods 
effectively mitigate noise while preserving image 
details, with the sequential approach emphasizing 
refinement and the parallel approach optimizing 
computational efficiency. The model proficiently 
maintains diagnostic image quality with noise 
suppression and demonstrates strong cross-domain 
adaptability and performance for new medical 
image applications through transfer learning and 
fine-tuning modules, although it necessitates 
extensive computational power due to its high-level 
alignment modules. The performance of the model 
can be improved through lightweight networks and 
two additional optimization methods called pruning 
and quantization as well as hardware acceleration 
through GPUs and TPUs. 
	 A generic framework is specifically 
implemented for denoising LDCT-acquired 
images, which adopts deep neural networks with 
an attention mechanism to refine feature extraction 
and facilitate multi-scale fusion, was implemented 
by Niknejad Mazandarani et al.19 The model 
incorporates a new type of residual block focusing 
on feature learning and presents a structural loss to 
retain structural components and high-frequency 
(edge) details. The findings from the experiments 
confirms, significant enhancements in image 
quality in LDCT images, precisely mitigating noise 
that diminishes diagnostic accuracy.
	 An Adaptive noise aware denoising 
Generative-Adversarial-Networks (ANAD GAN), 
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which make use of a cognitive noise-memory 
module intended to decode contextual features 
varying with noise level and automatically 
recalibrate feature vectors was introduced by 
Jin et al.20 The noise-memory module trained 
using a self-updating mechanism to dynamically 
refine feature vectors based on noise intensity 
levels, improving robustness and maintaining fine 
image details compared to conventional methods. 
Moreover, the framework combines an application-
specific block, termed as BLOGS, to improve the 
interpretations of noise distributions and applies 
a detail-preserving discriminator-based loss-
function to fine-tune image details. The BLOGS 
block is designed to enhance noise distribution 
interpretation by adaptively extracting multi-scale 
noise features and refining them using hierarchical 
attention mechanisms. This approach depicts a 
strong capability to operate flexibly at different 
noise levels, reaching the optimal results with 
PSNR > 50.74 and SSIM > 0.99 across range of 
datasets. However, considerable drawbacks include 
the complexity of the model and the subsequent 
enormous demands on computational power 
required for the training of the model as well as 
its application. 
	 Noise2Inverse image denoising method 
utilizes a multidimensional U-net model with a 
block-based training scheme for energy-channel 
normalisation for spectral CT, as illustrated by 
Kumrular.21 It generates source and target images 
with distinct noise patterns by splitting the sinogram 
into K segments and using Filtered Back Projection 
for image reconstruction. This approach surpasses 
other techniques, including the unsupervised 
Low2High technique yielding enhanced PSNR 
and SSIM performance metrics without rigorous 
parameter optimization. However, its training relies 
on synthesized data that does not represent real-life 
scenarios and requires tremendous computational 
power. However, Noise2Inverse performs well on 
synthetic databases, it needs to be effectively tested 
on real world data to maximize its effectiveness. 
Its self-supervised method outperforms Low2High 
and handles multiple noise types present in the data. 
	 An innovative Light Progressive Residual 
and Attention Mechanism Fusion Network is used 
to address Gaussian noise as well as introduce and 
combat real world image noise was suggested by 
Wang Tiantian et al.22 The proposed architecture 

