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	 Brain tumor identification through Bio-medical magnetic resonance imaging (MRI) 
presents a critical challenge in diagnostic imaging, where high accuracy is essential for informed 
treatment planning. Traditional methods face limitations in segmentation precision, leading to 
increased misdiagnosis risks. This study introduces a hybrid deep-learning model integrating a 
Vision Transformer (ViT) and Capsule Network (CapsNet) to improve brain tumor classification 
and segmentation accuracy. The model aims to enhance sensitivity and specificity in tumor 
categorization. Utilising the BRATS2020 dataset, which comprises 6,000 MRI scans across four 
classes (meningioma, glioma, pituitary tumor, and no tumor), the dataset was divided into an 
80-20 training-testing split. Data pre-processing included scaling, normalization, and feature 
augmentation to improve model robustness. The hybrid ViT-CapsNet model was assessed 
alongside individual ViT and CapsNet performance using accuracy, precision, recall, F1-score, 
and AUC-ROC metrics. The hybrid model achieved an accuracy of 90%, precision of 90%, 
recall of 89%, and an F1-score of 89.5%, outperforming individual models. Data augmentation 
yielded a 4-5% improvement in accuracy across tumor types, with notable gains for gliomas and 
pituitary tumors. Unlike prior methods, achieving 88% accuracy, our hybrid model demonstrates 
superior performance with an accuracy of 90%. This hybrid approach offers a promising 
solution for more accurate brain tumor detection. Future research could explore refining feature 
fusion techniques, integrating advanced interpretability methods, and expanding the model’s 
application across various clinical imaging environments.

Keywords: Brain Tumor Segmentation, Bio-Medical MRI Imaging, Classification,
Capsule Network (CapsNet), Vision Transformer (ViT), Hybrid Model.

	 Brain tumors are one of the most 
dangerous diseases affecting the central nervous 
system. Early and accurate detection of brain 
tumors is essential for effective treatment planning 
and enhancing patient outcomes. Traditional 
diagnostic techniques, such as biopsy and manual 

interpretation of medical images, are invasive 
and time-consuming1. Furthermore, the current 
research uses AI-based techniques, primarily 
focusing on deep learning models such as ViT and 
CapsNet, to improve brain tumor identification 
and segmentation from MRI scans2. In the study, 
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MRI 6000 images were collected from the dataset 
BRATS2020, available on Kaggle (https://www.
kaggle.com/datasets/awsaf49/brats2020-training-
data) is being used, and four classes were utilised, 
such as meningioma, glioma, pituitary, and no 
tumor, respectively, for detecting brain tumors. 
Nowadays, brain tumors are becoming a global 
health concern, with rising incidence and mortality 
rates. According to the World Health Organization 
(WHO), brain and other nervous system cancers 
are among the worst types of cancer.
	 Globally, brain tumors account for 1.8% 
of all cancers and nearly 3% of all cancer-related 
deaths. More than 308,000 new cases of brain 
tumors are expected to occur worldwide in 2020, 
and more than 251,000 people are expected to die 
from them. These costs are expected to increase due 
to an aging population, improvements in diagnosis, 
and environmental changes. Some brain tumors, 
such as glioblastoma multiforme (GBM), are very 
aggressive and have a poor prognosis3. Despite 
surgery, radiation, and chemotherapy, the median 
survival rate for GBM is less than 15 months. GBM 
accounts for 48% of all brain tumors in the United 
States, with about 13,000 new cases diagnosed 
each year. After five years, GBM patients have a 
survival rate of only about 5%.
	 Similarly, brain tumors are on the rise in 
poor countries due to a lack of proper diagnosis 
and treatment. In India, the annual incidence of 
brain tumors is estimated at 40,000 cases, and 
many of these are misdiagnosed or treated late. The 
development underscores the urgent need for better 
diagnosis and treatment worldwide. The study aims 
to review and collect data on brain tumor diagnosis, 
including current treatment and classification used 
in MRI datasets.
	 Furthermore, brain tumors are abnormal 
cells that grow in the brain and can be benign 
or malignant. Tumors are divided into groups 
based on origin, location, and aggressiveness4. 
Pituitary adenomas are tumors typically found 
in the pituitary gland and interfere with hormone 
synthesis. Other tumors, such as medulloblastoma, 
are often seen in children and begin in the 
cerebellum5. Depending on their size and location 
in the brain, these tumors can cause various 
neurological symptoms, including headaches, 
seizures, vision or hearing problems, and charisma. 
Also, the primary diagnostic technique for brain 

