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	 Heart disease is a worldwide health concern for which precise risk assessment and 
early detection need a call for solutions that are creative as well as accurate. Cardiovascular 
research has undergone a significant revolution because of advancements in computational 
intelligence (CI) techniques like machine learning (ML), which has improved diagnostic 
accuracy and identified new risk factors. To predict the risk of heart disease in the early stages, 
ML algorithms evaluate large chunks of diversified patient data, while also considering their 
lifestyle, genetic markers, and medical history. Some of the meticulous features for careful 
engineering and selecting methods required to create effective ML models include feature 
extraction, dimensionality reduction, hyperparameterization, etc. The decision support systems 
often provide pragmatic insights suitable to individualized treatment suggestions. These features 
of ML-based heart disease prediction are a beacon to bridge the gap between these predictions 
and actual clinical practices. Therefore, it would be suitable to conclude that ML has great 
potential to address patient-specific therapies, the early diagnosis of the disease, and the risk 
assessment in the context of heart diseases. This paper compares the performance of various 
CI approaches in heart disease prediction. It evaluates the performance of different evaluation 
metrics by varying the train test splits. It will help the researchers working in the relevant 
domain to select the most suitable model for designing the heart disease diagnostic system.

Keywords: Computational Intelligence; Disease Predictions; Evaluation Metrics;
Heart Disease; Machine Learning.

	 In today’s highly tech-equipped world, 
heart disease still poses wide global health 
concerns, which often culminates in a substantial 
number of deaths each year 1. Despite serious 
advances in the medical sciences, timely detection 
and accuracy of risk assessment remain among the 
major challenges in mitigating the vulnerability 
to heart diseases. While traditional risk factors, 
which often include patients’ age, gender, as well 
as genetic history, provide valuable insights into the 
diagnosis, still these factors fall short in correctly 
assessing the individualized risks to the patients. 
This is the point where ML models for heart disease 

prediction come into play. Machine learning, under 
the ambit of computational intelligence (CI), has 
transformed various domains of medical science 
significantly by training computers to learn from 
data as well as making predictions or decisions 
based on these pieces of training. In recent years, 
ML techniques have gained enormous prominence 
in the field of healthcare, in which cardiovascular 
research has proven to be crucial. Through the 
deep analysis of wide-scale as well as diversified 
datasets, ML models can be proven important 
in revealing some hidden patterns2, while also 
identifying critical risk factors, and enhancing 
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diagnostic accuracy. Thus, in the context of 
heart disease, machine learning models offer the 
potential to revolutionize risk assessment, and 
early and timely diagnosis, enabling personalized 
treatment recommendations to the patients 3. 
	 ML algorithms can accurately analyze 
diverse patient data, which would include patients’ 
clinical records, their medical imaging, as well 
as their genetic information, to identify the 
individuals at high risk of developing heart diseases 
in the early stages 4. Through the integration 
of features such as blood pressure, cholesterol 
levels, and lifestyle factors, these models can 
provide personalized risk scores thus allowing 
for targeted interventions based on these scores5. 
A crucial role in the performance of ML models 
for heart disease prediction is played by feature 
engineering 6. The researchers have marked out 
important features related to cardiac function, 
inflammation markers, and electrocardiogram 
(ECG) signals. Furthermore, the selection of 
the right ML model is pivotal for the accurate 
predictions of heart disease. In this research paper, 
we delve into the trade-offs and considerations 
involved in these selections7. Recent developments 
in computational intelligence and ML models 
have exhibited impressive prediction results8. 
However, their “black box” nature has raised 
alarms about the interpretability of the results9. 
In this research paper, we discuss the possible 
approaches to increase model transparency, along 
with interpreting feature importance and providing 
actionable insights to medical practitioners. 
The sole purpose is to reduce the gap between 
ML predictions and clinical decision-making10.  
Computational intelligence approaches like ANN 
(Artificial Neural Networks), fuzzy logic, SVM 
(Support Vector Machine), and hybrid models are 
used for heart disease prediction in clinical tools 
and monitors. Hybrid and deep learning methods 
often outperform traditional models in providing 
accurate, real-time predictions for cardiovascular 
risk and personalized care. 
	 This paper aims to help researchers to find 
the best ML algorithm for heart disease prediction. 
In this regard, it evaluates and compares the 
performance of different ML algorithms on several 
evaluation metrics by varying the train test split 
ratio. The contribution of this paper can be realized 
through the following points. 

