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	 Numerous physical and biological systems demonstrate synchronization phenomena. 
Early investigations focused on the synchronization of dual pendulum tickers connected by 
a common shaft (it was within this system that Huygens discovered synchronization), the 
synchronized flashing of fireflies, or the interactions of adjacent channels capable of effectively 
annihilating one another. The exploration of chaotic synchronization did not gain significant 
attraction until the 1980s. The synchronization pattern was observed in the biological signals 
and it was observed through studies that these patterns show changes with respect to change in 
the body activities. So further studies were being conducted to refine and record these signals 
and convert them inti human readable form. Later on, these synchronization patterns in the 
recorded bio signals like EEG (Electroencephalogram), ECG (Electrocardiogram) etc. were 
used for detection of neurological disorders. This study discusses about the works related to 
the detection of neurological disorders with the help of synchronization in the EEG signals that 
are recorded from brain and gives a clear view how EEG signals and their synchronization has 
been used time and again for studying and diagnosing disorders like epilepsy, bruxism etc.
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	 The exploration of coupled systems 
began in the seventeenth century, initially 
focusing on the investigation of synchronization 
in nonlinear periodic systems. Subsequent studies 
on synchronization yielded various discoveries 
with crucial implications for the design of secure 
communication devices. The synchronized chaotic 
trajectories can be employed to encrypt messages 
and protect them from being deciphered. The 
notion of complete synchronization of chaotic 

systems was later generalized, allowing for non-
identity among the coupled systems.
	 In a later development, Rosenblum4 
examined a form of synchronization between 
chaotic oscillators where the associated phases 
become locked or synchronized while the 
amplitudes remain uncorrelated. They termed 
this type of synchronization as “synchronization 
of phase.” Research has not only demonstrated 
synchronization among chaotic oscillators such 
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as electronic circuits, lasers, and electrochemical 
oscillators but also observed synchronization 
phenomena in biological systems.
	 Examples encompass elements within 
the cardiorespiratory system, expansive biological 
networks, and the electroencephalographic patterns 
of individuals with Parkinson’s disease, all 
displaying synchronization characteristics. Figure 
1 elucidates the categorization of neurological 
disorders that are generally considered by different 
researchers in their works. Understanding the 
circumstances in which the coupling of chaotic 
systems occurs is crucial, as is identifying 
the moments of coupling. Numerous studies 
are dedicated to investigating instances of 
phase synchronization (PS) and generalized 
synchronization (GS). Several methodologies 
have been devised to date for the identification 
of phase synchronization (PS) and generalized 
synchronization (GS). However, challenges arise 
when pinpointing the instances of coupling in 
systems, primarily due to the extremely small-time 
intervals during which coupling takes place or the 
specific signal values at which synchronization 
occurs.
	 The initial concrete endeavour in this field 
began with the concept put forth by Andreas Groth1 
in his paper titled “Visualization of coupling in time 
series by recurrence plots.” Before this work, in 
the exploration of coupled systems, several non-
graphical strategies had been developed to identify 
instances of cooperation in time series2,3,4.
	 The methods and techniques proposed 
in the aforementioned papers address a variety of 
needs. While direct methods based on correlations 
are inadequate for managing nonlinear conditions, 
many nonlinear methods require significantly 
long, stationary time series. In situations where 
stationarity is maintained only for brief periods, 
cross recurrence plots (CRPs) have been 
introduced6,7.  
	 The CRP strategy relies on calculating 
distances of trajectories, which can be particularly 
challenging in real-time systems. An overarching 
challenge in analyzing multivariate data from real-
time systems such as electroencephalograms (EEG) 
is that measurement conditions fluctuate over time. 
Among other factors, offsets and amplitude ranges 
can vary differently across channels 20,21. To tackle 