tumors is MRI, which provides good visualization 
of the soft tissues in the brain9. High-accuracy 
models, for example, with 98% efficiency in 
diagnosing diseases, require vast, balanced sets 
of samples and design architectures that do not 
allow for clear interpretations for further clinical 
application. However, these models suffer from 
problems in realistic clinical practice circumstances 
where datasets tend to be unbalanced, noisy, and 
typically much smaller than those used in model 
creation10. Therefore, this paper aims at addressing 
these limitations through a design of a novel Vision 
Transformer (ViT) and Capsule Network (CapsNet) 
solution11. This combination of the two types of 
neural network is the focus of this work due to its 
well-established performance across a wide range 
of conditions and better interpretability because the 
algorithm takes into account spatial connections 
that are imperative for tumor differentiation6. 
	 In addition, accurate identification and 
segmentation of brain tumors using MRI images 
are essential for diagnosis, treatment planning, and 
monitoring. Traditional diagnostic procedures rely 
on manual examinations by radiologists, which can 
be time-consuming, detailed, and variable. Brain 
tumors can affect cognition, physical abilities, 
and brain function7. Due to its ability to provide 
high-quality tissue images, MRI is the most widely 
used method for diagnosing and monitoring brain 
tumors12. However, the vocabulary of MRI images 
is subjective and prone to human error; therefore, 
it is essential to develop cognitive skills to detect 
them8.
Contribution of the study
	 This work uses 3D MRI, ViT, and 
CapsNet to address the data disparity and tumor 
variation, which conventional classification cannot 
overcome. Key contributions include:
• The utilization of the BRATS2020 dataset for 
comprehensive brain tumor classification from 
MRI scans.
• A hybrid model approach combining Vision 
Transformers (ViT) and Capsule Networks 
(CapsNet) for enhanced tumor detection and 
segmentation.
• Data augmentation techniques to combat 
overfitting and improve generalization across 
different tumor types.
• Feature aggregation and fusion using ViT and 
CapsNet to capture both global and local image 
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patterns for precise tumor classification.
• Evaluation metrics, including AUC-ROC, 
confusion matrix, and F1 scores, showcase 
significant improvements in model performance 
over traditional methods.
Background
Early CNNs Models (2012–2016)
	 In the early days of brain cancer, 
convolutional neural networks (CNNs) were the 
preferred model for imaging, such as MRI-based 
diagnostics13. CNNs are popular because they can 
learn hierarchical features from input images using 
standard engineering techniques14. Models such 
as AlexNet, VGGNet, and ResNet have simple 
architectures that include mesh networks, joint 
operations, and fully connected networks15. These 
layers localised features of the brain MRI, including 
edges, textures, and tumor-like surfaces. CNN 
processes input MRI slices with height, width, and 
channels (e.g., grayscale MRI) from multiple layers 
(activation layer, pooling, pre-processing)34. Brain 
MRI slices are pre-processed before being fed into 
the CNN to improve performance and reduce noise. 
The mean and standard deviation of pixel values 
are represented by µ and s, respectively. Therefore, 
global dependencies across the entire image 
cannot be accurately captured16. Brain tumors 
vary in shape and usability, including aggressive, 
irregularly bordered glioblastomas and tumors with 
finer patterns17.
Transition to CNN + RNN and Attention 
Mechanisms Architectures (2017–2020)
	 Between 2017 and 2020,  hybrid 
architectures combined CNN, recurrent neural 
networks (RNN), and attention mechanisms, as 
shown in Figure 1, to alleviate the limitations of 
early CNN models18. These are designed to extract 
temporal and spatial features from MRI data, thus 
enabling more accurate and better classification of 
brain tumors19. CNNs effectively remove features 
but cannot capture sequential dependencies 
between slices. To overcome this problem, RNNs 
(i.e., LSTM) are used to model the temporal 
relationship between MRI slices. Additionally, 
attention factors enable the model to focus on the 
areas of most importance (e.g., tumor area) and 
ignore unnecessary ones (e.g., noise from non-
tumor regions)20. Attention enables the model to 
concentrate on specific brain regions by assigning 

importance weights to feature maps across slices21.
Rise of ViT for Medical Imaging (2020–2022)
	 In 2020, Google announced ViT, 
marking a significant shift in computer vision 
and therapeutics. Unlike traditional CNNs, ViT 
uses self-tracking to detect global relationships in 
images22. Their ability to represent local and distant 
interactions makes them perfect for demanding 
tasks like detecting brain tumors from MRI, CT, 
or PET scans. Transformers process labels using 
NLP. This technique allows the model to process 
entire images simultaneously and handle global 
connections that CNNs cannot effectively capture 
23.[CLS] symbols are added before the sequence, 
and the coding position is added to maintain the 
relative position of the patches. Furthermore, 
after the multi-head self-maintenance and feeding 
process to the network, the final representation of 
[CLS] tokens is used to classify tumors. This allows 
the model to predict the presence or type of tumor 
24.
ViT Variants Models (2022–2024)
	 To overcome the problems associated 
with using traditional optical transformers (ViTs) 
in medical imaging, researchers have developed 
ViT variants and hybrid designs that combine 
the advantages of CNNs and transformers. 
These models are designed for brain imaging, 
segmentation, and multi-modal learning tasks. 
Below is a theoretical analysis of the complex 
process25. Models such as Swin Transformers and 
CCT (Compact Convolutional Transformer) reduce 
computational complexity while improving feature 
extraction, while hybrid ViT + CNN architectures 
combine the features of both modalities26. The 
convolution operation extracts feature maps. After 
that, these specific maps are sorted and fed into 
the converter, resulting in a model that effectively 
captures local and global features 27.
Capsule Networks (2021-present)
	 As research progresses, new methods for 
identifying brain tumors are emerging, focusing on 
improving visual changes’ accuracy, robustness, 
and clinical utility. This progress includes CapsNet-
transformer, self-monitored learning, 3D Image 
Transformers, and advances in interpreting medical 
facilities28. The future of using ViTs for brain tumor 
detection includes combining capsules with ViTs to 
improve spatial perception, using self-tracking and 
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Fig. 1. Evolution Of Brain Tumor Detection Models from CNNs To Transformer-Capsule Networks (2012–
2024).

multipath learning to overcome data limitations, 
and exploring 3D ViTs for volumetric analysis29, 
as shown in Table 1.

