
Biomedical & Pharmacology Journal, March 2025. Vol. 18(Spl.), p. 73-83

Published by Oriental Scientific Publishing Company © 2025

This is an    Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY).

An Automatic Simulation of MRI using Adaptive 
Unsupervised Mapping

Karan Kumar1, Isha Suwalka2*, Harishchander Anandaram3 and Kapil Joshi4

1Electronics and Communication Engineering Department, Maharishi Markandeshwar Engineering 
College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India.

2Department of Research and Publication, Indira IVF Hospital Limited, Udaipur, India.
3Department of Artificial Intelligence, Amrita Vishwa Vidyapeetham, Coimbatore- 641112, Tamil 

Nadu, India.
4Department of Computer Science & Engineering, Uttaranchal Institute of Technology (UIT), 

Uttaranchal University, Dehradun 248007, Uttarakhand, India.
*Corresponding Author E-mail: suwalkaisha3@gmail.com

https://dx.doi.org/10.13005/bpj/3074 

(Received: 30 November 2024; accepted: 30 January 2025)

 Brain tumor detection from MRI images is crucial for early diagnosis and treatment. 
Various clustering algorithms, such as Fuzzy K-means (FKM), Fuzzy C-means (FCM), and Self-
Organizing Maps (SOM), have been used for segmentation, but they face challenges like noise 
and varying image intensities. This study evaluates the performance of the Adaptive Moving 
Self-Organizing Map (AMSOM) for tumor segmentation in MRI images, comparing it to other 
clustering methods. We evaluated FCM, FKM, SOM-FKM, and AMSOM on a dataset of 12 MRI 
images. Performance was measured using Peak Signal-to-Noise Ratio (PSNR), accuracy, Mean 
Square Error (MSE), and similarity criteria. AMSOM outperformed other methods with an MSE 
of 0.01, PSNR of 68.16 dB, accuracy of 89.11%, and similarity criteria of 96.8%. In comparison, 
FCM showed an MSE of 2.880 and PSNR of 43.57 dB, while FKM had an MSE of 1.9 and PSNR 
of 45.17 dB. AMSOM provides superior segmentation accuracy and computational efficiency, 
making it a highly effective approach for detecting brain tumors in MRI images. Its robust 
performance highlights its potential for medical imaging applications. Future research could 
expand its use to include PET scans and 3D imaging, enabling broader applicability in advanced 
medical diagnostics and treatment planning.
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 A tumor is an uncontrolled growth of 
cells in the brain, typically identified using various 
imaging techniques, among which MRI is the 
most common. MRI provides a complete image 
of the brain but faces several challenges, such 
as manual reorientations, visual evaluations, and 
other time-consuming errors. Statistical data from 
developed countries tells that people often die due 
to inaccurate and late-stage predictions of tumors.1

 Brain tumors can be benign and malignant. 
Benign tumors are non-cancerous, grow at a 
controlled rate, and do not affect surrounding cells. 
These tumors are usually easy to identify, remove, 
and rarely grow back. On the other hand, malignant 
tumors grow rapidly, contain cancerous cells, 
and require early diagnosis to improve survival 
chances. Tumor segmentation involves partitioning 
the surrounding healthy brain tissue. However, 

Special Issue – AI-Driven and Multimodal Innovations in Biomedical Imaging and Sensing



74 Kumar et al., Biomed. & Pharmacol. J,  Vol. 18(Spl.), 73-83 (2025)

imaging techniques often struggle to accurately 
identify tumor locations and boundaries, leading 
to misidentification and misinterpretation. MRI 
images, which provide visual representations of 
the brain’s interior, often suffer from issues such as 
noise, low contrast, and poor homogeneity. These 
problems can be critical when performing clinical 
analysis and making medical decisions. Therefore, 
there is a need for efficient algorithms that act as 
fully automated systems for analyzing MRI images 
for diagnostic purposes.2