these challenges, we turn to an innovative method 
that encodes the entire time series into an array of 
zeros and ones. This approach helps mitigate the 
impact of varying values in the time series due to 
diverse external factors, as it discretizes the entire 
series into a pattern of zeros and ones.
	 This concept of order patterns was 
introduced by Bandt and Pompe8, who proposed a 
straightforward model that quantifies time series 
values by comparing them with neighbouring 
values. Subsequently, this method was utilized 
to detect epileptic seizures in patients. Building 
upon the notion of cross recurrence plots (CRPs), 
a visualization tool was developed. 
	 The concept of recurrence has been 
employed to detect relationships between 
interacting systems, leading to the introduction 
of synchronization probability. This approach 
incorporates a multivariate analysis of aggregated 
synchronization. Furthermore, recurrence has been 
used to quantify a weaker form of synchronization 
known as phase synchronization. In this context, 
we expand these measures to identify the 
direction of coupling. The proposed method is 
relatively straightforward to calculate compared 
to more complex information-theoretic methods. 
Additionally, it is applicable to both weak and 
strong directional coupling, as well as to nonlinear 
systems.
	 For assessing the direction of coupling, 
the methods utilized are entirely based on the 
mean conditional probability of recurrence or 
directionality, which is computed and based on 
shared information 24,25.
	 In this study, several methods have been 
compared from various works that estimate the 
direction of the coupling. Most of these methods 
can be categorized into the following three groups: 
(I) Methods Based on a Functional Relationship 
between the Stages, (ii) State-Space Based 
Methods and (iii) Data Theory Based Methods.
Synchronization Behaviour in EEG Signals
	 Synchronization in electroencephal-
ographic (EEG) signals is crucial for interpreting 
data recorded from the human brain. The brain 
governs all activities of the body, and since 
each activity in the body is synchronized with 
others, this synchronization can be monitored by 
analyzing signals recorded from the brain. EEG 
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(Electroencephalography) is highly effective for 
detecting neurological disorders due to several 
factors:
Real-time Brain Activity Monitoring
	 EEG measures the brain’s electrical 
signals produced by neuronal activity, allowing 
clinicians to observe brain function in real time. 
This capability is crucial for detecting abnormal 
patterns associated with conditions like epilepsy, 
seizures, and sleep disorders.
Non-invasive Technique
	 As a non-invasive method, EEG doesn’t 
require surgical intervention or penetration into the 
body, making it safe for repeated use and less risky 
for patients.
High Temporal Resolution
	 EEG excels in capturing rapid changes in 
brain activity due to its high temporal resolution. 
This ability to track short-lived electrical 
fluctuations is key for identifying transient events, 
such as epileptic discharges or specific sleep stages.
Detection of Specific Abnormal Patterns
	 Various neurological conditions exhibit 
distinct EEG signatures. For example, epilepsy 
is often associated with characteristic abnormal 
discharges, while disorders like encephalopathy, 
sleep disorders, or brain trauma also show unique 
EEG patterns.
Portable and Cost-efficient
	 Compared to other neuroimaging 
techniques like fMRI or PET scans, EEG is more 
affordable and portable, making it accessible for 
use in diverse clinical settings, including smaller 
hospitals or outpatient facilities.
Assessment of Consciousness States
	 EEG is particularly valuable in evaluating 
brain activity in unconscious or comatose patients, 
aiding in the diagnosis of brain function levels in 
conditions like coma, vegetative states, or brain 
death.
Broad Clinical Application
	 EEG is versatile, used in diagnosing a wide 
range of neurological conditions beyond epilepsy, 
including brain tumors, strokes, infections, and 
neurodegenerative diseases such as Alzheimer’s 
disease.
	 These features make EEG an indispensable 
tool for diagnosing and understanding various 
neurological disorders, thanks to its real-time 

monitoring, accessibility, and ability to detect 
specific brain activity abnormalities.
	 The techniques utilized for brain mapping 
are contingent upon either bivariate measures (BM), 
which entail averaging across pairwise values, or 
on multivariate measures (MM), which directly 
assign a singular value to the synchronization 
within a group.
	 To contrast Multivariate Measures (MM) 
with Bivariate Measures (BM), nine distinct 
estimators were utilized on simulated multivariate 
time series with known parameters and on actual 
EEG recordings. The investigation unveiled 
noteworthy correlations between BM and MM 34,35.
	 Examin ing  the  pe r fo rmance  o f 
synchronization measures in simulated scenarios 
featuring diverse coupling strengths, association 
probabilities, and parameter discrepancies, it 
was observed that certain measures, such as the 
S-estimator, S-Renyi, omega, and coherence, 
exhibit higher sensitivity to direct dependencies. 
On the contrary, additional measures such as 
mutual information and phase locking parameters 
demonstrate reduced sensitivity to nonlinear 
effects.
	 These attributes should be taken into 
account alongside the fact that Multivariate 
Measures (MM) are computationally less 
demanding and, consequently, more effective 
for large-scale time series analysis compared 
to Bivariate Measures (BM) in evaluating 
synchronization within EEG signals 43

	 Dynamic behaviors  and specif ic 
spatiotemporal patterns are observed in oscillatory 
patterns within the alpha and beta bands (<35 Hz) 
during a range of cognitive, sensory, and motor 
tasks, as depicted in the work of Neuper and 
Pfurtscheller11. The event-related desynchronization 
(ERD) seen in the alpha band and beta rhythms can 
be explained as a link between an activated cortical 
region and heightened excitability of neurons 12,13 . 
	 Additionally, the act of opening one’s 
eyes usually results in the suppression of alpha 
waves, whereas alpha power tends to elevate during 
closed-eye states 50. This latter phenomenon is 
often associated with a decrease in the dynamic 
processing of data, caused by interruptions in 
the flow of data from the visual system. The 
initial discoveries of occipital and frontal alpha 
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Fig. 1. A Systematic Level Of Neurological Disorders