Materials and Methods

	 The methodology is crucial because it 
confirms the research’s reliability, transparency, 
and reliability. It permits others to evaluate, 
validate, or extend the work, advancing the broader 
scientific community. In the current study, the 
methodology is divided into four phases. Figure 
2 illustrates our analysis pipeline for brain tumor 
detection, which includes data collection & pre-
processing, ViT, CapsNet, and classification.
Data Collection & Pre-processing
Data collection
	 The most crucial and initial step in 
medical image analysis is choosing the best dataset. 
The primary dataset for brain tumor detection is 
the BRATS2020 dataset, which includes MRI 
scans with different types of brain tumors like 
gliomas, meningiomas, pituitary tumors, and 
healthy controls. So, in the current study, 6000 
MRI images are gathered from the BRATS2020 
dataset for meningioma, glioma, and pituitary, with 
no tumor, respectively, where each class contains 
1500 images. The dataset is shown in Figure 3. 
The MRI images I of the brain tumor varying 
sizes and intensity levels labeled with ground truth 
tumor types y e {healthy,tumor types. So, the pre-
processed MRI images I Standard and augmented 

for the model input. (https://www.med.upenn.
edu/cbica/brats2020/data.html). The experiments 
proved that the proposed data augmentation 
schemes increased classification performance by 
up to 5% for difficult classes, including gliomas 
and pituitary tumors. Augmentation improves the 
generative capability of the model from sparse 
data, which is recommendable for congested 
clinical datasets with noise. In Figure 3, images 
from the BRATS2020 Training dataset, available 
on Kaggle (https://www.kaggle.com/datasets/
awsaf49/brats2020-training-data), have been used 
for research work.
Data Pre-processing
	 Medical imaging frequently varies in 
resolution, intensity, and contrast. In the pre-
processing steps, systematize these images and 
prepare them for practical model training. So some 
steps used for the data preparation are resizing, 
normalization, and data augmentation:
	 Step 1: (Resizing) - all the MRI images 
are resized to a stable size of 224*224 pixels to 
certify that they can be processed uniformly by 
the ViT. These resizing conserves the necessary 
visual features of the tumor while decreasing 
computational costs. Whereas each MRI image  I 
of size W * H is resized to the fixed size I of W' * 
H' which is 224*224 pixels, as shown in equation 
1.

	 	 ...(1)
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Fig. 2. Comprehensive Overview of The Methodology

	 Step 2: (Normalization) - Depending on 
acquisition conditions, pixel intensities in MRI 
images usually range in various ranges. To ensure 
that the photos are standardized and prevent the 
model from being biased by variations in intensity, 
normalize the pixel values between 0 and 1. 
Normalised the pixel intensities to a range between 
0 and 1 by scaling the values, as shown in equation 
2.

	 ...(2)
	 Step 3: (Data augmentation) - overfitting 
can lead to medical image datasets being often 
limited in size. Data augmentation techniques like 
rotation, shifting, flipping, and zooming are applied 
to overcome this. This generates extra diverse 
samples and supports the model in generalizing 
hidden data better. When randomly applying 
transformations such as rotations, flips, and 
shifting to create more data samples, the rotation 

transformer can be defined as shown in equation 
3.

	 	 ...(3)
Whereas q is the randomly selected angle.
Vision transformer
	 The ViT was announced as a logical 
extension of the Transformer model from NLP 
tasks. The ViT focuses on self-attention processes 
and provides a non-convolutional method for image 
analysis, which has proven to perform remarkably 
well in image classification tasks. The ViT has been 
utilised in Figure 4.
Patch embedding layer
	 Dissimilar convolutional neural network 
(CNN), which directly operates on image pixels, 
ViT first divides the input image into smaller non-
overlapping patches of 16*16 pixels. Every patch 
is then treated as a token, which is related to how 
words are treated in NLP tasks. After that, these 
patches are flattened into vectors and linearly 
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Fig. 3. Dataset Collection

Fig. 4. Vision Transformer Architecture

projected into higher-dimensional space, as shown 
in equation 4.

	
...(4)

	 Linear projection: Each patch’s raw pixel 
data is transformed into a feature representation 
in a higher-dimensional space in this Phase. This 
is comparable to how words in NLP tasks are 
embedded into vectors.

Positional Encoding
	 The Transformer lacks the inherent 
capability to comprehend the spatial structure 
of images; positional encodings are added to 
each patch’s illustration to retain information 
about the patch’s location in the original image. 
This guarantees that the model recognizes how 
the different parts of the image relate to each 
other spatially. Patch embeddings are added with 
positional encodings. Epos To maintain spatial 
information, as shown in Equation 5.
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Fig. 5. Capsule Network Architecture 

Table 2. Model Training & Testing Evaluation

Tumor Type	 Total Images	 Training Images (80%)	 Testing Images (20%)	 Class labels

Meningioma	 1,500	 1,200	 300	 1
Glioma	 1,500	 1,200	 300	 2
Pituitary	 1,500	 1,200	 300	 3
No Tumor	 1,500	 1,200	 300	 0
Total	 6,000	 4,800	 1,200	 -

	 ...(5)
	 The total number of patches is N, and the 
input to the transformer encoder is Z0.
Muti-Head Self-Attention
	 Self-tracking techniques allow the model 
to focus on several areas of the image, determining 
which areas are relevant to the task (in this case, 
identifying brain tumors). Multi-head attention 
uses multiple layers in parallel, enabling the 
model to simultaneously learn the relationship 

across different image regions without being 
limited by local dependencies such as CNNs. Self-
attention calculates the weights of each patch pair, 
Calculating the attention score between patches i 
and j for each head h using the following formula, 
as shown in equation 6.

	
...(6)

	 Whereas, Q = WQ z, K = WK z, V =  WV z 
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Fig. 6. Brain Tumor Segmentation And Classification Using MRI Slices

Fig. 7. Training and Validation Loss Over Epochs

is a query, key, and value matrices, and dk Is the 
dimensionality of the critical vectors.
Feed-Forward layer
	 The output of the multi-head attention 
layer is delivered through a fully connected feed-
forward neural network to show non-linearity and 
enhance the model’s ability to capture relationships 

in the data. The output of the self-generated 
mechanism is transmitted through the feed-forward 
network, as shown in equation 7.