• It collects and pre-processes the benchmark heart 
disease data set by performing the categorical 
encoding to get binary codes.
• It applied different ML models to classify and 
predict heart disease.
• It presents a standard architecture for predicting 
heart disease using ML.
• The investigation evaluates and compares the 
prognostic abilities of various machine learning 
models – encompassing Logistic Regression 
(LR), Decision Tree (DT), Random Forest (RF), 
SVM, K-Nearest Neighbors (KNN), Naive Bayes 
(NB), Artificial Neural Network (ANN), and 
Recurrent Neural Network (RNN) – in predicting 
heart disease through adjusting the training and 
validation dataset ratios.
	 The rest of this paper is organized as 
follows: Section 2 reviews the related work. In 
Section 3, we discuss the materials and methods 
utilized in this study. Section 4 presents the flow 
diagram for heart disease prediction. Section 5 
outlines the experimental setup, including the 
dataset and evaluation metrics. Section 6 focuses 
on the results and discussion. Finally, Section 7 
provides the conclusion.
Related Works
	 Recent advancements in ML for heart 
disease screening prioritize enhancing model 
accuracy and efficiency through various techniques. 
There are several studies that have used ML 
approaches for the prediction of heart disease. 
Table 1 presents the summary of ML approaches 
used for heart disease prediction. It also presents the 
contributions and limitations of different studies.
	 ML holds promise for heart disease 
prediction. However, reported accuracy can 
be misleading.  These studies highlight the 
importance of considering limitations like 
computational demands [Table 2], overfitting, 
and potential bias. Subsequent investigations ought 
to concentrate on constructing superior and more 
resilient frameworks that utilize methods such as 
characteristic extraction and dataset equilibrium to 
enhance adaptability.

Materials and methods

	 CI is the collection of approaches 
and techniques like fuzzy logic, evolutionary 
computing, machine learning, and deep learning 
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that have revolutionized the world through 
technological innovations and high-speed 
computing. Figure 1 depicts various CI classifiers 
commonly employed in heart disease prediction. 
Starting with Linear Regression, it progresses 
through more complex models like RF, DT, SVM, 
and KNN Classifier, and concludes with ANN. 
Each algorithm represents a different method for 
analyzing and predicting heart disease outcomes 
based on patient data, showcasing the increasing 
complexity and potential accuracy enhancements 
achieved by utilizing these advanced techniques37.
	 LR is a statistical method utilized to 
investigate the relationship between input factors 
and a dichotomous outcome. Unlike linear 
regression, which forecasts continuous values, 
this method estimates the likelihood of an event 
occurring within two potential categories by 
utilizing a sigmoid function 38. This makes it useful 
for tasks like spam filtering, fraud detection, or 
predicting customer churn.
	 RF, a powerful ML technique, utilizes 
multiple decision trees to produce accurate 
predictions. It handles both regression and 
classification tasks and boasts versatility, ease 
of use, and the ability to manage non-linear 
relationships between variables. By combining 
predictions from uncorrelated decision trees 
built with random subsets of data, RF overcomes 
overfitting and offers increased accuracy and 
resilience. This method finds applications in 
loan risk assessment, fraud detection, disease 
prediction, drug suitability evaluation, personalized 
recommendations, land-use classification, and 
ecological species identification 39.
	 DT, a flexible machine learning approach, 
excels in both classification and regression tasks. 
They build tree-like structures with branching paths 
representing different attribute tests and leaf nodes 
holding final predictions. DTs are known for their 
interpretability, ease of use, and ability to handle 
complex relationships between variables. While 
lacking a single equation like linear regression, 
they use metrics like Gini impurity to determine the 
best split points at each node. Applications range 
from sales forecasting and customer segmentation 
to credit risk assessment, fraud detection, and even 
disease diagnosis 40.
	 SVMs excel at finding the optimal 
separating hyperplane in high-dimensional 