employs dense blocks (DB) to establish direct 
layer connections, enabling better noise distribution 
estimation, reducing network parameters and 
optimally extracting local features. Additionally, 
the network uses progressive strategy within a 
residual fusion framework to gradually integrate 
shallow and deep features, extracting both global 
noise characteristics and local textures. This hybrid 
method addresses vanishing gradient problems, 
reduces redundancy, and delivers superior noise 
filtering while preserving fine image details, 
resulting in enhanced denoising performance 
across different datasets and noise intensities.
	 The DeCoGAN is a novel deep learning 
architecture to handle the denoising of MVCT 
scan images was implemented by Zhang et al.23 
This innovative approach eliminates the need for 
two matched datasets, instead utilizing a universal 
latent code to filter noisy images into high-quality 
outputs. Adversarial training is employed to 
strengthen the reality of the generated images, 
leveraging both implicit and explicit models to 
derive joint distributions from unpaired data. 
Comparative performance assessments reveal 
that DeCoGAN achieves enhanced resolution 
and image quality compared to conventional 
algorithms and other deep learning techniques, 
while effectively preserving core image features. 
The method provides enormous improvements to 
the image quality, yet the increased intricacies, as 
well as the vast amounts of raw material needed for 
the extension of the transforms makes for potential 
complications in implementation. DeCoGAN 
framework also faces significant computational 
requirements, requiring large training datasets 
and effective methods for dealing with multiple 
types of noise. Potential solutions against these 
challenges include the adoption of lightweight 
architectures, patch-based training methods, 
and transfer learning techniques. The practical 
applicability of the model can be further optimized 
through the implementation of data strategies such 
as synthetic data generation and federated learning 
while executing domain adaptation.
	 An Adaptive projection network (AP 
Net), designed to restore the noise in low-dose 
medical images was introduced by Song et al.24 It 
utilizes a U-shaped network structure for end-to-
end self-regeneration and employs two versions 
of attention mechanisms: channel-wise and 
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spatial attention to dynamically adjust significant 
parameters during encoding and decoding, as well 
as non-local attention to effectively distinguish 
between noise and multi-feature textures. The 
U-shaped network framework effectively helps 
in image regeneration by using an encoder and 
decoder structure with skip connections that 
exact multi-scale features and preserve fine image 
details. It is effective in denoising LDCT images 
by separating noise from crucial features while 
preserving anatomical details. Additionally, its 
integration of attention mechanisms enhances 
its adaptability and effectiveness across diverse 
medical imaging applications. On lung and dental 
CT image datasets, the proposed AP Net achieves 
superior quantitative scores and visual quality 
compared to recent studies, revealing its strong 
generalization performance. Both dental and lung 
CT datasets serve as evaluation benchmarks for 
assessing specific noise reduction challenges in 
low-dose computed tomography. While APNet has 
shown to effectively denoise images and preserve 
important information, it requires considerable 
computational resources and fine tuning to achieve 
best results. Overall, APNet signifies a substantial 
advancement in the domain of reducing noise in 
CT images.

Materials and methods

Proposed methodology
	 This proposed denoising technique 
applies a deep learning-based CNN for Gaussian 
noise reduction in CT images. The Additive White 
Gaussian Noise (AWGN) is added onto the clean 
image from 1% to 2%. The noise follows a normal 
distribution with a mean of zero and a standard 
deviation, which is typically referred to as a ‘bell-
shaped’ curve. Mathematically, this relationship is 
depicted as: 
	
	 Ai(m, n)) = Bi(m, n) + Ni(m, n)	

...(1)
Where:
	 Bi(m, n) denotes the clean image, Ai (m, n) 
denotes the noisy image, and Ni (m, n) represents 
the Gaussian noise added to the image. The indices 
and (m, n) indicate the pixel positions in the image 
plane.

	 A concise explanation of the proposed 
method is illustrated in the steps below:
	 The step-by-step approach covers the 
major strategies of deep learning framework for 
denoising CT images, enabling the achievement 
of high-quality results while maintaining moderate 
computational intensity.30Top of Form
Input: Noisy CT images.
Output: Denoised CT images.
Step 1: Dataset Preparation
(i) Collect Dataset: The model takes a noisy image 
as input from a dataset, for example, the ELCAP 
Lung CT image Dataset. These images are often 
low-dose CT images (LDCT) that have been 
affected by Gaussian noise or other types of noise.
(ii) Preprocess Data: Standardize pixel intensities 
to make them manageable and easier to work with 
them. For example, scaling by dividing pixel values 
by 255 and multiplying by 2 results in a range of 
[-1, 1]). Resize all images to uniform dimensions, 
preferable sizes such as (256 x 256) or 512 x 512).
(iii) Data Augmentation: Apply basic data 
augmentation approaches, such as rotation, flipping 
and cropping, to expand the dataset and strengthen 
the model’s generalization.
Step 2: Build the DnCNN Model Network 
Architecture
DnCNN is a convolutional neural network that 
typically comprises the following components:
(i) Input Layer: Initially, the input consists of 
noisy images. 
(ii) Hidden Layers: The hidden layers comprise 
convolutional layers, such as-
• Conv1 + ReLU : The first convolutional layer 
(3x3xnumber of channels) with (Rectified Linear 
Unit) ReLU is used for effective feature extraction 
by adding 64 kernels to each dimension. Here, the 
gray-scale images, the channel number is 1, and 
for color images, it is 3(RGB).
• Conv2+BN+ReLU : From the second layer to the 
last layer, there is a combination of convolutional 
layers, typically around 17 layers in the DnCNN 
architecture, along with batch normalization 
(BN), and ReLU activation function. Each layer 
adds 64 filters to the dimensions 3x3x64. Batch 
normalization is applied between the convolutional 
and ReLU activation functions. Normalization is 
a preprocessing step of feature extraction, where 
pixel intensity values are scaled to a range of zero 
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to one. Batch normalization helps to stabilize 
learning. The ReLU activation is used to provide 
nonlinearity into the neural network allowing it 
to analyze the input and help the network to learn 
complex structures in the data. Therefore, through 
hierarchical feature extraction and convolutional 
with ReLU, the CNN can successively separate 
noisy observation from the signal at various levels 
of its hidden layers.
Step 3: Residual learning process
• DnCNN effectively utilizes a residual learning 
approach, where the network automatically learns 
residuals i.e., the difference between the noisy 
image and the clean image. Each convolutional 
block includes a shortcut connection that adds the 
output of the convolutional layer to the original 
input CT image.
Step 4: Final Convolutional Layer
	 A Single convolutional layer (3x3x64) is 
used to reconstruct the denoised image. 
Step 5: Final Output Layer
	 The final denoised CT image is produced 
by subtracting the identified noise from the 
noisy input image. Consequently, the denoised 
image preserves crucial details while minimizing 
unwanted distortions. The DnCNN framework 
allows the network to capture noise patterns 
while preserving the clean CT image primarily 
unchanged.
Step 6: MSE Loss function
	 Mean Squared Error (MSE) loss is used 
to minimize the disparity between the noisy and 
ground-truth images. It plays a key role in ensuring 
quality during the training process by providing a 
measure of how well the model performs in making 
its predictions.
	 MSE is evaluated by averaging the 
squared discrepancies among the pixel values of 
the noisy image and the clean image, defined as:

	 	 ...(2)
	 Where:
ai  denotes the pixel values of the noisy image, bi  is 
the pixel values of the clean image and N represents 
the total number pixels in the image. 
For a grayscale image with dimensions M x N , the 
total number of pixels is expressed as:
N = M x N 

Where M represents the number of rows i.e height 
of the image.
Where N represents the number of columns i.e 
width of the image.
For a color image with three channels (RGB), 
the total number of pixel values is expressed in 
MSE as:

M x N x C 
	 Where C represents the number of 
channels (3 for RGB images and 1 for grayscale 
images).
	 The evaluation of images with more 
pixels exhibit lower Mean Squared Error (MSE) 
because error measurements are averaged across 
additional pixel values. Smaller images attenuate 
each pixel-wise error, resulting in a higher MSE 
value. The processing of images through resolution 
adjustments impacts MSE evaluation because 
downsampling tends to accumulate noise, while 
upsampling spreads it throughout the image. 
Therefore, the consistency of MSE comparison 
requires image samples with identical resolution.
	 Various optimization algorithms can be 
employed to optimize the model parameters and 
minimize the MSE loss. This enables the model to 
learn and improve overall imaging quality while 
suppressing noise. 
Step 7: Stochastic Gradient Descent optimizer: 
Select an optimizer, such as the stochastic gradient 
descent, with an optimal learning rate, for example, 
a learning rate of 10-4. Fine-tuning the model with 
appropriate SGD parameters can help it adapt to 
various CT image noise patterns, which may lead 
to better denoising performance.
SGD parameters include
(i) Learning Rate: Determines the size of weight 
updates. Common values are typically around 0.01 
or 0.001.
(ii) Momentum: Helps to stabilize weight updates 
by incorporating a fraction of the previous update. 
A standard value of 0.9 is often used.
(iii) Weight Decay: Acts as a regularization 
technique to reduce the risk of overfitting. Typical 
values range from 1e-4 to 1e-5.
(iv) Nesterov Acceleration: Enabling this option 
applies Nesterov Accelerated Gradient (NAG), 
which can enhance convergence rates during 
training. The convergence rate indicates how 
quickly an optimization algorithm determines the 
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optimal solution, impacting training speed and 
model performance.
	 In practice, the DnCNN architecture 
consists of a deep convolutional network with 
batch-normalization, ReLU activations, and a 
number of convolutional layers in the form of 
residual learning. This structure enables the model 
to predict and estimate noise from various input 
images for denoising. By performing this process, 
noise is separated from the image, and important 
image features and structures are retained, which 
are beneficial to image denoising, making the 
DnCNN to deliver superior performance.