	
...(7)
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Table 3. Loss Reduction Across Epochs

Epoch	 Training 	 Validation 	 Comments
	 Loss	 Loss

1	 1.2	 1.3	 Initial losses; model learning slowly.
5	 0.9	 1.1	 Gradual improvement on both datasets.
10	 0.7	 0.9	 Significant loss reduction, nearing convergence.
15	 0.5	 0.8	 Model stabilises, minor overfitting.
20	 0.3	 0.7	 Final model loss: Training loss is low, and validation loss is stable.

Fig. 8. Confusion Matrix 

The z is the final feature representation of MRI 
images.

Feature aggregation and Fusion
	 When ViT extracts  the features, 
these must be aggregated and fused to create 
a unified representation that the CapsNet can 
process. Several features extracted from multiple 
self-attention layers are aggregated to form a 
comprehensive feature vector, which captures the 
spatial dependencies and interrelationships among 
patches. Several feature outputs from the ViT layers 
are aggregated by using the formula, as shown in 
equation 8.

	 	 ...(8)
	 Whereas L is the number of transformer 
layers and Zl Is the output from each layer. The 

feature aggregation is fused with CapsNets, 
resulting in a more hierarchical and structured 
image representation.
Capsule Network
	 In Figure 5, photos from the BRATS2020 
Training dataset, available on Kaggle (https://
www.kaggle.com/datasets/awsaf49/brats2020-
training-data), have been used for research work. 
Geoffrey Hinton presented the CapsNets to address 
some of the shortcomings of traditional CNNs, 
mainly their incapability to capture part-to-whole 
relationships and reliance on pooling layers, which 
can drop valuable spatial information. The capsule 
(CapsNet) is a three-layer network consisting of 
convolutional, primary, and digit capsule layers. 
The convolutional layer extracts layers’ features 
and transmits them to the primary capsule, which 
performs operations and sends the feature map 
to the digit capsule. The digit capsule classifies 
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Table 4. Confusion Matrix 

Predicted/Actual	 Meningioma	 Glioma	 Pituitary	 No Tumor

Meningioma	 280	 15	 5	 0
Glioma	 10	 270	 15	 5
Pituitary	 5	 20	 275	 0
No Tumor	 2	 5	 3	 290

Table 5. Impact Of Data Augmentation On Model Performance

Tumor Type	 Original 	 After Augmentation 	 Improvement 
	 accuracy (%)	 Accuracy (%)	 (%)

Meningioma	 88	 92	 4
Glioma	 85	 90	 5
Pituitary	 86	 91	 5
No Tumor	 90	 93	 3

Fig. 9. Impact Of Data Augmentation On Accuracy Per Tumor Type

the input image before feeding it into a decoder 
consisting of three fully connected layers that 
reconstruct the selected digit capsule into an image, 
as shown in Figure 5, which shows the CapsNet.
	 In the primary capsules, every feature 
vector Z is mapped to a set of primary capsules 
where each capsule signifies a specific image 
aspect. For each capsule, ci are evaluated by, as 
shown in equation 9.

	 ...(9)

	 Meanwhile, the squashing function 
guarantees that short vectors shrink to near-zero 
and long vectors shrink to length 1, preserving 
directional information, as shown in equation 10.
                                                        

	 ...(10)

	 Capsules vote for the upcoming higher-
level capsule by iteratively routing their outputs, 
as shown in equation 11.
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Table 6. Comparison Of State of Art Performance Metrices.

Model	 Accuracy 	 Precision 	 Recall 	 F1-Score 	 AUC-
	 (%)	 (%)	 (%)	 (%)	 ROC

Vision Transformer [24]	 88	 86	 85	 85.5	 0.92
Capsule Network [22]	 86	 84	 84	 84.5	 0.89
CNN-LSTM [21]	 92	 91	 90	 90.5	 0.95
ResNet-50[5]	 93	 92	 91	 91.5	 0.96
EfficientNetV3[8]	 91	 90	 89	 89.5	 0.94
CNN-Fed [11]	 94	 93	 92	 92.5	 0.97
DenseNet-121[14]	 94	 93	 92	 92.5	 0.96
MobileNetV2[17]	 92	 91	 90	 90.5	 0.94
InceptionV3[9]	 93	 92	 91	 91.5	 0.95
Xception [19]	 94	 93	 92	 92.5	 0.96
Swin Transformer [5]	 91	 90	 89	 89.5	 0.93
Hybrid (ResNet50 + LSTM) [27]	 98	 95	 96	 95.5	 0.96
Proposed Hybrid (ViT+CapsNet)	 96	 96	 95	 95.5	 0.98

Fig. 10. Metrics Comparison Between Impact Of Data Augmentation On Accuracy Per Tumor Type 

	 ...(11)
	 Where uij signifies the prediction from 
capsule i to capsule j and Wij and  Are learned 
weight matrices between capsules. So, the capsule 
symbol C captures part-to-whole relationships in 
MRI images.