 The author Somasundaram applied an 
algorithm for axial T2-weighted images. Another 
author used SVM classifier for tumor detection, 
while many researchers have utilized optimization 
techniques for feature reduction.
 In this research, we employ a method 
that is more effective than the usual techniques, 
combined with FKM and Gray-Level Co-
occurrence Matrix (GLCM). We compare the 
proposed method with FCM, FKM, and SOM 
based on several evaluation metrics, including 
accuracy, MSE, PSNR, Tanimoto index, and Dice 
coefficient, which are defined in later sections. The 
comparison of various mapping methods and their 
parameters is emphasized. The calculations were 
done on MATLAB. The following sections explain 
the concepts and processing steps involved.
Literature Review
 In recent years, significant progress 
has been made in brain tumor segmentation and 
detection from MRI data. Many techniques have 
been developed to enhance the efficiency and 
accuracy of tumor detection, which plays a crucial 
role in disease diagnosis and treatment planning. 
Several studies have explored the effectiveness of 
these methods in both unsupervised and supervised 
learning contexts.
 The Dasgupta  e t  a l 2 provided a 
comprehensive summary of the data on central 
nervous tumors in India, detailing various 
methods used for the identification and diagnosis 
of these tumors using imaging techniques. Their 
work highlights the regional challenges and the 
increasing reliance on MRI for accurate brain 
tumor detection, noting that the development of 
more sophisticated computational techniques is 
vital for early and accurate diagnosis in Indian 
clinical settings.
 The Govindaraj et al3 emphasized the 

application of unsupervised learning techniques, 
such as clustering, in tumor identification and tissue 
segmentation. Their study showed the promising 
role of clustering methods like FCM and SOM in 
MRI brain image analysis. These techniques help 
in distinguishing abnormal brain tissue, which 
is crucial for accurate diagnosis and treatment. 
In a similar vein, the Nandhagopal and Ganesh4 
explored automatic brain tumor detection through 
MRI using unsupervised learning, focusing on 
overcoming the challenges posed by noise and 
variability in the images.
 Markov Random Fields (MRF) have 
been successfully applied in medical image 
segmentation. The Guerrout et al5 employed 
MRF for segmentation in a cluster of PCs, 
demonstrating that MRF could significantly 
improve the quality of segmentation by modelling 
the spatial dependencies between neighboring 
pixels. This method was particularly beneficial in 
medical imaging, where the precise delineation of 
tumor boundaries is essential for accurate diagnosis 
and treatment planning.
 The Ortiz et al6 proposed unsupervised 
methods for segmenting the MRI brain image. 
Their methods demonstrated effectiveness in 
brain tumor segmentation by adapting the SOM 
framework to handle varying intensities in MRI 
images. The integration of SOM-based strategies 
helped in reducing the complexity of segmentation 
tasks without requiring labelled data, thus making 
it applicable for large-scale clinical applications.
 Fuzzy  c lus te r ing  methods  have 
become increasingly popular for medical image 
segmentation due to their ability to handle 
uncertainty and noise in imaging data. Aljahdali 
and Zanaty7 explored the use of fuzzy clustering 
algorithms for automatic image segmentation. 
They noted that fuzzy methods are particularly 
useful in medical imaging, where pixel intensities 
can overlap between healthy and abnormal tissues, 
thus improving tumor segmentation accuracy. 
Furthermore, the Vasuda and Satheesh8 proposed 
an updated version of FCM for MR brain image 
segmentation, which sought to overcome the 
limitations of traditional FCM, especially in noisy 
images.
 Support Vector Machines (SVM) have 
also been widely applied for tumor classification. 
The Abdi et al9 introduced a novel weighted 
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SVM method for gene selection and tumor 
classification, showing its potential for effective 
tumor detection and classification in medical 
imaging. By optimizing feature selection, SVM 
can improve the classification accuracy in high-
dimensional data, making it an important tool for 
brain tumor detection.
 The Abdel-Maksoud et al10 developed a 
technique for brain tumor segmentation, which 
combined multiple clustering approaches to 
improve segmentation accuracy. Their hybrid 
method showed that combining different clustering 
algorithms could effectively handle varying 
image characteristics, leading to more accurate 
tumor detection and segmentation. This approach 
complements the advances made by other hybrid 
techniques such as AMSOM, proposed by the 
Spanakis and Weiss11. AMSOM enhances traditional 
SOM by incorporating adaptive learning strategies, 
improving clustering and visualization, and thus 
providing better segmentation for medical images. 
K-means clustering is another popular algorithm 
for image segmentation. The Dhanachandra et al12 
compared K-means with subtractive clustering 
algorithms for MRI image segmentation, noting 
that subtractive clustering provided superior 
performance in handling complex images with 
varying intensities. This study demonstrated that 
by selecting the appropriate clustering algorithm, 
the quality of segmentation can be significantly 
improved, aiding in more accurate tumor detection. 
Finally, the Roy et al13 proposed an iterative level 
set approach for abnormality detection and precise 
segmentation of brain tissues from MRI images. 
This technique proved effective in accurately 
delineating brain tumors from surrounding tissues, 
thus enabling better detection of abnormalities and 
enhancing the clinical utility of MR images.