Results

	 The Diagnostic evaluation was conducted 
on noisy grayscale CT images with 512 x 512-pixel 
dimensions. The test images for the CT scan test 
were acquired from a ELCAP  Lung CT image 
database to test the effectiveness of the proposed 
denoising method.31 The original CT images were 
required to assess the efficiency of the denoising 
algorithm. The reference clean CT image dataset is 
depicted in Figure 2, and Figure 3 shows the noisy 
CT-scan images are often degraded by gaussian 
noise at variance of ó =10. The deterioration in 
image quality is noticeable with the naked eye, in 
contrast to the clean CT image, even without the aid 
of image processing. The experimental outcomes 
of the proposed method’s quantitative analysis, in 
the context of PSNR, at ó=5,10,15,20 as depicted 
in Figures 4 to 7. Figure 8 shows the denoised CT 
images of the corresponding noisy CT1 image from 
Figure 3, with results are obtained from different 
denoising methods.
Quantitative analysis metrics
	 To evaluate the qualitative results obtained 
by the proposed methodology, the following 
methods like PSNR, SNR, SSIM and ED to 
measure the quality of denoised images.32,33 
	 PSNR is mainly used in evaluating the 
quality of recovered images with reference to the 
clean images. PSNR quantifies the relationship 
among the maximum signal strength provided 
and the power of the distorted image, that is the 
difference between the original image and the 
filtered-image. For the input CT image Xc and the 
denoised CT image Yc.
PSNR is expressed as:

	 ...(3)

...(4)
Where:
MSE depicts the mean squared error amongst the 
clean image and denoised image.
Xc (m, n) denotes the pixel value of the clean image 
at location (m, n).
Yc (m, n) denotes the pixel value of the filtered 
image at location (m, n).
a x b illustrates the pixel dimensions of clean and 
a denoised image.
Signal-to-Noise ratio(SNR)
	 It is used to assess and determine the 
signal’s strength of interest with regard to the noise 
or disturbance occur in images. It is expressed in 
terms of decibels and is mainly used to measure 
the image quality.

	 ...(5)

	 P
signal is power of the signal, which 

represents the meaningful information, that is the 
desired information in the image.
	 P

noise
 stands for Power of noise interference 

which is typically random and unwanted signal that 
interferes with the quality of the signal.		
			    		   

Structural-Similarity-Index-Measure (SSIM)
	 It is a metric serves as a measure to 
evaluate the similarity among two images. It is 
primarily relying on 3 factors: contrast, luminance, 
and structural features, and the SSIM values vary 
between -1 and 1, where 1 specifies the exact 
similarity and -1 denotes variation between two 
images.

	
...(6)

Xc denotes the clean image.
Yc denotes the denoised image. 
µA and µB are described as the local means, σA, 
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Fig. 1. Flowchart of the proposed denoising approach

Fig. 2. Clean CT images; (a) clean CT1 image; (b) clean CT2 image; (c) clean CT3 image; (d) clean CT4 image

Fig. 3. Gaussian noisy CT images at noise variance ó =10; (a) Noisy CT1 image; (b) Noisy CT2 image; (c) Noisy 
CT3 image; (d) Noisy CT4 image

σB as standard deviations, and σAB is covariance 
of the clean image and denoised image Xc and Yc 

. 
Here,  H1=(s1D)2, H2=(s2D)2 are constants which 
are added to stabilize division by zero, where D 
represents the difference in pixel intensities values 
between 2bits-per-pixel -1 and 1. Here, s1= 0.01 & s2 
= 0.03.

Entropy difference (ED)
	 It is the amount of randomness exist in an 
image in order to analyze the texture of the existed 
source images. Shannon entropy is calculated 
between clean (Xc ) and denoised image (Yc) 
The difference in their respective mean values is 
represented as ED.
ED is defined as:
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Table 1. PSNR values of the proposed approach with other compared methods

Noise Variance ( σ )	 5	 10	 15	 20	 5	 10	 15	 20

Source CT Image 		  512 x 512	 	 		    512 x 512	 	  
Total variation filter25	 28.39	 27.46	 26.33	 22.89	 27.36	 25.21	 23.86	 20.03
BM3D filter26	 27.26	 24.26	 23.27	 22.05	 26.87	 25.09	 21.86	 19.36
Guided filter27	 26.95	 25.88	 25.65	 24.46	 27.75	 26.13	 23.34	 22.58
Bilateral filter28	 25.76	 24.45	 23.56	 22.89	 30.79	 24.17	 19.85	 18.12
Anisotropic diffusion filter29	 25.84	 24.56	 21.45	 20.96	 26.67	 23.94	 20.84	 17.76
Proposed method	 35.66	 30.28	 27.21	 25.49	 31.12	 26.41	 24.05	 22.84

Table 2. SNR values of the proposed approach with other compared methods

Noise Variance	 5	 10	 15	 20	 5	 10	 15	 20

Source CT Image 		  512 x 512	 	 		    512 x 512	 	  
Total variation filter25	 25.56	 24.17	 23.67	 21.34	 25.05	 22.17	 18.67	 14.34
BM3D filter26	 22.45	 20.05	 17.25	 16.28	 23.42	 21.45	 18.24	 14.25
Guided filter27	 22.15	 22.08	 21.83	 21.07	 21.98	 19.23	 15.85	 13.68
Bilateral filter28	 20.96	 18.87	 17.86	 16.79	 24.17	 21.35	 18.94	 12.36
Anisotropic diffusion filter29	 21.66	 18.68	 17.87	 16.45	 20.91	 18.17	 15.07	 11.99
Proposed method	 30.16	 26.86	 23.77	 21.84	 25.41	 22.64	 19.74	 14.32