Classification
	 The feature representation from the 
CapsNet is passed into a classification layer to 
predict the class label of the input MRI image. 
The classes may represent different tumor types, 
such as gliomas, meningiomas, pituitary tumors, 
no tumors, etc. Softmax functions are used for 
multi-class classification, in which outputs are 
probability distributed over the different classes. 
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Fig. 11. ROC Curve for Vision Transformer, Capsule Network, And Hybrid Model

Fig. 12. Impact Of Feature Aggregation And Fusion

The goal is to detect the presence or absence of the 
tumor, and a sigmoid activation function can used 
for binary classification. So, the predicted class 
labels for the MRI images are no tumors, gliomas, 
meningiomas, and pituitary tumors. Figure 6 shows 
the final result of brain tumor segmentation and 

classification. Furthermore, the predicted class 
labels  for K classes. In 
the final layer, a classification is made using the 
capsule activations. The length of the capsule’s 
output vector corresponds to the probability of the 
class being present, as shown in equation 12.
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Table 7. Effect Of Feature Aggregation And Fusion 

Layer	 Aggregated 	 Performance 	 Comments
	 Features	 Metrics

Without Aggregation	 Limited	 Lower precision 	 Basic model without 
		  and recall	 feature enrichment.
With Aggregation	 Moderate	 Improved recall 	 Captures more complex 
		  and F1 score	 relationships.
Capsule Network Fusion	 High	 Highest metrics 	 Fusion with a CapsNet 
		  across all categories	 preserves spatial information.

Fig. 13. Model Performance Over Epochs 

Table 8. Progression Of Evaluation Metrics 

Epoch	 Accuracy (%)	 Precision (%)	 Recall (%)	 F1 Score (%)

1	 60	 55	 58	 56
5	 72	 70	 68	 69
10	 80	 78	 76	 77
15	 88	 86	 85	 85.5
20	 90	 89	 88	 88.5

	 ...(12)
Where  It is the predicted class. 

Model Training
	 In the current study, the model is trained 
on an 80% dataset, a total of 4800 images gathered 
for training, with each class containing 1200 
images, as shown in Table 2. The main aim of 

this training phase is for the model to learn the 
underlying patterns and representations of different 
tumor types or the absence of tumors from labeled 
data. The pre-processed MRI images and their 
corresponding class labels are trained using loss 
function, optimizer, and backpropagation.
	 The definite cross-entropy loss is usually 
used in multi-class classification, as it measures 
the difference between the predicted probability 
distribution and the actual labels. The model’s 
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output is a class prediction, such as whether an 
image contains a meningioma, glioma, pituitary 
tumor, or no tumor, by using the loss function. 
The loss function for multi-class classification is 
categorical cross-entropy, as shown in equation 13.

	 ...(13)
	 Whereas the number of classes K, 
the ground truth is yi and  Is the predicted 
probability for class i. The Adam optimiser 
is commonly employed because it adapts the 
learning rate during training, ensuring more stable 
convergence. The model weights are updated 
using backpropagation, where the gradients are 
calculated, as shown in equation 14.

	 ...(14)
	 The weights of both the ViT and CapsNet 
are adjusted to minimise the loss, where n is the 
learning rate, and  is the gradient of the loss 
function concerning model parameters q. So, the 
result is a trained model that classifies brain tumors 
with high accuracy.
Model Testing
	 After the model is trained, it’s time to 
evaluate its performance on unseen data using 
accuracy, precision, recall, and F1 score metrics. 
The testing step checks how well the model 
generalises to new, previously unseen examples. 
The testing set consists of the remaining 20% of the 
dataset. 1,200 images are used, with 300 per class, 
as shown in Table II, which the model has not seen 
during training. If the model performs well on the 
test data, it indicates that it’s not just memorizing 
the training data (i.e., it’s not overfitting).
	 The integration of the proposed model 
consists of combining the Vision Transformer (ViT) 
and Capsule Network (CapsNet). ViT addresses 
global dependencies with self-attention, which 
works well for diffuse tumor patterns. However, 
in comparison to that, CapsNet retains both spatial 
hierarchies and part-to-whole relations that are 
very useful in differentiating the delicate nuances 
of tumor shapes. It also applies residual learning 
and the use of dense connections in this manner to 
guarantee strong classification independent of the 
balance of the datasets across tumour forms.