data. An examination of the distances between 
the separating hyperplane and the nearest data 
instances belonging to each category is conducted 
to optimize differentiation. New data is then 
classified based on which side of the hyperplane it 
falls on. SVMs are well-suited for non-linear data 
thanks to kernel methods and are memory-efficient 
due to their reliance on a subset of training data 
(support vectors). Their versatility allows them 
to tackle various tasks like classification (face 
detection, text categorization, image classification), 
regression, outlier identification, and more41.
	 The KNN classifier is a prominent non-
parametric method that categorizes new data 
entries by considering the class labels of its closest 
K data points in the training set and selecting the 
most frequent label. It relies on distance metrics 
like Euclidean distance to determine closeness 
and doesn’t require assumptions about data 
distribution. While lacking a single equation like 
linear regression, KNN finds applications in data 
preprocessing, recommendation systems, anomaly 
detection, pattern recognition, and even disease 
prediction42.Inspired by the human brain, ANNs are 
powerful deep-learning models capable of tackling 
classification, regression, and pattern recognition 
tasks. Composed of interconnected layers with 
neurons, activation functions, weights, and biases, 
ANNs process incoming signals to generate 
outputs. These networks excel at handling non-
linear relationships through activation functions 
and adjust weights and biases during training to 
minimize errors. Their applications range from 
natural language processing and image recognition 
to financial modeling, recommendation systems, 
and even healthcare, making them a transformative 
force in artificial intelligence and ML. However, 
challenges like overfitting, hyperparameter tuning, 
data pre-processing, and resource limitations 
remain areas for ongoing research 43.
	 Table 3 dissects various ML algorithms, 
providing a mathematical explanation for each. It 
details the core function of each algorithm (e.g., 
Linear Regression predicts using a linear equation), 
along with key mathematical formulas (e.g., cost 
function) where applicable. This comprehensive 
approach, combining mathematical foundations 
with visualizations, offers a clear understanding 
of how these algorithms work.
	 Table 4 presents a succinct juxtaposition 
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of six commonly employed ML models for 
forecasting cardiac ailments. It highlights each 
method’s strengths and weaknesses, along with 
factors to consider when choosing one for this 
specific task. LR is an advantageous initial model 
due to its interpretability and computational 
efficiency, but it is susceptible to overfitting and 
restricted to binary outcomes. SVM excels with 
complex, high-dimensional data, but require 
significant computing power and can be difficult 
to understand. Decision Trees are clear to interpret 
but can overfit and struggle with small datasets. 
Random Forests address overfitting and handle 
various data types, though they may require more 
computation and offer less interpretability. KNNs 
are simple to implement and work well with 
low-dimensional data but are sensitive to noise 
and suffer from the “curse of dimensionality” in 
high-dimensional settings. Finally, ANN can learn 
intricate relationships but are computationally 
expensive and opaque. The provided pseudocode 
snippets for each algorithm offer a basic roadmap 
for their implementation.
Proposed Model
	 The suggested framework for pinpointing 
and suggesting the optimal CI algorithm for 
cardiac disease forecasting is illustrated in 
Figure 2. The process involves a series of stages 
including data acquisition, attribute selection, 
data cleansing, algorithm selection and execution, 
performance assessment of various algorithms on 
diverse training and testing subsets, and finally, 
recommending the most suitable method. The 
subsequent sections delve into the specifics of each 
phase within this proposed framework.
Data Collection
	 Initial data acquisition constitutes the 
inaugural phase of the suggested framework. The 
dataset employed to enact this model is procured 
from openly accessible data vaults.
Features Selection
	 After data collection, feature selection 
is an important aspect of this model. Important 
features from the data set can be selected manually 
or using some automatic feature selection technique. 
There are various feature selection techniques like 
principal component analysis, Chi-square test, 
information gain, analytical component analysis 
and many more. The selection of feature selection 
techniques depends upon the type of data set and 

