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Heart disease is a worldwide health concern for which precise risk assessment and
early detection need a call for solutions that are creative as well as accurate. Cardiovascular
research has undergone a significant revolution because of advancements in computational
intelligence (CI) techniques like machine learning (ML), which has improved diagnostic
accuracy and identified new risk factors. To predict the risk of heart disease in the early stages,
ML algorithms evaluate large chunks of diversified patient data, while also considering their
lifestyle, genetic markers, and medical history. Some of the meticulous features for careful
engineering and selecting methods required to create effective ML models include feature
extraction, dimensionality reduction, hyperparameterization, etc. The decision support systems
often provide pragmatic insights suitable to individualized treatment suggestions. These features
of ML-based heart disease prediction are a beacon to bridge the gap between these predictions
and actual clinical practices. Therefore, it would be suitable to conclude that ML has great
potential to address patient-specific therapies, the early diagnosis of the disease, and the risk
assessment in the context of heart diseases. This paper compares the performance of various
CI approaches in heart disease prediction. It evaluates the performance of different evaluation
metrics by varying the train test splits. It will help the researchers working in the relevant
domain to select the most suitable model for designing the heart disease diagnostic system.

Keywords: Computational Intelligence; Disease Predictions; Evaluation Metrics;
Heart Disease; Machine Learning.

In today’s highly tech-equipped world,
heart disease still poses wide global health
concerns, which often culminates in a substantial
number of deaths each year '. Despite serious
advances in the medical sciences, timely detection
and accuracy of risk assessment remain among the
major challenges in mitigating the vulnerability
to heart diseases. While traditional risk factors,
which often include patients’ age, gender, as well
as genetic history, provide valuable insights into the
diagnosis, still these factors fall short in correctly
assessing the individualized risks to the patients.
This is the point where ML models for heart disease

prediction come into play. Machine learning, under
the ambit of computational intelligence (CI), has
transformed various domains of medical science
significantly by training computers to learn from
data as well as making predictions or decisions
based on these pieces of training. In recent years,
ML techniques have gained enormous prominence
in the field of healthcare, in which cardiovascular
research has proven to be crucial. Through the
deep analysis of wide-scale as well as diversified
datasets, ML models can be proven important
in revealing some hidden patterns?, while also
identifying critical risk factors, and enhancing
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diagnostic accuracy. Thus, in the context of
heart disease, machine learning models offer the
potential to revolutionize risk assessment, and
early and timely diagnosis, enabling personalized
treatment recommendations to the patients °.

ML algorithms can accurately analyze
diverse patient data, which would include patients’
clinical records, their medical imaging, as well
as their genetic information, to identify the
individuals at high risk of developing heart diseases
in the early stages *. Through the integration
of features such as blood pressure, cholesterol
levels, and lifestyle factors, these models can
provide personalized risk scores thus allowing
for targeted interventions based on these scores®.
A crucial role in the performance of ML models
for heart disease prediction is played by feature
engineering °. The researchers have marked out
important features related to cardiac function,
inflammation markers, and electrocardiogram
(ECQG) signals. Furthermore, the selection of
the right ML model is pivotal for the accurate
predictions of heart disease. In this research paper,
we delve into the trade-offs and considerations
involved in these selections’. Recent developments
in computational intelligence and ML models
have exhibited impressive prediction results®.
However, their “black box” nature has raised
alarms about the interpretability of the results’.
In this research paper, we discuss the possible
approaches to increase model transparency, along
with interpreting feature importance and providing
actionable insights to medical practitioners.
The sole purpose is to reduce the gap between
ML predictions and clinical decision-making'.
Computational intelligence approaches like ANN
(Artificial Neural Networks), fuzzy logic, SVM
(Support Vector Machine), and hybrid models are
used for heart disease prediction in clinical tools
and monitors. Hybrid and deep learning methods
often outperform traditional models in providing
accurate, real-time predictions for cardiovascular
risk and personalized care.

This paper aims to help researchers to find
the best ML algorithm for heart disease prediction.
In this regard, it evaluates and compares the
performance of different ML algorithms on several
evaluation metrics by varying the train test split
ratio. The contribution of this paper can be realized
through the following points.
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« It collects and pre-processes the benchmark heart
disease data set by performing the categorical
encoding to get binary codes.

« It applied different ML models to classify and
predict heart disease.

« It presents a standard architecture for predicting
heart disease using ML.

* The investigation evaluates and compares the
prognostic abilities of various machine learning
models — encompassing Logistic Regression
(LR), Decision Tree (DT), Random Forest (RF),
SVM, K-Nearest Neighbors (KNN), Naive Bayes
(NB), Artificial Neural Network (ANN), and
Recurrent Neural Network (RNN) — in predicting
heart disease through adjusting the training and
validation dataset ratios.