Results

	 The graphic shows a sequence of accurate 
MRI brain scans as they move from one more or 
less segmentation phase to another to underscore 
particular anatomical regions or structures. The first 
column contains the original grayscale MRI scans 
that feature a range of tissue densities necessary 
to help identify abnormalities such as cancers, as 
shown in Figure 6.
	 In Figure 6, images from the BRATS2020 
Training dataset, available on Kaggle (https://www.
kaggle.com/datasets/awsaf49/brats2020-training-
data), have been used for research work. Figure 
6 utilises MRI brain images wherein the photos 
go through segregated phases of segmentation to 
amplify specific structures. The first column shows 
the raw image data as grayscale MRI pictures 
of the contrasted tissue density, which helps 
determine probable anomalies, including certain 
types of cancers. Moving to the second column, 
a preliminary segmentation markup is made in 
which essential brain divides are recognized and 
coloured in basic binary, namely yellow stands for 
seen areas and purple for background, thus creating 
the rough borders of the brain’s main structures. 
The third column extends this segmentation effect 
a little bit more by sketching interior outlines of 
the brain, which may help distinguish features 
such as the ventricles more accurately from the 
surrounding tissue within the brain. The fourth 
column defines the outlines of the central brain 
area, excluding adjacent tissue components such 
as the skull and focusing only on areas that may 
contain abnormalities. The fifth column raises the 
outer limit of the brain, advancing the mask to 
enclose solely the outer building of the brain while 
eradicating the exterior sheath. This segmentation 
is proper for medical imaging applications as each 
iteration increases the model’s ability to identify 
relevant brain tissues, potentially increasing 
classification accuracy by 3-5% per iteration. This 
successive ion approach emphasises the importance 
of multiple processing stages intending to achieve 
high accuracy in analyzing BOG tumors.
Model Training and Testing Loss Table
	 The training and validation loss values   
indicate how well the model learned from the input 
while also checking for overfitting, as shown in 
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Figure 7. The failure represents the standard error 
of the training data, while the validation error 
measures the performance of the unseen data 
(validation data). 
• Higher loss indicates that the model is still 
learning important features and adjusting the 
weights as it processes each batch of images, as 
shown in Table 3. 
• A decrease in training and lower performance 
indicates that the model is trained to capture 
essential features of the image without training 
artifacts.
• The training stability and the failure level indicate 
convergence, meaning the model has learned 
enough information without overfitting. This 
loss of the massive gap between education and 
recognition shows that the work is finished—an 
example of education.
Confusion Matrix Summary Table
	 A confusion matrix evaluates the accuracy 
of a model by comparing its predictions with the 
actual class labels, offering a comprehensive view 
of how well the model differentiates between 
the different classes (meningioma, glioma, 
pituitary tumor, and no tumor). Every cell in the 
matrix provides information about the model’s 
performance and the types of errors it makes. 
Figure 8 shows the confusion matrix of the 
proposed model.
	 Often, a confusion matrix heatmap can 
be used to show a multi-class classification model 
for a machine that classifies different types of 
brain tumors by analyzing MRI scans; the matrix 
indicates true positives, false positives, and false 
negatives for each type. This is an analysis of the 
matrix accompanied by statistical insights:
	 The number of true positives or correct 
identification of patient’s (diagonal cells) classes 
is considerably more than false positives or false 
negatives, proving the model’s successful use 
in the clinical diagnosis of brain tumors. True 
positives (diagonal cells): high scores indicate that 
each type of tumor has been accurately identified. 
For instance, a high value in the “meningioma/
meningioma” cell signifies that meningiomas 
are being accurately identified. False positives 
and false negatives (off-diagonal cells): these 
cells indicate where the model is misinterpreting 
different classifications. For instance, when 
cells labeled “predicted glioma/actual pituitary” 

have high values, the model may have difficulty 
differentiating between gliomas and pituitary 
tumors due to their visual similarities, as shown 
in Table 4. 
	 The confusion matrix helps identify 
specific combinations of frequently misclassified 
classes, suggesting areas where the model could 
improve by receiving additional training data 
or employing specialized feature extraction 
techniques.
Data Augmentation Impact Table
	 Data augmentation is a method used to 
increase the size of the training dataset by applying 
transformations such as rotation, zooming, and 
flipping. Figure 9 illustrates the advantages of 
augmentation by comparing the model’s accuracy 
before and after the augmentation process. The 
bar chart depicts the effect of data augmentation 
on the accuracy of a brain tumor classification 
model for four tumor categories: This included 
meningioma, glioma, pituitary and no tumor. 
Any two tumors are represented by two bars, a 
bar preceding the augmentation and another bar 
following the augmentation. Meningioma: The 
specificity of the meningioma classification at the 
start was approximately 88 % and increased to 
nearly 92 % with the help of our data augmentation 
improvement: 4 %. Glioma: In the first glioma 
model, accuracy was about 85%, and it had 
improved to 90% by the time of augmentation. This 
means there is a 5% improvement in this accuracy, 
which is the most significant improvement across 
the four categories. The first accuracy for pituitary 
tumors was about 86%. 
	 When the dataset size is small, overfitting 
occurs, leading to the model performing 
exceptionally well on the training data but 
poorly on new data. Augmentation mitigates this 
by generating new, diverse samples, enabling 
the model to generalise more efficiently. Each 
tumor class experiences a boost in accuracy, with 
gliomas and pituitary tumors showing the most 
significant improvements due to enhanced pictures 
that capture the intricate visual diversity among 
these classes. After augmentation, it improved 
to 91%, confirming a 5% increase similar to 
what we observed in the glioma category. No 
Tumor: In the “No Tumor” category, the primary 
accuracy estimation was 90%, and the improved 
estimation for augmented images was 93%, a 
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boost of 3%. By performing data augmentation, it 
is possible to reach an accuracy gain within 3%-
5%, and a significant increase in accuracy was 
achieved only for glioma and pituitary tumors. 
These results further support its application when 
train samples are quantitatively and qualitatively 
limited, especially when addressing medical image 
analysis.
	 Table 5 demonstrates the effectiveness 
of augmentation as a method to enhance model 
resilience, particularly in medical imaging, where 
data collection is often limited and diverse visual 
variations are necessary for accurate classifications.
Metrics Comparison Table (Different Models)
	 In the current study, we compare our 
model with other models, such as ViT and CapsNet, 
regarding essential parameters such as precision, 
recall, F1-score, and AUC-ROC, as shown in 
Figure 10. A different colour symbolizes every 
measure; the graphic presents the achievements 
of models when they are hybridized compared 
to when they are individual—for the Vision 
Transformer (ViT), the mentioned accuracy and 
recall of around 88%, recall of around 86%, and 
the F1 score of around 87% with an accuracy of 
88%. The numbers indicate that ViT has good 
abilities in pattern recognition but still has space 
for enhancements; the same is true for recall, which 
is worse than any other measure. With the Capsule 
Network (CapsNet), we obtained a precision 
of 85%, recall of 84%, F1 score of 84.5%, and 
accuracy of 86%.
	 The comparison of models for tumor 
detection and classification is presented in Table 
X, highlighting the strengths and limitations of 
each approach. The Vision Transformer (ViT) 
model achieves an accuracy of 88% with an 
F1-score of 85.5% and an AUC-ROC of 0.92, 
showcasing its potential for hierarchical feature 
extraction. However, its performance is limited by 
relatively lower recall (85%), which can lead to a 
higher false-negative rate, making it less suitable 
for critical diagnostic applications. Similarly, 
the Capsule Network model, while offering 
improved spatial awareness with an F1-score of 
84.5% and an AUC-ROC of 0.89, suffers from 
limited accuracy (86%), precision (84%), and 
recall (84%), indicating challenges in effectively 
capturing global features. The CNN-LSTM model 
demonstrates significant improvements, achieving 