ML model being used in the research.
Data Pre-processing
	 Data pre-processing is a crucial step in 
optimizing the efficiency of any ML algorithm. 
There may be various steps in data pre-processing 
like removal of noise, imputation of missing values, 
and converting the data from one form to another. 
In this model, categorical values are mapped with 
binary codes as Presence with ‘1’ and Absence with 
‘0’.
Model Implementation
	 This phase involved partitioning the 
pre-processed dataset into training and testing 
subsets with varying proportions. Subsequently, 
the model was refined utilizing the training 
segment, culminating in disease categorization, 
or forecasting through the application of the 
test data. A spectrum of ML and DL algorithms, 
encompassing LR, DT, RF, SVM, NB, ANN, and 
RNN, were employed for training and the eventual 
prediction of heart disease.
Performance Evaluation
	 Following the training of diverse 
models utilizing training datasets, their predictive 
capabilities are assessed on separate test datasets 
through the application of multiple evaluation 
metrics such as precision, recall, F1-score, 
accuracy, root mean squared error, and mean 
absolute error. A comparative analysis of model 
performance is conducted by adjusting the 
proportions of data allocated to training and testing.
Recommendation of Best model
	 After comparing the performance of 
different models across different train-test splits 
and on various evaluation measures, the best ML 
model for predicting heart disease is identified 
and recommended to help the people working in 
the concerned domain in the selection of the best 
algorithm.
Experimental Settings
	 The experiments were carried out to 
evaluate the efficacy and efficiency of the various 
ML algorithms in terms of different parameters. 
This section discusses the experimental settings 
like evaluation metrics, train test split and data set 
used in this paper.
Evaluation Metrics
	 To effectively evaluate a model’s 
performance, this study utilizes six key metrics44. 
These are Accuracy, Precision, Recall, F1-score, 
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MAE and RMSE. A concise explanation of these 
measurements is provided subsequently.
Accuracy
	 It describes the proportion of all accurate 
predictions to all other types of predictions 
produced by the classifiers. In mathematics, it is 
expressed as

Accuracy =  (True Positive+True Negative)/
(True Positive+True Negative+False 

Positive+False Negative)
...(1)

Precision
	 The accuracy with which a system or 
model recognizes pertinent cases among all the 
examples it labels as positive is measured by its 
precision45.

Precision =  (True Positive)/(True Positive+False 
Positive)

...(2)

Recall
	 The percentage of true positive predicts 
among all actual positive data instances is known 
as recall or sensitivity.

Recall=(True Positive) / (True Positive+False 
Negative)

...(3)

F1-Score
	 Precision and recall are merged into a 
single measure known as the F1 score. This metric 
serves as a critical indicator of a classification 
model’s overall performance by providing a 
balanced assessment of both precision and recall.

F1-Score =  (Precision*Recall)/
(Precision+Recall)

...(4)
Mean Absolute Error
	 This metric evaluates the average size 
of prediction errors irrespective of their positivity 
or negativity. Essentially, it computes the mean 
absolute deviation between forecasted and 
observed outcomes.
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Fig. 1. Computational Intelligence Classifiers

MAE = (∑|Actual Value-Predicted Value|)/n

...(5)
Root Mean Square Error
	 Like MAE, this metric amplifies larger 
discrepancies by squaring errors prior to averaging. 
Subsequently, the root of this mean squared 
error quantifies the average divergence between 
predicted and actual values.

RMSE = √(∑(Actual Value-Predicted Value)2 / n

...(6)
Dataset Description
	 The data set used in this paper is freely 
available on Kaggle. The dataset has 271 instances, 
each of which represents a patient, and has 14 
attributes. A summary of the different features of 
the data set is presented in Table 5.

Results and Discussion 

	 The study sought to evaluate the machine 
learning models’ capacity for generalization and 
robustness under varying data distributions by 
executing train-test splits at various ratios. Insights 
into how the models’ performance changes as the 
size of the training and testing data changes are 

made possible by this method, which provides 
helpful insight for choosing and implementing 
models in practical settings.
	 An exhaustive examination of the model’s 
capabilities was conducted within this research, 
employing multiple training and testing dataset 
divisions (60-40, 70-30, 80-20, and 90-10). The 
train-test split methodology is a crucial facet of 
assessing a machine learning model’s capacity to 
adapt to unfamiliar information. The dataset was 
divided into two parts: 60% for model development 
and 40% for evaluation. The other split ratios also 
exhibit this pattern, with different percentages 
going to the training and testing subsets.
	 Based on performance metrics assessed 
on a dataset, the table below compares many ML 
approaches. Precision, recall, F1-score, accuracy, 
MAE, and RMSE are key performance indicators 
used in evaluation. These measurements offer 
information on how well each method classifies 
dataset occurrences. The purpose of the analysis is 
to help make well-informed decisions about which 
machine learning algorithms to use for comparable 
classification jobs.
	 Table 6 and Figure 3 provide a comparative 
analysis of diverse ML algorithms (LR, DT, and 
others) across six evaluation measures (Precision, 
Recall, etc.). LR exhibits superior accuracy 
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Table 5. Dataset Description