MateRiaLs and Methods

self organizing Map (soM)
 SOM are a widely used technique in 
unsupervised learning, known for their efficiency in 
organizing high-dimensional data. SOM organizes 
similar feature vectors into a two-dimensional 
(or higher-dimensional) lattice, which is mapped 
onto an output space. The structure of SOM is 
defined by a set of neurons and a distance vector 
that influences the arrangement and weight factors 

within the map. During the training, the input data 
is used to calculate the distance between each input 
and the corresponding weight factors, and the 
neurons are mapped from a high input space to a 
lower plane. An important parameter is the Best 
Matching Unit (BMU), which is updated during 
training to improve the map’s accuracy.14,15

 The primary objective of SOM is to 
organize high-dimensional data into a lower-
dimensional, typically two-dimensional, grid. 
This is done by mapping similar input data points 
together, creating a map where each neuron in the 
grid represents a specific pattern or feature of the 
input data. Each input vector x(t)=[x1, x2,…,xm], 
where t = 1,2,…,L, represents a set of M features. 
These features are connected to all neurons in the 
network through their respective weight vectors 
Wj=[W1,W2,…,WN]. Here, i=1 to L denotes the 
input instances, and j =1,2,…,M corresponds to 
the number of neurons. Each feature in the input 
vector is processed by the neurons through these 
weights, enabling the model to learn relationships 
and patterns. The neuron closest to the input vector 
is identified as the BMU, which is calculated 
by determining the neuron that minimizes the 
Euclidean distance of all the neurons. This is given 
by:

...(1)

 where  d_j (t) represents the Euclidean 
distance between the input vector x(t) and the 
weight vector wj associated with neuron j at a 
specific time step t. This distance is a measure of 
how similar or different the input vector is from 
the neuron's weight vector. The neuron with the 
smallest distance, dBMU (t), is chosen as the BMU:

 BMU = arg minj dj(t)  
...(2)

adaptive Moving Fuzzy K-means self 
organizing Map (aMFKsoM)
 The algorithm includes integration of 
two algorithm AMSOM and FKM. The proposed 
method follows following steps16,17:
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 Set up a rectangular grid to represent the 
network, where each point on the grid corresponds 
to a neuron. The number of neurons, N, defines the 
grid’s dimensions and structure.
 Initialize weight vectors (wp) randomly: 
Assign random initial values to the weight vectors 
wp  based on the number of features in the data, 
following a similar process as the SOM batch 
algorithm. At each epoch s, the weight vector 
wv(S+1) is updated for the next epoch. The number 
of input patterns assigned to neuron u is represented 
by nu(s), while the neighborhood function q(u,v,s) 
measures the proximity between neuron u and 
its neighboring neuron v. The feature vector 
xu(S) is the mean of all input patterns assigned 
to neuron n. The adaptation factor s(t) decreases 
during training, controlling the degree of weight 
adjustments and ensuring that the network adapts 
gradually. So

 ...(3)

 
...(4)

 
...(5)

 Lastly, the wu are figured when the neuron 
weight vectors update is over.18

...(6)

 ...(7)

 Initialize position vectors (removep1) acc. 
to (8 or 10) grid structure. 