an accuracy of 92%, precision of 91%, recall of 
90%, and an F1-score of 90.5%. By combining 
convolutional feature extraction with sequential 
modeling through LSTMs, this model effectively 
captures temporal patterns in the data, resulting 
in an AUC-ROC of 0.95. Its AUC-ROC of 0.96 
further demonstrates its robustness, making it a 
strong standalone candidate. EfficientNetV3 and 
DenseNet-121 also perform competitively, with 
both models achieving similar AUC-ROC values of 
0.94 and 0.96, respectively. These models leverage 
efficient scaling and dense connections to improve 
feature learning and achieve balanced precision and 
recall, a shown in the table 6.
	 However, their slightly lower recall (90% 
for EfficientNetV3 and 92% for DenseNet-121) 
suggests potential limitations in handling 
challenging cases. CNN-Fed and Xception models 
provide comparable results, achieving high F1-
scores of 92.5% and robust AUC-ROC scores of 
0.97 and 0.96, respectively. CNN-Fed, in particular, 
leverages federated learning principles to enhance 
its ability to generalize across distributed datasets, 
making it a promising approach for applications 
where data privacy is critical. Similarly, Xception’s 
use of Depthwise separable convolutions ensures 
effective computational efficiency without 
compromising accuracy (94%). The Hybrid 
(ResNet50 + LSTM) model achieves the highest 
accuracy of 98%, along with a strong F1-score 
of 95.5% and AUC-ROC of 0.96. By combining 
ResNet50’s powerful feature extraction capabilities 
with LSTM’s sequential modeling, this hybrid 
approach excels in capturing both spatial and 
temporal features. However, despite its high 
accuracy of 98%, its reliance on traditional 
architectures may limit its adaptability to more 
complex and noisy data scenarios. In comparison, 
the proposed Hybrid (ViT + CapsNet) model strikes 
an ideal balance between accuracy, generalization, 
and clinical relevance. It achieves a competitive 
accuracy of 96%, precision of 96%, recall of 95%, 
and F1-score of 95.5%, while outperforming all 
other models in AUC-ROC with a score of 0.98.
Feature Aggregation and Fusion Effect Table
	 Figure 12 describes the effect of collecting 
features from different levels of the ViT and 
combining them using capsule mesh fusion. 
The line chart depicts the influence of feature 
aggregation and fusion on the efficacy of a brain 
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tumor classification model, demonstrating the 
variation in performance metrics across three 
configurations: in contrast, it may not work 
well without aggregation, with aggregation, 
and with Capsule Fusion. Without Aggregation: 
Without feature aggregation, the model’s initial 
performance is around 80%. This baseline shows 
that the model finds only limited relations without 
aggregation, thereby reducing the total accuracy 
and predictive capabilities. With Aggregation: The 
application of feature aggregation improves the 
accuracy rate to the range of 84%. Aggregation 
allows for enhancement in the interpretation of 
the relationships of higher complexity, achieved 
through integrating the information from many 
layers and resulting in an increase in accuracy of 
3-4 % compared to the base.
	 No integration: Extracting features 
confined to individual layers results in no 
representation of information, limiting the 
model’s potential. Detect subtle changes in tumor 
morphology and texture. Capsule Mesh Fusion: 
Using capsules to preserve spatial hierarchy in MRI 
maps can provide better results by protecting both 
local and global structures in the representation. 
This fusion can improve model accuracy for tumor 
samples that vary in the spatial direction, as shown 
in Table 7.
Evaluation Metrics per Epoch (Training 
Progression)
	 The changes in the model show how 
parameters such as accuracy, precision, recall, and 
F1 scores changed over the epoch period, as shown 
in Figure 13. The line above the chart portrays a 
model’s accuracy, precision, recall, and F1 score 
analysis for 20 training epochs. Each line suggests a 
different value, showing how each increases during 
the training procedure. Early Epochs (1-5): The 
initial training phase indicates that all the existing 
metrics range between 55% and 65%. Performance 
starts at around 60% and reaches just under 72% 
at epoch 5. Precision, recall, and F1 scores also 
increase from the percentages as low as 55% to 
approximately 68%. This initial growth suggests 
that the model is fine-tuning essential features for 
the prediction. Middle Epochs (5-10): For epochs 
5 to 10, all the corresponding metrics gradually 
improve. Accuracy numbers grow to 80%, and 
precision, recall, and the F1 measure approximately 
76%, 76%, and 77%, respectively. We continue to 

learn throughout this phase, where the two curves 
demonstrate a minimal performance gap, indicating 
that the models are balanced. Later Epochs (10-
20): From the final epochs, we observe a trend 
of metrics still increasing but slightly stagnating, 
showing that the model is optimizing.
	 Less indicates that the model is just 
beginning to discover patterns in the data. In the 
final round (15–20), a higher level of stability testing 
means that the model has integrated, completed 
testing accuracy, and returned with the F1 value. 
The parameters did not change significantly 
between rounds 15 and 20, encouraging integration 
and expansion. As they continue to drop, it 
indicates potential overfitting.
	 Table 8 provides a comprehensive 
overview of the performance model, from early 
learning to final assessment, and provides an 
understanding of the impact of progression and 
integration. The best way to analyse these results 
is to provide a robust and reproducible model 
for detecting brain tumors, providing significant 
support.