Fig. 4. Graphical notation of different denoising methods for CT1 image in terms of PSNR

ED = SE(Xc) - SE(Yc)	 ...(7)

Where:
SE depicts the Shannon Entropy.
Shannon Entropy is calculated as:

	 	 ...(8) 
	 The quantitative analysis confirms 
the efficacy of the proposed algorithm through 
comparisons with namely PSNR, SNR, SSIM and 
ED, as depicted in Tables 1 to 4 and Figures 4 to 
7. These experimental outcomes suggest that the 
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Table 3. SSIM values of the proposed approach with other compared methods

Noise Variance ( σ )	 5	 10	 15	 20	 5	 10	 15	 20

Source CT Image 		  512 x 512	 	 		    512 x 512	 	  
Total variation filter25	 0.8292	 0.7174	 0.6893	 0.5678	 0.8913	 0.8655	 0.8482	 0.8538
BM3D filter26	 0.7645	 0.5753	 0.5318	 0.5065	 0.9001	 0.8753	 0.7921	 0.7645
Guided filter27	 0.7045	 0.6618	 0.6068	 0.5532	 0.8976	 0.8628	 0.8456	 0.8381
Bilateral filter28	 0.8175	 0.7688	 0.7744	 0.7496	 0.8285	 0.7688	 0.7744	 0.7496
Anisotropic diffusion filter29	 0.8839	 0.7866	 0.5644	 0.4587	 0.8739	 0.8366	 0.8544	 0.8387
Proposed method	 0.9054	 0.7932	 0.7750	 0.7416	 0.9054	 0.8932	 0.87775	 0.8616

Fig. 5. Graphical notation of different denoising methods for CT1 image in terms of SNR

Fig. 6. Graphical notation of different denoising methods for CT1 image in terms of SSIM
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Table 4. ED values of the proposed approach with other compared methods

Noise Variance ( σ )	 5	 10	 15	 20	 5	 10	 15	 20

Source CT Image 		  512 x 512	 	 		    512 x 512	 	  
Total variation filter25	 0.3675	 0.4715	 0.5466	 0.6233	 0.4685	 0.5465	 0.6166	 0.7124
BM3D filter26	 0.4944	 0.7415	 0.7532	 0.8433	 0.4944	 0.6315	 0.6532	 0.7721
Guided filter27	 0.4045	 0.6677	 0.7896	 0.8256	 0.4842	 0.5966	 0.6835	 0.7676
Bilateral filter28	 0.4469	 0.6789	 0.5433	 0.6458	 0.4469	 0.6789	 0.5433	 0.6458
Anisotropic diffusion filter29	 0.6978	 0.7684	 0.6523	 0.7834	 0.6978	 0.7684	 0.6523	 0.7834
Proposed method	 0.3555	 0.4145	 0.5587	 0.6411	 0.4321	 0.5442	 0.6023	 0.6432

Fig. 7. Graphical notation of different denoising methods for CT1 image in terms of ED

Fig. 8. Results of CT1 image (a) Total variation [25],(b) BM3D filter [26], (c) Guided filter [27], (d) Bilateral 
filter [28], (e) Anisotropic filter [29], and (f) Proposed approach at Gaussian noise variance σ = 10
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Fig. 9. PSNR values of the proposed method at noise variance σ = 5

Fig. 10. PSNR values of the proposed method at noise variance σ  = 10.

Fig. 11. PSNR values of the proposed method at noise variance σ = 15

proposed method offers better overall performance 
than standard denoising methods.
	 The proposed method yields significantly 
higher PSNR values at varying noise intensities 
(σ = 5,10,15,20) and shows better overall noise 
handling and image quality preservation abilities 
of CT1 image, as shown in Table 1. The proposed 
approach yields the higher PSNR values throughout 
the experiment, which is 35.66 dB for σ = 5 and 
25.49 dB for σ = 20. On the other hand, the Total 
Variation and BM3D filters are effective at lower 
levels of noise as seen in the PSNR values of Total 
Variation 28.39 dB at σ = 5 and BM3D filter = 