Feature	 Description

Age	 The patient’s chronological age.
Sex	 The gender of the patient (0 = female, 1 = male).
Chest pain type	 The patient’s chest discomfort was categorized as follows: 1 for classic angina, 
	 2 for nonstandard angina, 3 for unrelated pain, or 4 for no pain.	
BP	 Resting blood pressure of the patient (in mm Hg).
Cholesterol	 Serum cholesterol level of the patient (in mg/dl).
FBS over 120	 Fasting blood sugar greater than 120 mg/dl (1 = yes; 0 = no).
EKG results	 Resting electrocardiographic findings (0 = normal, 1 = presence of ST-T wave 
	 abnormalities, 2 = indication of probable or definite left ventricular hypertrophy).	
Max HR	 Highest heart rate reached.
Exercise angina	 Angina triggered by exercise (1 = yes; 0 = no).
ST depression	 Exercise-induced ST depression compared to rest.
Slope of ST	 The incline of the ST segment during peak exercise (1 = upward slope, 2 = flat, 
	 3 = downward slope).	
No. of vessels fluro	 Quantity of principal conduits (zero to three) visualized via fluoroscopic coloring.
Thallium	 Thallium scintigraphy results (3 = normal, 6 = fixed defect, 7 = reversible defect).
Heart Disease	 The presence of heart disease is indicated as 1 (present) and 0 (absent).

Fig. 2. Flow Diagram for recommending the best ML 
model for heart disease prediction

(0.89) but lags in recall (0.76) relative to certain 
counterparts. RF demonstrates a commendable 
equilibrium of precision and recall (approximately 
0.8 each), whereas KNN underperforms across 
the board. NNs and RNNs appear to necessitate 
additional optimization due to their inferior 
accuracy compared to less complex models.
	 Table 7 and Figure 4 demonstrate how 
the size of the training data (train-test split) affects 
the precision of various ML models (LR, DT, etc.).  
Generally, a larger training set (higher first number 
in split ratio) leads to better precision for most 
models (LR, DT, SVM, KNN). However, there 
are exceptions. For instance, RFs precision peaks 
at 80-20 split, and RNNs show some improvement 
with a smaller training set (70-30). This implies 
that the ideal distribution of data for training and 
testing a model can vary based on the ML algorithm 
employed.
	 Table 8 and Figure 5 investigate how 
the train-test split ratio impacts the recall of ML 
models. In most cases, a larger training set (the 
higher first number in the split) leads to lower recall 
(LR, DT, SVM, KNN). This suggests the models 
might be overfitting to the training data and missing 
true positives in the testing data. However, there are 
interesting exceptions. RF shows a peak in recall at 
80-20, while ANNs maintain high recall even with 
a smaller training set (70-30). This highlights the 
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Table 6. An Analysis of Machine Learning Techniques Using Dataset Performance Metrics

Evaluation Metrics
ML Techniques	 Precision	 Recall	 f1-score	 Accuracy	 MAE	 RMSE

LR	 0.94	 0.76	 0.84	 0.89	 0.11	 0.33
DT	 0.88	 0.71	 0.79	 0.85	 0.14	 0.38
RF	 0.77	 0.81	 0.79	 0.83	 0.16	 0.41
SVM	 0.85	 0.81	 0.83	 0.87	 0.12	 0.36
KNN	 0.71	 0.48	 0.57	 0.72	 0.27	 0.52
NB	 0.79	 0.71	 0.75	 0.81	 0.18	 0.43
ANN	 0.73	 0.76	 0.74	 0.8	 0.2	 0.45
RNN	 0.74	 0.67	 0.7	 0.78	 0.22	 0.47

Fig. 3. Performance Comparison of Computational Intelligence classifiers on different Evaluation Metrics 

Fig. 4. Precision Scores of Machine Learning Models Across Different Train-Test Split Ratios
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Table 8. Recall of different ML algorithms on varying train-test split

Splits Algorithms	 60-40	 70-30	 80-20	 90-10

LR	 0.82	 0.77	 0.76	 0.6
DT	 0.73	 0.65	 0.71	 0.6
RF	 0.66	 0.84	 0.81	 0.7
SVM	 0.86	 0.84	 0.81	 0.6
KNN	 0.41	 0.45	 0.48	 0.5
NB	 0.84	 0.81	 0.71	 0.6
ANN	 0.89	 0.9	 0.76	 0.7
RNN	 0.8	 0.77	 0.67	 0.6