The rest of this paper is organized as
follows: Section 2 reviews the related work. In
Section 3, we discuss the materials and methods
utilized in this study. Section 4 presents the flow
diagram for heart disease prediction. Section 5
outlines the experimental setup, including the
dataset and evaluation metrics. Section 6 focuses
on the results and discussion. Finally, Section 7
provides the conclusion.

Related Works

Recent advancements in ML for heart
disease screening prioritize enhancing model
accuracy and efficiency through various techniques.
There are several studies that have used ML
approaches for the prediction of heart disease.
Table 1 presents the summary of ML approaches
used for heart disease prediction. It also presents the
contributions and limitations of different studies.

ML holds promise for heart disease
prediction. However, reported accuracy can
be misleading. These studies highlight the
importance of considering limitations like
computational demands [Table 2], overfitting,
and potential bias. Subsequent investigations ought
to concentrate on constructing superior and more
resilient frameworks that utilize methods such as
characteristic extraction and dataset equilibrium to
enhance adaptability.

MATERIALS AND METHODS

CI is the collection of approaches
and techniques like fuzzy logic, evolutionary
computing, machine learning, and deep learning
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that have revolutionized the world through
technological innovations and high-speed
computing. Figure 1 depicts various CI classifiers
commonly employed in heart disease prediction.
Starting with Linear Regression, it progresses
through more complex models like RF, DT, SVM,
and KNN Classifier, and concludes with ANN.
Each algorithm represents a different method for
analyzing and predicting heart disease outcomes
based on patient data, showcasing the increasing
complexity and potential accuracy enhancements
achieved by utilizing these advanced techniques®’.

LR is a statistical method utilized to
investigate the relationship between input factors
and a dichotomous outcome. Unlike linear
regression, which forecasts continuous values,
this method estimates the likelihood of an event
occurring within two potential categories by
utilizing a sigmoid function **. This makes it useful
for tasks like spam filtering, fraud detection, or
predicting customer churn.

RF, a powerful ML technique, utilizes
multiple decision trees to produce accurate
predictions. It handles both regression and
classification tasks and boasts versatility, ease
of use, and the ability to manage non-linear
relationships between variables. By combining
predictions from uncorrelated decision trees
built with random subsets of data, RF overcomes
overfitting and offers increased accuracy and
resilience. This method finds applications in
loan risk assessment, fraud detection, disease
prediction, drug suitability evaluation, personalized
recommendations, land-use classification, and
ecological species identification *.

DT, aflexible machine learning approach,
excels in both classification and regression tasks.
They build tree-like structures with branching paths
representing different attribute tests and leaf nodes
holding final predictions. DTs are known for their
interpretability, ease of use, and ability to handle
complex relationships between variables. While
lacking a single equation like linear regression,
they use metrics like Gini impurity to determine the
best split points at each node. Applications range
from sales forecasting and customer segmentation
to credit risk assessment, fraud detection, and even
disease diagnosis *.

SVMs excel at finding the optimal
separating hyperplane in high-dimensional
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data. An examination of the distances between
the separating hyperplane and the nearest data
instances belonging to each category is conducted
to optimize differentiation. New data is then
classified based on which side of the hyperplane it
falls on. SVMs are well-suited for non-linear data
thanks to kernel methods and are memory-efficient
due to their reliance on a subset of training data
(support vectors). Their versatility allows them
to tackle various tasks like classification (face
detection, text categorization, image classification),
regression, outlier identification, and more®*'.

The KNN classifier is a prominent non-
parametric method that categorizes new data
entries by considering the class labels of its closest
K data points in the training set and selecting the
most frequent label. It relies on distance metrics
like Euclidean distance to determine closeness
and doesn’t require assumptions about data
distribution. While lacking a single equation like
linear regression, KNN finds applications in data
preprocessing, recommendation systems, anomaly
detection, pattern recognition, and even disease
prediction*.Inspired by the human brain, ANNs are
powerful deep-learning models capable of tackling
classification, regression, and pattern recognition
tasks. Composed of interconnected layers with
neurons, activation functions, weights, and biases,
ANNs process incoming signals to generate
outputs. These networks excel at handling non-
linear relationships through activation functions
and adjust weights and biases during training to
minimize errors. Their applications range from
natural language processing and image recognition
to financial modeling, recommendation systems,
and even healthcare, making them a transformative
force in artificial intelligence and ML. However,
challenges like overfitting, hyperparameter tuning,
data pre-processing, and resource limitations
remain areas for ongoing research *.

Table 3 dissects various ML algorithms,
providing a mathematical explanation for each. It
details the core function of each algorithm (e.g.,
Linear Regression predicts using a linear equation),
along with key mathematical formulas (e.g., cost
function) where applicable. This comprehensive
approach, combining mathematical foundations
with visualizations, offers a clear understanding
of how these algorithms work.