27.26 dB at σ = 5 respectively, but notable decline 
when it increases to σ = 20, with PSNR = 22.89 dB 
for Total Variation and PSNR = 22.05 dB perform 
less effectively as the noise intensity levels grow. 
The performance of the Total Variation filter can 
be improved at higher noise intensities by adapting 
regularization parameter based on the noise levels, 
which could enhance its denoising performance at 
higher noise levels. Compared to the other filters, 
Guided filter, Bilateral filter and Anisotropic 
Diffusion filter degrade CT1 image quality as noise 
level increase. Anisotropic Diffusion is the least 
effective, with performance dropping from 25.84 
dB at σ = 5 to 20.96 dB at σ = 20.
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Fig. 12. PSNR values of the proposed method at noise variance σ  = 20

Fig. 13. Noisy CT images with different noise variance levels (a) Gaussian noise variance of σ =5 , and (b) 
Gaussian noise variance of σ =10, and (c) Gaussian noise variance of σ =15, and (d) Gaussian noise variance of 

σ =20.

Fig. 14. Denoised CT images of Proposed technique and marked region is used for zooming analysis of the 
marked-region;(a) Gaussian noise variance level σ =5, and (b) Gaussian noise variance level σ =10, and (c) 

Gaussian noise variance level σ =15, and (d) Gaussian noise variance level σ =20

Fig. 15. Comparison of zooming analysis of the marked region of noisy and proposed denoised CT1 image;(a) 
Gaussian noise variance level σ=5, and (b) Gaussian noise variance level σ =10, and (c) Gaussian noise variance 

level σ =15, and (d) Gaussian noise variance level σ =20
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Fig. 16. Denoised CT1 image with Line segment

	 In the case of SNR values in Table 2, it is 
noted that Total Variation25 has a slightly lower SNR 
value of 21.34 dB at a noise variance 20 compared 
to the proposed approach. The Total Variation 
method achieves enhanced Signal-to-Noise 
Ratio (SNR) measurements at a noise intensity 
of ó=20 by effectively smoothing homogeneous 
areas. However, it blurs both edges and detailed 
information, which results in a reduced Structural 
Similarity Index (SSIM). While it is effective 
for noise suppression, it compromises structural 
preservation properties better than the proposed 
method. However, classical techniques such as the 
bilateral filter, BM3D, and other filters experience 
limitations in both preserving fine details and 
managing severe noise levels, which can result in 
over smoothing. These filters are commonly used 
to evaluate the effectiveness of denoising tasks and 
also serve as a benchmark to assess the denoising 
performance of the proposed method. Overall, the 
proposed method achieves optimal efficiency under 
low noise levels and remains effective as the noise 
increases. Performance decreases gradually after 
noise levels ó = 25 or 30 but shows superior results 
when compared to conventional filter methods.
	 In the proposed method, SSIM values 
remain consistently high even as noise intensity 
levels increase, indicating that it effectively 
preserves structural details to improve image 
quality. It is noticed that the proposed approach 
gives the highest SSIM values throughout a wide 
range of noise variances with a minimum of 0.74. 
The experimental data depicts that both the total 
variation filter and BM3D filter have relatively 
lower precision compared to other filters and the 
precision decreases as the noise level increases. 

Here, the proposed method is superior to the other 
filters in terms of image quality preservation. 
Overall, the method shows higher SSIM values 
for CT1 image, indicating better structural 
preservation, as depicted in Table 3. By evaluating 
the results for various noise intensity levels, the 
proposed method yields the lowest ED values, 
indicating its effectiveness in preserving edge 
details of the image, as shown in Table 4. On the 
other hand, the proposed method shows lower ED 
values compared to BM3D and the Anisotropic 
Diffusion filter because it effectively minimizes 
noise while preserving edges and textures. Unlike 
BM3D, which introduces artifacts and anisotropic 
diffusion, which causes excessive smoothing that 
affect edges, these methods show higher ED values, 
indicating that they retain fewer edge details as the 
noise variance increases. The proposed method 
leverages a deep learning framework to extract 
complex noise patterns, preserving high image 
quality without manual parameter tuning. The 
proposed method, leveraging DnCNN outperforms 
conventional filters like BM3D and Anisotropic 
diffusion. Overall, from Tables 1 to 4, it is clear 
that the proposed method yields better denoising 
quality-based outcomes.
Qualitative analysis
	 Qualitative analysis of the experimental 
outcomes contaminated with Additive White 
Gaussian noise.
	 The region of 45 × 45 pixels in the upper 
right quadrant of the CT images was selected for 
a zooming analysis of the details such as edges, 
contrast and different shades of grayscale images, 
as shown in Figures 13 and 14. The specified region 
was identified and outlined in all the noisy and 
denoised CT scan images using MATLAB2022b. 
As in Figure 15, the zoomed-in analysis of the 
marked regions highlights the remarkably high 
edge reconstruction and contrast recovery in the 
white detail areas of the denoised CT images.
	 The intensity profile in CT images depicts 
how pixel intensities change along a specific path, 
helping to assess contrast, consistency, and noise 
intensity levels in the image. It helps to determine 
image quality, identify structural edges, and 
analyze noise in CT images. The intensity profile 
is employed to evaluate the CT image quality 
by noting the pixel density corresponding to the 
grayscale images. The similarity among two 
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Fig. 17. Intensity profile of a line on clean image and denoised CT1 image of various denoising methods from 