 ...(8)

 ...(9)

 ...(10)

...(11)

 Initialize the edge connectivity matrix 
(Eg): Set the values based on the grid structure, 
defining the connectivity between neighboring 
neurons.
 Initialize the edge age matrix (Ag): Set all 
values to zero, indicating that no connections have 
been established yet
 Compute the moving threshold (MT) 
based on the dimensionality of the data derived 
from the GLCM and then compute spreading factor 
(SF). It is given by

 T= -ln(D)*(-0.51) ...(12)

 Find the winner neuron (N): During the 
training phase, identify the neuron N that best 
matches the input. Increment the winning neuron’s 
count by 1 to signify its selection as the winner.
 Find the second-best matching neuron 
(Nb): Identify the neuron Nb that is the second-best 
match, excluding the winner neuron N.
 Age all edges between N and its neighbors: 
Increment the age of all edges connected to the 
winner neuron N and its neighboring neurons. 
The age of each edge increases by 1, reflecting 
the duration of the connection. If the age of an 
edge A(i,j) between neurons i and j exceeds a 
predefined maximum age threshold (agemax), then 
the edge is removed from the network, indicating 
the disconnection of outdated or less relevant 
connections.
 Establish a connection between neuron N 
and its neighboring neuron Nb.
 Reset the edge weight between N and Nb 
to zero to initiate the update process.
 Update the neuron weights and positions 
based on the input feature vectors and competitive 
learning rules.
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table 1. Feature extracted dataset

No. Features Image1 Image 2 Image3 Image4 Image5

1 Mean 0.2234 0.2035 0.2676 0.2046 0.2057
2 Std 0.0808 0.0748 0.0788 0.0646 0.0957
3 Median 0.2716 0.2324 0.4422 0.3294 0.3608
4 autocorrelation (ACr) 8.80841 7.6891 10.901 7.65371 8.31973
5 cluster prominence (CP) 233.92541 98.92522 164.922 90.96262 194.97362
6 cluster shade (CS) 20.97091 6.95053 -0.52183 4.973 16.9561
7 contrast (C) 0.16631 0.05281 0.07811 0.1084 0.14633
8 correlation (Cr) 0.96861 0.98792 0.98602 0.9741 0.97132
9 differential entropy (DE) 0.41701 0.19993 0.26763 0.31622 0.37461
10 differential variance (DV) 0.14762 0.05041 0.07403 0.09983 0.13264
11 dissimilarity (DS) 0.13683 0.04962 0.07402 0.09234 0.11712
12 energy (Eg) 0.23801 0.39823 0.27921 0.32404 0.32992
13 entropy (En) 1.99262 1.24421 1.60461 1.49563 1.62733
14 homogeneity (Ho) 0.93463 0.97542 0.96342 0.95542 0.94431
15 information measures of correlation (imc1) -0.71651 -0.83043 -0.80353 -0.75152 -0.72493
16 information measures of correlation (imc2) 0.94442 0.91051 0.94033 0.91371 0.91804
17 inverse difference (ID) 0.93613 0.97562 0.90662 0.95361 0.94581
18 maximum probability (MP) 0.43801 0.51943 0.40661 0.48022 0.51052
19 sum average (SA) 4.99822 4.70191 5.7111 4.76423 4.83303
20 sum entropy (SE) 1.85263 1.20302 1.54572 1.41314 1.51484
21 sum of squares (SS) 2.64611 2.18913 2.79313 2.0334 2.55341
22 sum variance (SV) 10.41812 8.70371 11.091 8.02513 10.0672

Fig. 1. Block diagram of the Proposed method

 Recompute and adjust the position of each 
neuron to better represent the feature space.
 Determine whether additional neurons 
need to be added or existing ones removed, and 
update the network structure accordingly to 
maintain optimal performance.