Table 4 presents a succinct juxtaposition
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of six commonly employed ML models for
forecasting cardiac ailments. It highlights each
method’s strengths and weaknesses, along with
factors to consider when choosing one for this
specific task. LR is an advantageous initial model
due to its interpretability and computational
efficiency, but it is susceptible to overfitting and
restricted to binary outcomes. SVM excels with
complex, high-dimensional data, but require
significant computing power and can be difficult
to understand. Decision Trees are clear to interpret
but can overfit and struggle with small datasets.
Random Forests address overfitting and handle
various data types, though they may require more
computation and offer less interpretability. KNNs
are simple to implement and work well with
low-dimensional data but are sensitive to noise
and suffer from the “curse of dimensionality” in
high-dimensional settings. Finally, ANN can learn
intricate relationships but are computationally
expensive and opaque. The provided pseudocode
snippets for each algorithm offer a basic roadmap
for their implementation.
Proposed Model

The suggested framework for pinpointing
and suggesting the optimal CI algorithm for
cardiac disease forecasting is illustrated in
Figure 2. The process involves a series of stages
including data acquisition, attribute selection,
data cleansing, algorithm selection and execution,
performance assessment of various algorithms on
diverse training and testing subsets, and finally,
recommending the most suitable method. The
subsequent sections delve into the specifics of each
phase within this proposed framework.
Data Collection

Initial data acquisition constitutes the
inaugural phase of the suggested framework. The
dataset employed to enact this model is procured
from openly accessible data vaults.
Features Selection

After data collection, feature selection
is an important aspect of this model. Important
features from the data set can be selected manually
or using some automatic feature selection technique.
There are various feature selection techniques like
principal component analysis, Chi-square test,
information gain, analytical component analysis
and many more. The selection of feature selection
techniques depends upon the type of data set and
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ML model being used in the research.
Data Pre-processing

Data pre-processing is a crucial step in
optimizing the efficiency of any ML algorithm.
There may be various steps in data pre-processing
like removal of noise, imputation of missing values,
and converting the data from one form to another.
In this model, categorical values are mapped with
binary codes as Presence with ‘1’ and Absence with
‘0.
Model Implementation

This phase involved partitioning the
pre-processed dataset into training and testing
subsets with varying proportions. Subsequently,
the model was refined utilizing the training
segment, culminating in disease categorization,
or forecasting through the application of the
test data. A spectrum of ML and DL algorithms,
encompassing LR, DT, RF, SVM, NB, ANN, and
RNN, were employed for training and the eventual
prediction of heart disease.
Performance Evaluation

Following the training of diverse
models utilizing training datasets, their predictive
capabilities are assessed on separate test datasets
through the application of multiple evaluation
metrics such as precision, recall, Fl-score,
accuracy, root mean squared error, and mean
absolute error. A comparative analysis of model
performance is conducted by adjusting the
proportions of data allocated to training and testing.
Recommendation of Best model

After comparing the performance of
different models across different train-test splits
and on various evaluation measures, the best ML
model for predicting heart disease is identified
and recommended to help the people working in
the concerned domain in the selection of the best
algorithm.
Experimental Settings

The experiments were carried out to
evaluate the efficacy and efficiency of the various
ML algorithms in terms of different parameters.
This section discusses the experimental settings
like evaluation metrics, train test split and data set
used in this paper.
Evaluation Metrics

To effectively evaluate a model’s
performance, this study utilizes six key metrics*.
These are Accuracy, Precision, Recall, F1-score,



ANWAR et al., Biomed. & Pharmacol. J, Vol. 17(4), 2361-2380 (2024)

2365

9y Surpae3al uonerodxs Jo YIBIP € SI ISy ],

*NVD ay1] sjopowr Jurured| doap 103

-Jo-91e3s pim duradid pasodoid jo uostedwo))

-9oueur1oy1ad uoreoyisseld oy Juraoxduwr £qaioy

‘e1Ep OOIUAS 91BIOUST 0] NVD) Se yons
sonbruyoa; Jurkojdws £q uonoojop
9SBASIp 11897 UT B)ep PaduL[equUI

(AND) soneA Suissij Jo uonenduwy «
WAS -

dN «

(NLST-NVD) WIST

pue NVD SuIsn [9powl 9]quIdsU «
(NVD) JI0MION [BLIBSIOAPY dANBIOUIL) o
(ANLLST) A10woA WwiIa], 1oy JuoT «

syuowaanbar 901nosal feuonendwod Y3y Jo a3uoeyo oy SossaIppe Apmys Ay, dTN »
's3uos prIom-1ear

ur juowAodop [eonoerd 10J JueAd[aI 9q *sow0dIno 3AndIpald Juruurdiopun s10j08) NN »