Fig. 5. Recall Scores of Machine Learning Models Across Different Train-Test Split Ratios

Table 7. Precision of different ML algorithms on varying train-test split

Splits Algorithms	 60-40	 70-30	 80-20	 90-10

LR	 0.9	 0.86	 0.94	 0.86
DT	 0.82	 0.91	 0.88	 0.67
RF	 0.83	 0.76	 0.77	 0.7
SVM	 0.83	 0.79	 0.85	 0.86
KNN	 0.62	 0.67	 0.71	 0.83
Naïve Bayes	 0.84	 0.74	 0.79	 0.75
ANN	 0.75	 0.7	 0.73	 0.64
RNN	 0.7	 0.8	 0.74	 0.75

importance of finding the optimal train-test split 
ratio for each model to balance memorization of 
training data and generalizability to unseen data.
	 Table 9 and Figure 6 examine how 
train-test split ratios influence F1 scores, a metric 
combining precision and recall. Generally, a larger 

training set (higher first number) benefits most 
models (LR, SVM, KNN). However, Random 
Forest performs best at an 80-20 split, suggesting 
it might strike a good balance between training and 
generalizability. Interestingly, ANNs and RNNs 
maintain decent F1 scores even with a smaller 
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Fig. 6. F1 Scores of Machine Learning Models Across Different Train-Test Split Ratios

Fig. 7. Accuracy Scores of Machine Learning Models Across Different Train-Test Split Ratios

training set, potentially requiring less data for 
effective learning. In general, the ideal division 
of data into training and testing sets appears to be 
contingent upon the ML algorithm employed.
	 Table 10 and Figure 7 explore how the size 
of the training set (train-test split) affects the overall 
accuracy of various ML models. In most cases, a 
larger training set (higher first number in the split 

ratio) leads to better accuracy (LR, DT, SVM). 
However, some models like RF seem to perform 
well with a balanced split (80-20), while RNNs 
maintain decent accuracy even with a smaller 
training set. This suggests the optimal split ratio 
can vary depending on the model’s learning style.
	 Table 11 and Figure 8 analyze how 
the train-test split ratio affects a model’s error 
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Table 10. Precision of different ML algorithms on varying train-test split

Splits Algorithms	 60-40	 70-30	 80-20	 90-10

LR	 0.89	 0.86	 0.89	 0.81
DT	 0.82	 0.84	 0.85	 0.74
RF	 0.81	 0.84	 0.83	 0.78
SVM	 0.87	 0.85	 0.87	 0.81
KNN	 0.66	 0.7	 0.72	 0.78
NB	 0.87	 0.81	 0.81	 0.77
ANN	 0.83	 0.81	 0.79	 0.74
RNN	 0.78	 0.83	 0.77	 0.77

Table 9. F-1 score of different ML algorithms on varying train-test split

SplitsAlgorithms	 60-40	 70-30	 80-20	 90-10

LR	 0.86	 0.81	 0.84	 0.71
DT	 0.77	 0.75	 0.79	 0.63
RF	 0.73	 0.8	 0.79	 0.7
SVM	 0.84	 0.81	 0.83	 0.71
KNN	 0.49	 0.54	 0.57	 0.62
Naïve Bayes	 0.84	 0.77	 0.75	 0.67
ANN	 0.81	 0.79	 0.74	 0.67
RNN	 0.74	 0.79	 0.7	 0.67

Fig. 8. Mean Absolute Error (MAE) of Machine Learning Models Across Different Train-Test Split Ratios

(measured by MAE). Generally, a larger training 
set (higher first number) benefits most models 
(LR, SVM) by reducing error. However, some 
models like RF show similar errors across splits, 

suggesting they might be less sensitive to training 
data size. Conversely, KNN exhibits lower error 
with a smaller training set, potentially due to its 
simpler structure. Overall, the optimal split ratio for 
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Table 12. RMSE Variations in Machine Learning with Different Training Set Sizes

Splits Algorithms	 60-40	 70-30	 80-20	 90-10

LR	 0.33	 0.36	 0.33	 0.43
DT	 0.42	 0.4	 0.38	 0.51
RF	 0.44	 0.4	 0.41	 0.47
SVM	 0.36	 0.38	 0.36	 0.43
KNN	 0.58	 0.54	 0.52	 0.47
NB	 0.36	 0.43	 0.43	 0.47
ANN	 0.4	 0.43	 0.45	 0.5
RNN	 0.47	 0.4	 0.47	 0.47