 Check for convergence by monitoring 
the error change. If the error does not change 
significantly, proceed to end Step 7. Otherwise, 
continue the iterative process to refine the network.
 Enter the smoothing phase, where the 
neuron weight vectors undergo fine-tuning to 
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table 2. Parameters calculated using AMKSOM

Parameters 1_Image 2_Image 3_Image 4_Image 5_Image

MSE 0.1 0.8 0.12 0.08 0.09
PSNR (dB) 58.14 58.66 57.17 58.91 58.48
DOI 0.02 0.197 0.0183 0.02 0.0197

table 3. Performance parameters for different algorithms

Parameters FCM FKM SOM-FKM Proposed

MSE 2.880 1.91 0.15 0.01
PSNR (dB) 43.57  45.17 56.26 68.16
Accuracy (%) 85 82.5 82.75 89.11
Similarity Criteria (%) 89.6 91.0 92.0 96.8

enhance precision. The final output is the optimized 
AMSOM neuron weight vectors, ensuring robust 
and accurate clustering of the input data. 
 Feed the centroid to compute clustering 
using K means using  

 ...(13)
 In our system, we leverage the benefits 
of two algorithms: one that accelerates the 
clustering of regions and another that efficiently 
classifies the data using mapping. As illustrated 
in Figure 1, the system consists of five stages: 
pre-processing, clustering, feature extraction, 
classification, and validation. The core idea behind 
this technique is to reduce the number of iterations 
and the dimensionality of the data,19,20 which, in 
turn, reduces computational time and enhances 
efficiency. Feature extraction plays a critical role by 
identifying distinctive properties from the original 
dataset that generate unique patterns.
 The feature vector for MRI images is 
calculated using both first-order and second-order 
features derived from the covariance matrix. Table 
1 lists the specific features used.
 Pre-processing steps are a critical part 
of preparing MRI images for analysis, as they 
ensure the input data is clean and standardized, 
thereby enhancing the accuracy and reliability of 
subsequent processing stages. For the proposed 
method, preprocessing includes two major steps: 
skull removal and denoising. Skull removal isolates 

the brain region from non-relevant structures, 
focusing the analysis solely on the area of interest. 
Denoising addresses various types of corrupted 
noise commonly present in MRI images, such as 
Gaussian and Poisson noise, which can distort 
the image quality and affect the accuracy of 
downstream processes. 
 Once preprocessing is complete, the 
clustering stage begins. The extracted feature 
vectors from the preprocessed images are input into 
a hybrid clustering framework that combines Fuzzy 
K-means (FKM) and Adaptive Self-Organizing 
Maps (AMSOM). AMSOM is initially employed 
for clustering and dimensionality reduction, 
effectively simplifying the high-dimensional 
data from MRI images while preserving critical 
information.
 For this process, the real brain images, 
acquired from hospitals, are resized to a uniform 
256x256 pixel format to ensure consistency across 
datasets. AMSOM then reduces the dimensionality 
of the resized images, preparing them for further 
clustering refinement by FKM. This combination of 
preprocessing and advanced clustering techniques 
ensures high segmentation accuracy, efficient 
computational performance, and robust handling 
of complex medical imaging datasets. In this 
process, random vectors are initially assigned 
as weight factors for the neurons. The neurons 
compete to identify a “winning neuron” for each 
input, which is determined based on these weights. 
The competition is guided by the calculation of the 
Euclidean distance between the input vector and 
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table 4. Segmented image using AMKSOM with tumor extraction

 Dataset I   Dataset II
S. Input  Clustered  S. Input  Clustered 
No. image image No. Image image

(a)   (f)  

(b)   (g)  