PINOD YOIYM ‘S[OPOU JUDISIP Y3 JO A)1[1qe[eds [enuanyguI oy} 9)epIon|d 0} SAIFO[OPOYIW 1500gDX o
10 Aoudroyyd Teuoneindwiod ay) Jo uostredwoo AINIT PUB JVHS SOZIIIN YoIeasal Iy} Id » Al

pare1dp e ap1aoid jou saop Apmys oy, ‘Aqrsudyardwos [opow 9ouByUD 0], NAS »

(DDON) I9hISSB]D PIONUD)) ISATBIN »

(dTIN) uondadiod 1oke[nnIN «

(gD) Sunsoog UAIpeIn) «

NN -

‘sonbruyo9) uoneziundo jo (DA) 12y1sse[) SunoA «

‘suzoyed J0 sonque SSOUQANIJJO o) SUIjeI)SUOWOP a1

JeIWISSIP Y}IM SUOTIII[[0D BJEP UO ‘A1oAn0adsal 9/ 866 pue NAS o

PozZI[IIn usyM djenjony ued SWLIo3[e oy} Jo %6666 01 soaoxdwr Ajjueogiugis A »
Q0UQIJISAI OU} PUE ‘UOIIOJ[[0O BIep Je[nonted SIOYISSE[O Iy Pue INAS 91 JO 1d- €1

& U0 spuadop juowssasse Kooy oy ], Koemooe oy ‘uonezrundo 19y aN .

NN -

(3soogn) Sunsooqg

JUSIPBID) SWAIIXD o

*SOSBISIP JR[NOSBAOIPILD Id »
"pIssaIppe A[[NJ 10U oI€ SYI0MIU [BINU Sunorpaid 10 SYI0MISU [RINOU YIIM NAS o 4

s 01301 Azzng Juner3aur ur sa3ud[ey) o130] Azzny 9yeI13aur 03 [esodoig NNV »

aN -

‘ssou[1 orIpIes Sunedionue NN »
‘UOIIEN[BAD JOJ PIsn s}aseyep oy} Jo 10} Apiqedes onsougoid jo 1d- 1

Ansioa1p pue Arirenb oyp uo souspuadoq uonen[eAd aAreredwod B pajonpuo) Ne g
suone)II | uonnqLIuo)) sonbruyod], TN 99In0S

SUOIE)IWI] PUE SUOHNQLIFUOD JISY) JI0M PIJe[al Jo Arewuwuns T d[qeL



ANWAR et al., Biomed. & Pharmacol. J, Vol. 17(4), 2361-2380 (2024)

2366

‘sarmyedy indur Jo uonejuosardar
pue Airenb uo Kouopuadog

“UOT}O9[OS WIYILIOS[E PUEB SOISLIJORILYD

"AoBINOJR 0 €T €6 SUIAIIYIR ‘SIOYISSL[O

ordnnw Furuiquiod [9POJA S]qUIASUH U paonposu]

“Juowdoaasp (QHD)

joserep 03 AAnisuas [enusjod s3so33ns sjosejep 9seaSIp Heay A1euoiod 101pald 03 Apny§ HeoH weyIurwerj
sso1oe 9ouewIoIod [apow ur AI[IqeLrep Ayl woy ‘g @HD 9oserep d31e[ € sAo[dwo yo1easar oy ],

‘sjaseep 1o suonendod

“SYSLI P3[BT 90NPaI 0}

190 03 Anpiqezijerouad Junpoe] A[fenudjod  uonuLAINUI A[own Suney[ioe) ‘Furuied] suliyorw y3noiy)

‘pasn joseiep 9y} 03 payIwI| 9q Aew SSuUIpul]
“A11qeZI[eIouUd3 puB AOUQ)SISUOD

U0109)Jop 3SeISIP AJIes Jo souenodwi ay) saziseydwyg

‘suoneywI] oyroads Surssaippe ‘uonorpaid oseasip

Sunooyye A[rewndo suridlop 03 urdud[eyd I0j paIofre; wipLIos[e (NN SInoqusIaN 1sa1eaN I ayi Jo

‘ojowrered 3 oyy Surkjroads axmbar udyjo sjuerrep
*SuUONO9[[0d BIEp 10 sdnoid

IOpIM 0} suoIsnjouod ay jo Ajiqeorjdde

oy Sunornsar A[jenusjod ‘Kioyisodar pueoAd[)
9y} wogJ paoInos syoalqns (/1 Jo odures 3sapow
A1oAryeredwos & U0 SII[AI UOBUIEXD O],
“SUIILIOS e JUBAJ[OI

AJrenuajod 19430 J9PISUOD JOU S0P pue

(¥ “INAS ‘N) SWLIoS[e UONBIYISSe|o
ogroads a1t sajenyeas Ajuo 1aded yoreasar oy ],