Fig. 9. RMSE of Machine Learning Models Across Different Train-Test Split Ratio

Table 11. MAE of different ML algorithms on varying train-test split

Splits Algorithms	 60-40	 70-30	 80-20	 90-10

LR	 0.11	 0.13	 0.11	 0.18
DT	 0.17	 0.16	 0.14	 0.26
RF	 0.19	 0.16	 0.16	 0.22
SVM	 0.13	 0.15	 0.12	 0.18
KNN	 0.34	 0.29	 0.27	 0.22
NB	 0.12	 0.18	 0.18	 0.22
ANN	 0.16	 0.18	 0.2	 0.25
RNN	 0.22	 0.16	 0.22	 0.22

minimizing error seems to depend on the specific 
machine learning model’s learning behavior.
	 Table 12 and Figure 9 explore how the 
train-test split ratio influences the error of ML 

models, measured by RMSE. Like MAE (Table 8), 
a larger training set (higher first number) generally 
reduces error (RMSE) for models like LR and 
SVM. RF shows similar errors across splits, while 
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KNN benefits from a smaller training set. This 
suggests the ideal split ratio to minimize error 
depends on the model’s learning characteristics. 
Notably, RMSE values are generally higher than 
MAE in Table 8, reflecting its emphasis on larger 
errors.
	 This study investigated the influence of 
training data size (train-test split ratio) on various 
ML models. We employed four split ratios: 60-
40, 70-30, 80-20, and 90-10. Interestingly, the 
split ratio at which each model achieved its peak 
accuracy varied.
	 LR excelled in the 60-40 and 80-20 splits, 
reaching an accuracy of 89%. DT performed best in 
the 80-20 split with 85% accuracy. SVM remained 
consistent across the 60-40 and 80-20 splits, 
achieving the highest accuracy of 87% in both. RF, 
however, found its sweet spot in the 70-30 split, 
reaching 84% accuracy.
	 The trend continued for other models. 
KNN achieved its peak of 78% accuracy in the 90-
10 split, while NBs performed best in the 60-40 split 
with 87% accuracy. ANN and RNN also exhibited 
their highest performance (83% accuracy) in the 
60-40 and 70-30 splits, respectively.
	 These findings are further supported 
by our broader analysis (presented in a separate 
section).  It revealed that while a larger training 
set generally improves accuracy and reduces error 
for most models, the optimal split ratio can vary 
depending on the specific model. Random Forest 
performs well with a balanced split, while some 
models like KNN benefit from less training data. 
Interestingly, NNs maintain decent performance 
even with a smaller training set, suggesting they 
might require less data to learn effectively. The 
choice of error metric (MAE vs. RMSE) also 
influences the observed error. Overall, finding 
the optimal train-test split ratio for each model is 
crucial to balancing the memorization of training 
data and generalizability to unseen data.

Conclusion

	 In conclusion, the application of ML 
models in heart disease prediction heralds a new era 
in precision medicine. These ML models assume 
a predominance over conventional methods by 
revealing complex correlations and patterns that 

may have been missed by these conventional 
approaches. These machine learning models 
have completely revolutionized personalized risk 
assessments and treatment strategies for patients 
prone to heart diseases. This early prognosis 
and diagnosis have become possible through 
training the models using large datasets of the 
medical history of the patients, and some of their 
personal information, including lifestyle decisions 
and genetic markers. As we have shown in this 
research paper, to maximize the accuracy of the 
predictions provided by these models, the selection 
of suitable ML techniques based on the parameters 
available is of pivotal importance. Furthermore, 
the increased accuracy of the predictions made 
by these ML models can be proved useful giving 
physicians significant aid and assistance in their 
decision-making. The early detection and treatment 
predictions given by the ML models can save a lot 
of lives lost due to heart diseases.
	 Subsequent investigations may concentrate 
on creating methodologies to systematically 
determine the ideal division of data for training and 
testing within specific machine learning models 
and datasets. This would improve the efficiency 
of the training process and ensure models are not 
overfit or underfit to the training data. Furthermore, 
examining additional performance indicators 
beyond accuracy, such as the F1 measure or 
AUC-ROC, could offer a more comprehensive 
assessment of model capabilities across varying 
training and testing data proportions.
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