(c)     

the weight vectors of the neurons. The AMSOM 
algorithm then updates the weight function, which 
is subsequently passed to the FKM algorithm for 
further clustering refinement, ensuring enhanced 
accuracy and representation of the MRI data. The 
inclusion of AMSOM mitigates the limitations 
of FKM when handling large datasets, making 
the system more efficient and effective. Figure 1 
illustrates the block diagram of the methodology 
employed in our proposed system.
 During the validation phase, the segmented 
images are evaluated against the ground truth using 
the equations provided in the experimental results. 
 These values are dimensionless but can 
be expressed as percentages by multiplying them 
by 100.
 Mean Square Error (MSE) is a quantitative 
measure used to assess the difference between 
the input image M(i,j) and the segmented image 
S(i,j).21 It is given by

...(14)
 where ‘m’ & ‘n’ denotes the matrix size 
in an input image.
 PSNR is defined as the logarithmic ratio 
between the maximum possible signal power and 
the power of the noise affecting the image. The PS 
values less sensitive to noise signals lies between 
40 to 100 dB. PSNR is given by:

 ...(15)
 The Tanimoto Index (TC), also known 
as the Jaccard Index, is a similarity measure 
used to evaluate the accuracy of segmentation by 
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Fig. 2. Graphical analysis of processing time

Fig. 3. Graphical analysis of validating parameters

comparing the input image (M) with the segmented 
output image (S).

 ...(16)
 The Dice Overlap Index (DOI) is a 
statistical metric used to quantify the degree of 

overlap between two images: M and the clustered 
output image (C). Table 1 lists the features 
extracted from the input images, with a total of 
approximately 22 features identified.

 ...(17)
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ResuLts

 The experimental setup consist an HP 
laptop featuring an Intel(R) Core(TM) i3-5005U 
CPU running at 2.00GHz, coupled with 4 GB of 
RAM, and utilizing MATLAB (R2013a) as the 
software environment. The performance of the 
algorithm was tested on 12 real-world MRI T1 
image datasets obtained from various medical 
institutions. Specifically, five unique images from 
Dataset I were sourced through the collaboration of 
Dr. K.G. Srinivas, MD, RD, Consultant Radiologist, 
and Dr. Usha Nandini, DNB, at KGS Advanced MR 
& CT Scan Center, Maurai, Tamil Nadu, India, 
facilitated by Govindaraj Vishnuvarthanan. Dataset 
II comprised MRI images provided by Radiologists 
Dr. Ranbir Singh and Consultant Saji P. Mathew at 
Maharana Bhopals Hospital, Udaipur. This diverse 
data acquisition from multiple hospitals ensured 
a broad representation of imaging scenarios, 
enhancing the robustness and generalizability of 
the proposed algorithm’s evaluation.
 To check the effectiveness of our proposed 
algorithm, we used various validating parameters 
that are summarized in Table 2. These parameters 
demonstrate how our algorithm outperforms other 
existing algorithms, such as FCM, FKM, and SOM-
FKM, when compared to the ground truth data. 
Specifically, our algorithm shows a lower mean 
square error (MSE), indicating better accuracy and 
performance. Additionally, PSNR has improved 
significantly in our proposed method, suggesting 
more effective and accurate clustering of the MRI 
images. The higher PSNR values confirm that 
our algorithm provides clearer and more precise 
results, which are crucial for successful brain tumor 
diagnosis and classification. 
 As presented in Table 2, the parameters 
calculated using the AMKSOM algorithm indicate 
that our proposed method delivers superior results 
compared to other clustering techniques. The 
Mean Square Error (MSE) is significantly lower 
for the proposed algorithm (0.01) compared to 
other methods such as FCM (0.1), FKM (0.8), 
and SOM-FKM (0.12), which highlights its 
higher accuracy and more precise clustering. The 
PSNR for the proposed algorithm also stands out, 
with values ranging between 57.17 dB and 58.91 
dB, much higher than those achieved by other 
methods, demonstrating better image quality and 