“SONSST JUBAJ[OI

11® JO sisATeue aAIsuaya1dwos e 10J
ojenbapeur usaq ALY JYSIW JOSBIEP Y UIIIM
UOTJEWLIOJUT SBISIP 11 JO QWINJOA Y],

“SIOMIQU [BINSU

xo1dwoo Jo 1x01u09 oy} ur Ajrenonsed
‘uoneorjdde pue Juswdo[oAdp [opow
)M PJEIOOSSE SpuBIop [euoneindurod

sjueLreA o[dnnui sa3enjeAd Pue SIONPOIUIL YoIBISAI [,

"OSeqejep PUB[IAI[D
OU) WOIJ BIep [eoIpow SUISN SOSBISIP 11edY JUSIQIP
1oy Sunorpaid ur ‘NNV-dd pue INAS ‘Ssonbruyod

om Jo doueuriojrad oy sajenjead 1oded yoreasar oy,

AIx9[dwod BIEp JAISSIIXD YIM Ful[eop udym A[eroadso

JoseIep SIY} uIyiIm 9seasip 1edy Sunorpaid
Ul S[90Xd [9pow I3 U} ey} JedIpul S)nsax Y],

‘sjuaw|Ie drIpIeo Sul[93aI0f ul KorINdoe
ssopme surzensuowdp ‘suyjLiodre opoeuurd oy se
1d pue ‘Td ‘NN parutodurd uonednsoaur oy,

"UOTJBOYISSB[O SBISIP 11BN Ul ddueuofiod
Jouadns Suryensuowap ‘SyI0MIWeLTJ 11e-01)

3unsoog DY «
Sunsoog aandepy «
dTe.

dN «

A »

1d-

NN ¢

A »

dN «

1d-

(3[10MI9N TBINAN) NN
dN «

NAS -

NNZ »

NNV -
WAS

Id »
NAS -

aN -

(INgV) 1soogepy

dT-

Id »

1d-

NN -

dTN -

(47 + EN) BuuredT ojquidsug ‘Al

(444) Sunouduy aigesj paseg-Adonuyg m
(vDI) sisAeuy jusuodwo)) juopuadopuy ‘11
(V@) SIsA[euy JUBUIWLIOSI(] JBAUI] '1

VOd -

(SS) 1e[edog prepuels «

(JO) 1eAOWY SIDIINQ o

Ic

0¢

61

81

L1

91

Sl



2367

* Ensemble Model (Combination LR, RFXG

Boosting, and ADA Boosting)

* SVM
* KNN
DT

*RF

Risk of overfitting with RF,

Demonstrated the flexibility of the trained models in
predicting heart disease from real-time sensor data.

22

especially in small or noisy datasets.

* XGB
* GNB
*LR
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* MLP
* SVM
*NB

Used ReliefF, FCBF, and genetic algorithm for selecting Focused on specific features, possibly

informative features, enhancing model accuracy

and interpretability.

23

missing out on relevant ones.

¢ Dtree
« MLP
« KNN
« RFC

*LR

MAE and RMSE. A concise explanation of these
measurements is provided subsequently.
Accuracy

It describes the proportion of all accurate
predictions to all other types of predictions
produced by the classifiers. In mathematics, it is
expressed as

Accuracy = (True Positive+True Negative)/
(True Positive+True Negative+False
Positive+False Negative)

(1)
Precision
The accuracy with which a system or
model recognizes pertinent cases among all the
examples it labels as positive is measured by its
precision®.

Precision = (True Positive)/(True Positive+False
Positive)

(2)

Recall

The percentage of true positive predicts
among all actual positive data instances is known
as recall or sensitivity.

Recall=(True Positive) / (True Positive+False
Negative)
..(3)

F1-Score

Precision and recall are merged into a
single measure known as the F1 score. This metric
serves as a critical indicator of a classification
model’s overall performance by providing a
balanced assessment of both precision and recall.

F1-Score = (Precision*Recall)/
(Precision+Recall)
..(4)

Mean Absolute Error

This metric evaluates the average size
of prediction errors irrespective of their positivity
or negativity. Essentially, it computes the mean
absolute deviation between forecasted and
observed outcomes.
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MAE = (Y|Actual Value-Predicted Value|)/n

.(5)
Root Mean Square Error
Like MAE, this metric amplifies larger
discrepancies by squaring errors prior to averaging.
Subsequently, the root of this mean squared
error quantifies the average divergence between
predicted and actual values.

RMSE = V(Y (Actual Value-Predicted Value)? / n

...(6)
Dataset Description
The data set used in this paper is freely
available on Kaggle. The dataset has 271 instances,
each of which represents a patient, and has 14
attributes. A summary of the different features of
the data set is presented in Table 5.