[25-29]
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CT images can be identified by comparing their 
intensity profile plots. In this case, the method is 
used to assess how closely the denoised image 
resembles the clean image by comparing the pixel 
values of different locations. Figure 17 shows the 
intensity profile of the CT1 image at varying noise 
levels (ó = 5,10,15,20) respectively. The results 
indicate that the denoised and original CT images 
share significant similarities, proving the efficiency 
of the adopted denoising method in maintaining 
image quality. Other experiments conducted at 
different noise levels, as presented in this paper, 
further confirm the reliability of the proposed 
system.
	 The intensity profile of25 deviates more 
at the edges and sharp transitions compared to 
the proposed approach, due to the staircase effect 
and26 efficiently reduces noise but compromises 
edges and fine structures slightly, resulting in 
mild blurring. The intensity profile of27 preserves 
smooth surfaces but slightly reduces texture 
changes, leading to compression of fine details. 
The intensity profile of28 is effective in removing 
noise, but it has the disadvantage of blurring, 
particularly around edges, which distorts the fine 
details and29 is also very similar to the one as 
shown in28, as it also sacrifices fine detail while 
attempting to eliminate noise. Conversely, the 
proposed approach maintains the intensity profile 
of the clean image thereby providing better noise 
mitigation and superior retention of edges and fine 
details as compared with conventional techniques.

Discussion

	 The efficiency of the proposed ensemble 
method was assessed using PSNR, SNR, SSIM 
and ED metrics. The performance assessment of 
the DnCNN model for denoising CT images is 
demonstrated the efficiency and the importance 
of noise removal to enhance imaging quality. 
The proposed ensemble approach is compared 
with different benchmarks like PSNR, SNR and 
SSIM and ED. The proposed ensemble method, 
effectively utilizing DnCNN framework, achieved 
outstanding results in denoising CT images 
compared to conventional denoising techniques. It 
obtained higher PSNR and SNR values, indicating 
effective noise suppression while preserving fine 
image details. The SSIM results depict enhanced 