less distortion in the final output. The Degree 
of Improvement (DOI) further supports the 
effectiveness of the proposed method, as it shows 
a consistent lower value (ranging from 0.0183 to 
0.02), indicating that the algorithm consistently 
outperforms others across all input images.
 In Table 3, the performance of the FCM, 
FKM, SOM-FKM, and Proposed Algorithm is 
compared under the same conditions using K=3 
clusters. The results show that FCM, despite 
performing relatively well with 59 iterations, does 
not provide accurate clustering. In contrast, FKM, 
with 49 iterations, produced better results, but it 
still cannot match the performance of SOM-FKM, 
which gave superior results in terms of clustering 
accuracy. The Proposed Algorithm outperformed 
all state of art methods, achieving an MSE of 0.01, 
a PSNR of 68.16 dB, 89.11% accuracy, and 96.8% 
similarity criteria. These results demonstrate the 
proposed algorithm’s ability to cluster images with 
high accuracy and low error.
 Table 4 shows the clustered images, where 
the tumor regions are effectively extracted using 
the 22 features. The output images are generated 
using the AMKSOM clustering, with input images 
(a)-(c) from Dataset 1 and (f)-(g) from Dataset 2. 
These images visually illustrate the efficiency of 
the proposed algorithm in accurately extracting and 
highlighting the tumor areas from MRI scans.
 Additionally, the performance matrix of 
each algorithm is discussed in terms of sensitivity, 
execution time, and other parameters. The results 
indicate that images with skull structures require 
more processing time compared to images without 
skull features, which is an important factor to 
consider for real-world clinical applications.

discussion

 Finally, Figure 2 demonstrates the 
remarkable enhancement in computational 
efficiency achieved by the proposed algorithm, 
which processes images in just 16 seconds. This 
performance is notably faster when compared 
to other existing algorithms, showcasing its 
superior optimization for image processing 
tasks. Furthermore, Figure 3 provides a detailed 
representation of the precision rates, underlining 
the algorithm’s ability to deliver high accuracy. 
This emphasizes its efficiency and effectiveness 
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in clustering and analyzing five distinct sets of 
MRI images, demonstrating its capability to 
handle complex medical imaging datasets while 
maintaining precise and reliable results. These 
results collectively demonstrate that our method 
offers improved computational efficiency, higher 
accuracy, and better performance, making it a 
promising solution for automatic brain tumor 
detection and classification. 
 The analysis revealed that processing 
times for images containing skull structures were 
noticeably longer compared to images without skull 
features. Performance metrics such as execution 
time, sensitivity, and other relevant parameters are 
detailed in the accompanying table. 
 Figure 3 showcases the enhancement 
in computational efficiency, with the proposed 
algorithm achieving a runtime as low as 16 
seconds. Additionally, Table 4 presents a histogram 
of precision rates, illustrating the clustering 
algorithm’s effectiveness across five distinct image 
sets, highlighting its robust performance in diverse 
scenarios.

concLusion 

 This research introduces a novel approach 
through the AMKSOM algorithm, which combines 
the strengths of both SOM and FKM to overcome 
the limitations of previous methods. From the 
experimental results, we have demonstrated that 
AMKSOM is highly effective in addressing the 
challenges of tumor detection in MRI images. 
Our algorithm significantly reduces the risk of 
manual errors made by physicians, which can 
delay diagnosis and treatment, ultimately helping 
patients receive timely intervention at earlier stages 
of tumor growth.
 The results obtained using the proposed 
algorithm are promising and show substantial 
improvements in clustering accuracy, processing 
time, and overall efficiency. The success of this 
method opens the door for its application in 
other imaging modalities, such as PET scans and 
3D imaging techniques, for the detection and 
diagnosis of other diseases. Further extensions of 
this approach could lead to more comprehensive 
diagnostic systems that can detect a wider range 
of medical conditions with higher precision.  
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