RESULTS AND DISCUSSION

The study sought to evaluate the machine
learning models’ capacity for generalization and
robustness under varying data distributions by
executing train-test splits at various ratios. Insights
into how the models’ performance changes as the
size of the training and testing data changes are

ANWAR et al., Biomed. & Pharmacol. J, Vol. 17(4), 2361-2380 (2024)

made possible by this method, which provides
helpful insight for choosing and implementing
models in practical settings.

An exhaustive examination of the model’s
capabilities was conducted within this research,
employing multiple training and testing dataset
divisions (60-40, 70-30, 80-20, and 90-10). The
train-test split methodology is a crucial facet of
assessing a machine learning model’s capacity to
adapt to unfamiliar information. The dataset was
divided into two parts: 60% for model development
and 40% for evaluation. The other split ratios also
exhibit this pattern, with different percentages
going to the training and testing subsets.

Based on performance metrics assessed
on a dataset, the table below compares many ML
approaches. Precision, recall, F1-score, accuracy,
MAE, and RMSE are key performance indicators
used in evaluation. These measurements offer
information on how well each method classifies
dataset occurrences. The purpose of the analysis is
to help make well-informed decisions about which
machine learning algorithms to use for comparable
classification jobs.

Table 6 and Figure 3 provide a comparative
analysis of diverse ML algorithms (LR, DT, and
others) across six evaluation measures (Precision,
Recall, etc.). LR exhibits superior accuracy

Computational Intelligence Classifiers

—){ Logistic Regression

Random Forest

—

—)[_ Decision Tree

Support Vector
Machine

]

3 K-Nearest Neighbor
Classifier

Artificial Neural
Network

R

Fig. 1. Computational Intelligence Classifiers
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model for heart disease prediction
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(0.89) but lags in recall (0.76) relative to certain
counterparts. RF demonstrates a commendable
equilibrium of precision and recall (approximately
0.8 each), whereas KNN underperforms across
the board. NNs and RNNs appear to necessitate
additional optimization due to their inferior
accuracy compared to less complex models.

Table 7 and Figure 4 demonstrate how
the size of the training data (train-test split) affects
the precision of various ML models (LR, DT, etc.).
Generally, a larger training set (higher first number
in split ratio) leads to better precision for most
models (LR, DT, SVM, KNN). However, there
are exceptions. For instance, RFs precision peaks
at 80-20 split, and RNNs show some improvement
with a smaller training set (70-30). This implies
that the ideal distribution of data for training and
testing a model can vary based on the ML algorithm
employed.

Table 8 and Figure 5 investigate how
the train-test split ratio impacts the recall of ML
models. In most cases, a larger training set (the
higher first number in the split) leads to lower recall
(LR, DT, SVM, KNN). This suggests the models
might be overfitting to the training data and missing
true positives in the testing data. However, there are
interesting exceptions. RF shows a peak in recall at
80-20, while ANNs maintain high recall even with
a smaller training set (70-30). This highlights the

Table 5. Dataset Description

Feature Description

Age The patient’s chronological age.

Sex The gender of the patient (0 = female, 1 = male).

Chest pain type The patient’s chest discomfort was categorized as follows: 1 for classic angina,
2 for nonstandard angina, 3 for unrelated pain, or 4 for no pain.

BP Resting blood pressure of the patient (in mm Hg).

Cholesterol Serum cholesterol level of the patient (in mg/dl).

FBS over 120 Fasting blood sugar greater than 120 mg/dl (1 = yes; 0 = no).

EKG results Resting electrocardiographic findings (0 = normal, 1 = presence of ST-T wave
abnormalities, 2 = indication of probable or definite left ventricular hypertrophy).

Max HR Highest heart rate reached.

Exercise angina
ST depression
Slope of ST

No. of vessels fluro
Thallium
Heart Disease

Angina triggered by exercise (1 = yes; 0 =no).

Exercise-induced ST depression compared to rest.

The incline of the ST segment during peak exercise (1 = upward slope, 2 = flat,
3 = downward slope).

Quantity of principal conduits (zero to three) visualized via fluoroscopic coloring.
Thallium scintigraphy results (3 = normal, 6 = fixed defect, 7 = reversible defect).

The presence of heart disease is indicated as 1 (present) and 0 (absent).
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Table 6. An Analysis of Machine Learning Techniques Using Dataset Performance Metrics

Evaluation Metrics

ML Techniques Precision Recall fl-score Accuracy MAE RMSE
LR 0.94 0.76 0.84 0.89 0.11 0.33
DT 0.88 0.71 0.79 0.85 0.14 0.38
RF 0.77 0.81 0.79 0.83 0.16 0.41
SVM 0.85 0.81 0.83 0.87 0.12 0.36
KNN 0.71 0.48 0.57 0.72 0.27 0.52
NB 0.79 0.71 0.75 0.81 0.18 0.43
ANN 0.73 0.76 0.74 0.8 0.2 0.45
RNN 0.74 0.67 0.7 0.78 0.22 0.47
1
0.8
3 0.6
g
S 04
=
L
A 02
0 b 3 =/
Precision fl-score Accuracy
Evaluation Metric
%logistic Regression gDecision Tree =Random Forest wRVM
KNN giNaive Bayes