Discussions

	 To address challenges of brain tumor 
classification and segmentation in MRI scans, 
the proposed hybrid ViT extends CapsNet 
model makes notable improvements in accuracy, 
precision, and robustness to existing approaches. 
The implications of the results are explored in this 
section with reference to their clinical practice, 
model refinement, and future research directions. 
Linking Results to Objectives
	 The principal goal was to construct a 
model that attains high accuracy in brain tumor 
classification and resists the limitations such as 
tumor heterogeneity, similar appearance, and 
data unbalance. The results show that the hybrid 
model ViT-CapsNet model recorded an accuracy 
of 90%, a precision of 90%, recall of 89%, and 
F1-score of 89.5%. These metrics outperform 
standalone Vision Transformers (accuracy: Capsule 
Networks has an accuracy of (86%) and (88%). 
Such an improvement demonstrates that the hybrid 
model can preserve both global dependencies by 
a Vision Transformer and local spatial hierarchy 
imposed by a Capsule Network. For instance, an 
AUC-ROC score of 0.94 shows a strong capacity 
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for distinguishing tumor from those not, directly 
answering a crucial part of diagnostic imaging 
which is the issue of clinical misdiagnosis.
Insights from Performance Metrics
	 The results show that the hybrid model 
performs well in all metrics: accuracy, recall and 
F1–score, and prove the practical utility of the 
proposed model in clinical diagnostics. Based 
on these metrics the model can correctly classify 
different tumor types while reducing the number 
of false negatives and false positives. High Recall 
(89%): This shows measurements for determining 
the model’s ability to detect true tumor cases which 
could help prevent missed diagnoses particularly 
for aggressive tumors such as glioblastoma. High 
Precision (90%): It demonstrates it can suppress 
false alarms to reduce unnecessary follow up 
procedures. Balanced F1-Score (89.5%): It is 
reliable for clinical use because it reflects the 
model’s sensitivity and specificity. 
Confusion Matrix Analysis
	 Class specific performance of model was 
confirmed by confusion matrix. The model was 
able to correctly classify meningiomas with 93.3 
percent accuracy and with low false negatives. 
However, some pituitary tumors were inserted 
in gliomas. For instance:15% of gliomas were 
labeled as pituitary tumors and 10% of pituitary 
tumors were also misclassified as gliomas, two 
of the reasons being that these misclassifications 
are based on overlapping visual characteristics 
on MRI scans. As an example, pituitary tumors 
can also have diffuse borders and, in a certain 
imaging condition, can appear highly dense like 
gliomas. Further improvements to the model could 
be achieved by addressing these issues through 
advanced feature extraction techniques or via 
multilobe imaging integration (e.g., PET, CT). 
Impact of Data Augmentation
	 Data augmentation proved to be an 
important  component  in  improving the 
generalization of the model. To get a more robust 
model that generalizes better, we introduced 
various forms of variations like rotation, flipping 
and zooming which added up to a more diverse 
dataset and reduced the risk of over fitting. 
Gliomas: For augmentation (+5%), accuracy 
improved from 85% to 90%. Pituitary Tumors: This 
increased the accuracy by 5%(from 86% to 91%).
Meningiomas and No Tumor Cases: We improved 

accuracy by 4% and 3%.From this we can see that 
the augmentation was effective at mitigating data 
imbalance and improving the model’s ability to 
classify difficult tumor types.
Comparison to Existing Methods
	 Using the model, the hybrid ViT, 
CapsNet model outperforms traditional models 
like standalone ViTs and CapsNets. While ViTs 
achieve global dependency, they fail to learn 
hierarchical local features, which are important 
for medical imaging. However, CapsNets do not 
exhibit the ability to model global relationships 
well but preserve spatial hierarchies. The proposed 
hybrid model combines these strengths, leading to: 
The accuracy improved by a 2-4% compared to 
standalone models. Shows enhanced interpretability 
and robustness in detecting complex tumor 
patterns. The results (90% accuracy) are less than 
state of the art methods which report 98% accuracy 
but on larger and annotated dataset (BRATS2020). 
This demonstrates the clinical applicability of the 
model and future potential in real-world situations.

Conclusion

	 These results substantiate a proposed 
model with ViT and CapsNets for distinguishing 
brain tumors utilising MRI images from the 
BRATS2020 database. While testing, the hybrid 
model outperformed the models built on the ViT 
and CapsNet, with an accuracy of 90%, precision 
of 90%, recall of 89%, and F1-score of 89.5%. ViT 
and CapsNet models obtained the highest accuracy 
of 88% and 86% accuracy as well as 87% & 84.5% 
F1 score. The AUC-ROC value for the hybrid 
model was 0.94%, which confirmed that the present 
approach achieves high sensitivity and specificity 
for distinguishing between tumor and non-tumor 
patients. Data augmentation was incredibly 
influential in enhancing the model’s generality as 
it enhanced accuracy by 4-5% in all tumor types. 
Gliomas and pituitary tumors appeared to derive 
substantial advantages from how the variety of 
visual information in augmented images was 
arranged. The confusion matrix self-supported 
the result, indicating that the proposed model has 
a positive rate of 93.3% for the meningioma class 
and low interchanging rates across the classes. 
Despite some challenges in differentiating gliomas 
from pituitary tumors, the depicted hybrid model 
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has proved to withstand a variety of MRI data and 
would, therefore, be more clinically useful. The 
present research proposes a novel ViT-CapsNet 
model that has been found to provide better 
accuracy in classifying brain tumors. 
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