structural retention, while lower ED values 
indicate improved edge preservation. Compared 
to conventional denoising techniques, the DnCNN 
approach excels in both noise suppression and fine 
detail preservation. PSNR measures the denoised 
image quality in comparison with original noisy 
image. The higher PSNR represents the greater 
fidelity. It is measured in decibels (dB). The 
SNR examines the strength of preferred signal 
with the level of background noise. The range of 
SSIM values in between 0 and 1 i.e., 1 depicts the 
complete resemblance to the original image and 
denoised image. Whereas 0 depicts there is no 
structural similarity between denoised image and 
clean image.
	 The quantitative assessment values of 
the CT1 image at different noise intensities show 
that the proposed method achieves the highest 
PSNR value, indicating superior noise mitigation 
while preserving fine image details. At (ó=10), the 
proposed model achieves 30.28 dB, performs better 
than BM3D, which has a PSNR value of 24.26 
dB, and Total Variation, which achieves 27.46 
dB, achieving robustness in moderate noise levels. 
Total variation and Anisotropic diffusion depict 
lower PSNR values as noise increases, reducing 
denoising performance in LDCT images. Total 
Variation, Bilateral, and Guided filters result in 
excessive smoothing, degrading image quality at 
higher noise intensities compared to the proposed 
approach. This highlights the effectiveness of the 
proposed method in noise suppression and detail 
preservation.
	 For SNR, the proposed method shows 
strong signal retention even at higher noise levels. 
It outperforms BM3D and Total Variation at 
(ó = 10), achieving an SNR value of 26.86 dB, 
compared to their 20.05 dB and 24.17 dB results. 
The signal retention of the proposed method 
remains at 23.77 dB when (ó =15), while BM3D 
and Anisotropic Diffusion decrease to 17.25 dB 
and 17.87 dB, respectively. Traditional denoising 
methods such as Anisotropic Diffusion, Bilateral 
and BM3D shows abrupt SNR deterioration as 
noise increases, resulting in a severe drop in CT 
image quality. The proposed method achieves an 
SSIM value is of 0.7932 under a noise variance (ó 
= 10), whereas BM3D exhibits 0.5753 and Total 
Variation reaches 0.7174. The proposed method 
obtains an SSIM value of 0.7750 as ó approaches 
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15, remaining higher than BM3D, which has a 
value of 0.5318, indicating significant structural 
disruption to image quality. With a noise variance 
(ó = 15), the structural integrity preservation of 
Anisotropic Diffusion becomes difficult, as its 
SSIM value drops to 0.5644, highlighting its 
struggle to preserve vital anatomical features.
	 The proposed method achieves the lowest 
entropy difference (ED) values, indicating effective 
edge preservation. At a noise level of (ó = 10), 
it attains an ED value of 0.4145, outperforming 
BM3D’s 0.7415 and Anisotropic Diffusion’s 
0.7684. Even at (ó = 15), it maintains an ED 
value of 0.5587, while BM3D rises to 0.7532, 
representing a greater loss of edge details. In 
contrast, traditional filters such as Total Variation, 
Anisotropic Diffusion, and Bilateral filters exhibit 
higher ED values, indicating their tendency to 
obscure fine details. Overall, the experimental 
results confirm that the proposed DnCNN-based 
model outperforms other denoising techniques in 
higher noise environments such as low dose CT 
imaging, where both noise suppression and fine 
detail preservation are essential to improve image 
quality. The proposed method can be adapted to 
different domain specific datasets such as diverse 
medical image datasets, to extract specific features 
like organ structures, lesions, and tissues through 
fine-tuning the DnCNN model. It can also be 
adjusted to varying noise levels using custom-loss 
functions and data augmentation. 
	 An intensity profile represents the 
distribution of pixel values in an image, emphasizing 
changes in contrast and fine detail. The intensity 
profiles of the clean image with various standard 
denoising methods and clean image with proposed 
method illustrate superior noise suppression while 
effectively maintaining intricate details, leading 
to more precise edges and clearer transitions, as 
shown in Fig. 17. Overall, proposed approach 
shows high accuracy and computational efficiency, 
compared to the other standard denoising methods.
Future research Work
	 In future work, the proposed DnCNN 
can incorporate domain-specific priors to preserve 
diagnostic features more effectively. Future research 
work may extend the proposed hybrid models with 
attention blocks to achieve better results for more 
complex noise patterns. Generalizing the model for 
Poisson or mixed noise will enhance its versatility 

for low-dose CT imaging in practice. Real-time 
optimizations and validations on multiple clinical 
databases are essential for accurate medical 
diagnosis of various diseases.

Conclusions

	 This research proves that the proposed 
approach based on DnCNN yields better results 
for Gaussian noise reduction in CT images than 
traditional filters. The outcomes of the proposed 
deep learning-based method were compared 
with PSNR, SNR, SSIM and ED metrics, and 
the results showed higher efficiency against 
other techniques such as Total Variation filter,25 
BM3D filter,26 Guided filter,27 Bilateral filter,28 and 
Anisotropic Diffusion filter.29 Unlike conventional 
methods, which rely on prior knowledge in terms 
of models or assumptions about the type of noise 
distribution, the DnCNN learns from the data and 
can effectively handle a variety of noise levels. 
The deep convolutional network is successfully 
utilized to learn and selectively remove noise 
while reconstructing the fine structures of the 
given CT image without over-smoothing it. By 
utilizing deep convolutional layers, the model is 
trained to concentrate on residual noise instead of 
directly denoising the whole image. The proposed 
method outperforms traditional denoising filters by 
achieving higher PSNR and SNR values, ensuring 
effective noise mitigation while preserving fine 
image details. The method maintains better 
structural preservation (SSIM) compared to Total 
Variation, BM3D, Guided filter, and Anisotropic 
diffusion, which degrade at higher noise intensities. 
The proposed method also shows lower ED values, 
resulting superior edge retention and prevention 
of over-smoothing. Overall, the proposed method 
provides an optimal balance of noise suppression, 
edge and structure preservation, resulting in 
enhanced CT image quality.
	 The proposed method is adaptable to 
various medical imaging modalities, including 
CT, X-ray, MRI, and ultrasound. Through 
customization of the model with specific datasets, 
it can adapt to distinct noise patterns, effectively 
mitigating noise while preserving fine image 
details. This leads to enhanced diagnostic accuracy 
by increasing the perceptibility of critical image 
features, ultimately increasing reliability in 
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medical diagnosis. Therefore, the proposed method 
provides a benchmark for denoising of CT images 
in medical diagnosis, aiming to enhance reliability 
and accuracy.
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