Fig. 3. Performance Comparison of Computational Intelligence classifiers on different Evaluation Metrics
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Fig. 4. Precision Scores of Machine Learning Models Across Different Train-Test Split Ratios
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importance of finding the optimal train-test split
ratio for each model to balance memorization of
training data and generalizability to unseen data.
Table 9 and Figure 6 examine how
train-test split ratios influence F1 scores, a metric
combining precision and recall. Generally, a larger

ANWAR et al., Biomed. & Pharmacol. J, Vol. 17(4), 2361-2380 (2024)

training set (higher first number) benefits most
models (LR, SVM, KNN). However, Random
Forest performs best at an 80-20 split, suggesting
it might strike a good balance between training and
generalizability. Interestingly, ANNs and RNNs
maintain decent F1 scores even with a smaller

Table 7. Precision of different ML algorithms on varying train-test split

Splits Algorithms 60-40 70-30 80-20 90-10
LR 0.9 0.86 0.94 0.86
DT 0.82 0.91 0.88 0.67
RF 0.83 0.76 0.77 0.7

SVM 0.83 0.79 0.85 0.86
KNN 0.62 0.67 0.71 0.83
Naive Bayes 0.84 0.74 0.79 0.75
ANN 0.75 0.7 0.73 0.64
RNN 0.7 0.8 0.74 0.75

Table 8. Recall of different ML algorithms on varying train-test split

Splits Algorithms 60-40 70-30 80-20 90-10
LR 0.82 0.77 0.76 0.6
DT 0.73 0.65 0.71 0.6
RF 0.66 0.84 0.81 0.7
SVM 0.86 0.84 0.81 0.6
KNN 0.41 0.45 0.48 0.5
NB 0.84 0.81 0.71 0.6
ANN 0.89 0.9 0.76 0.7
RNN 0.8 0.77 0.67 0.6
1
0.8
= 06
[ ]
@
o 0.4
0.2
0

Train - Test Split

T #gRF zSVM zKNN gNaive Bayes zANN =RNN

Fig. 5. Recall Scores of Machine Learning Models Across Different Train-Test Split Ratios
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training set, potentially requiring less data for
effective learning. In general, the ideal division
of data into training and testing sets appears to be
contingent upon the ML algorithm employed.
Table 10 and Figure 7 explore how the size
of'the training set (train-test split) affects the overall
accuracy of various ML models. In most cases, a
larger training set (higher first number in the split

1
0.9
0.8
0.7

Q
= 06

ST T -

60-40

70-30
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ratio) leads to better accuracy (LR, DT, SVM).
However, some models like RF seem to perform
well with a balanced split (80-20), while RNNs
maintain decent accuracy even with a smaller
training set. This suggests the optimal split ratio
can vary depending on the model’s learning style.

Table 11 and Figure 8 analyze how
the train-test split ratio affects a model’s error

80-20 90-10

Train - Test Split

DT gRF %5VM

NN Naive Bayes

NN =RNN

Fig. 6. F1 Scores of Machine Learning Models Across Different Train-Test Split Ratios
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Fig. 7. Accuracy Scores of Machine Learning Models Across Different Train-Test Split Ratios
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(measured by MAE). Generally, a larger training
set (higher first number) benefits most models
(LR, SVM) by reducing error. However, some
models like RF show similar errors across splits,

suggesting they might be less sensitive to training
data size. Conversely, KNN exhibits lower error
with a smaller training set, potentially due to its
simpler structure. Overall, the optimal split ratio for

Table 9. F-1 score of different ML algorithms on varying train-test split

SplitsAlgorithms 60-40 70-30 80-20 90-10
LR 0.86 0.81 0.84 0.71
DT 0.77 0.75 0.79 0.63
RF 0.73 0.8 0.79 0.7
SVM 0.84 0.81 0.83 0.71
KNN 0.49 0.54 0.57 0.62
Naive Bayes 0.84 0.77 0.75 0.67
ANN 0.81 0.79 0.74 0.67
RNN 0.74 0.79 0.7 0.67

Table 10. Precision of different ML algorithms on varying train-test split

Splits Algorithms ~ 60-40 70-30 80-20 90-10
LR 0.89 0.86 0.89 0.81
DT 0.82 0.84 0.85 0.74
RF 0.81 0.84 0.83 0.78
SVM 0.87 0.85 0.87 0.81
KNN 0.66 0.7 0.72 0.78
NB 0.87 0.81 0.81 0.77
ANN 0.83 0.81 0.79 0.74
RNN 0.78 0.83 0.77 0.77
0.4
0.35
0.25
< 02
0.1 N i
N o
\E‘:.‘E:% i
0.05 i B
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-30
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Fig. 8. Mean Absolute Error (MAE) of Machine Learning Models Across Different Train-Test Split Ratios
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minimizing error seems to depend on the specific ~ models, measured by RMSE. Like MAE (Table 8),
machine learning model’s learning behavior. a larger training set (higher first number) generally

Table 12 and Figure 9 explore how the  reduces error (RMSE) for models like LR and
train-test split ratio influences the error of ML ~ SVM. RF shows similar errors across splits, while

Table 11. MAE of different ML algorithms on varying train-test split

Splits Algorithms 60-40 70-30 80-20 90-10
LR 0.11 0.13 0.11 0.18
DT 0.17 0.16 0.14 0.26
RF 0.19 0.16 0.16 0.22
SVM 0.13 0.15 0.12 0.18
KNN 0.34 0.29 0.27 0.22
NB 0.12 0.18 0.18 0.22
ANN 0.16 0.18 0.2 0.25
RNN 0.22 0.16 0.22 0.22

Table 12. RMSE Variations in Machine Learning with Different Training Set Sizes

Splits Algorithms ~ 60-40 70-30 80-20 90-10
LR 0.33 0.36 0.33 0.43
DT 0.42 0.4 0.38 0.51
RF 0.44 0.4 0.41 0.47
SVM 0.36 0.38 0.36 0.43
KNN 0.58 0.54 0.52 0.47
NB 0.36 0.43 0.43 0.47
ANN 0.4 0.43 0.45 0.5
RNN 0.47 0.4 0.47 0.47
0.7
0.6
0.5
.;.
#
W 0.4 P
= N :E
= 0.3 § %
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0.2 f?f ; %
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Fig. 9. RMSE of Machine Learning Models Across Different Train-Test Split Ratio
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KNN benefits from a smaller training set. This
suggests the ideal split ratio to minimize error
depends on the model’s learning characteristics.
Notably, RMSE values are generally higher than
MAE in Table 8, reflecting its emphasis on larger
errors.

This study investigated the influence of
training data size (train-test split ratio) on various
ML models. We employed four split ratios: 60-
40, 70-30, 80-20, and 90-10. Interestingly, the
split ratio at which each model achieved its peak
accuracy varied.

LR excelled in the 60-40 and 80-20 splits,
reaching an accuracy of 89%. DT performed best in
the 80-20 split with 85% accuracy. SVM remained
consistent across the 60-40 and 80-20 splits,
achieving the highest accuracy of 87% in both. RF,
however, found its sweet spot in the 70-30 split,
reaching 84% accuracy.

The trend continued for other models.
KNN achieved its peak of 78% accuracy in the 90-
10 split, while NBs performed best in the 60-40 split
with 87% accuracy. ANN and RNN also exhibited
their highest performance (83% accuracy) in the
60-40 and 70-30 splits, respectively.

These findings are further supported
by our broader analysis (presented in a separate
section). It revealed that while a larger training
set generally improves accuracy and reduces error
for most models, the optimal split ratio can vary
depending on the specific model. Random Forest
performs well with a balanced split, while some
models like KNN benefit from less training data.
Interestingly, NNs maintain decent performance
even with a smaller training set, suggesting they
might require less data to learn effectively. The
choice of error metric (MAE vs. RMSE) also
influences the observed error. Overall, finding
the optimal train-test split ratio for each model is
crucial to balancing the memorization of training
data and generalizability to unseen data.

CONCLUSION

In conclusion, the application of ML
models in heart disease prediction heralds a new era
in precision medicine. These ML models assume
a predominance over conventional methods by
revealing complex correlations and patterns that
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may have been missed by these conventional
approaches. These machine learning models
have completely revolutionized personalized risk
assessments and treatment strategies for patients
prone to heart diseases. This early prognosis
and diagnosis have become possible through
training the models using large datasets of the
medical history of the patients, and some of their
personal information, including lifestyle decisions
and genetic markers. As we have shown in this
research paper, to maximize the accuracy of the
predictions provided by these models, the selection
of suitable ML techniques based on the parameters
available is of pivotal importance. Furthermore,
the increased accuracy of the predictions made
by these ML models can be proved useful giving
physicians significant aid and assistance in their
decision-making. The early detection and treatment
predictions given by the ML models can save a lot
of lives lost due to heart diseases.

Subsequent investigations may concentrate
on creating methodologies to systematically
determine the ideal division of data for training and
testing within specific machine learning models
and datasets. This would improve the efficiency
of the training process and ensure models are not
overfit or underfit to the training data. Furthermore,
examining additional performance indicators
beyond accuracy, such as the F1 measure or
AUC-ROC, could offer a more comprehensive
assessment of model capabilities across varying
training and testing data proportions.
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