synchronization have proposed that sudden 
surges in alpha activity might signify a state of 
“hypofrontality,” where cognitive abilities linked 
to methodical reasoning and critical thinking could 
be temporarily impaired.
	 F ink 27  conduc t ed  an  add i t i ona l 
investigation to ascertain whether alpha 
synchronization during innovative ideation 
signifies elevated or deteriorated activity of EEG. 
This was done by employing frontal magnetic 
resonance imaging method. 
	 For example, Jensen 19 discovered that 
synchronization in the alpha band (9-12 Hz) 
increases when individuals are required to retain 
information for brief durations. This heightened 
synchronization in the alpha band can be studied 
to gain insights into memory-related disorders 
such as dementia, where patients face challenges 
in memory retention.
	 Similarly, Klimesch12 suggested that alpha 
band desynchronization occurs when individuals 
engage in mentally demanding tasks.
	 Furthermore,  Sauseng21 observed 
synchronized alpha band frequencies in EEG 
signals recorded from frontal areas of brain when 
it is involved in any memory retention based task. 
	 Cooper18 examined the activity in the 
alpha band of EEG signals, particularly in tasks 
involving sensory processing of visual, auditory, 
and tactile stimuli, as well as tasks requiring mental 
visualization of these stimuli.
	 Additionally, internally directed mental 
imagery tasks result in stronger alpha power 
compared to externally directed tasks. Moreover, 

alpha power increases with greater task demands 
and complexity.
	 Moreover, frontal alpha synchronization is 
noted during tasks requiring high levels of internal 
processing in the brain, but not during tasks with 
low internal processing demands28 .
	 Benedek22 investigated synchronized 
alpha band frequencies in EEG signals when brain 
is involved in any creative task. They concluded 
that there is high degree of synchronization in alpha 
band signals when brain is involved in different 
creative tasks. This view was supported by Von 
Stein and Sarnthein 24.
	 Drawing from the aforementioned 
studies, numerous researchers in the field suggest 
that neurological disorders can be explored 
and potentially diagnosed by analyzing the 
synchronization patterns in brain signals across 
various frequency bands. Some of these works are 
summarized in Table 1.
EEG Alpha Synchronization
	 Activity variations of various EEG bands 
have been observed to detect and study cognitive 
activity and its various aspects. During periods of 
rest, the alpha band frequencies (8–12 Hz) become 
the predominant spectrum of EEG, marked by 
synchronized signals recorded from the brain, 
where as substantial deterioration in intensity and 
synchronism is observed when brain is involved 
with some task i.e. when it is not idle25 .
ERD Based Synchronization
	 Investigations utilizing ERD/ERS reveal 
a diverse pattern of alpha resynchronization 
observed across the broad alpha frequency band. 
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Table 1. A systematic contribution chart of experts

S. 	 Experts	 Year	 Contributions
No.

1.	 Mitchell D. Woodbright 33	 2024	 They proposed a feature extraction method from the EEG signals 
			   to predict neurological disorders. Deep learning concepts have 
			   been utilized to acquire visualizations of the predictions.  
2.	 Goel, S34	 2024	 Transformation of recorded EEG signals into recurrence graphs 
			   has been the main the main focus here. The features have been 
			   extracted from the recurrence graphs for detection of disorders. 
			   Principal Component Analysis has been used for extracting the 
			   features, which has resulted in reduction of computational steps. 
3.	 Ali, L. 35 	 2023	 This paper has proposed a new and efficient feature extraction 
			   method with the help of deep neural network and has also 
			   compared its performance with the contemporary works.
4.	 Singh, A. K 36 	 2023	 This works has facilitated the pipeline design for the analysis of 
			   signals recorded from brain. For this purpose, extensive use of 
			   artificial intelligence and machine learning has been advocated. 
5.	 Kidwai M.S37	 2022	 Proposed an algorithm that is based on Order Recurrence Plots 
			   (ORPs) and Machine Learning, for  the detection of neurological 
			   disorders. Has also compared the performance of the proposed 
			   algorithm with the contemporary works and the performance 
			   of the proposed algorithm has been much better in terms of 
			   specifity, precision and other parameters.
6.	 Lima 38	 2022	 This study is focussed on reviewing various Machine Learning 
			   based  signal conditioning techniques for acquired EEG signals 
			   and has compared and analyzed their performances.
7.	 Xie, Q 39	 2021	 They had utilized dynamic functional connectivity network 
			   for feature extraction from EEG signals for the efficient diagnosis 
			   of neurological disorders.
8.	 Vandana, J.40	 2021	 Provided an up-to-date comprehensive overview of the research 
			   focused on utilizing machine learning techniques to diagnose 
			   bruxism,epilepsy and dementia.
9.	 Raghavendra, U 41	 2020	 Offered a contemporary survey of research spanning the 
			   previous two decades on the automated detection of epilepsy and 
			   Bruxism by emphasizing on analysis of physiological signals 
			   and images.
10.	 Wanzeng Kong 42	 2019	 Employed synchronization in the phase of recorded EEG data 
			   for the analysis of signals and for finding the reason of epileptic 
			   seizures in patients.
11.	 Miaolin Fan 43.	 2019	 Investigated the spatial-temporal synchronization patterns 
			   within the brains of epileptic individuals by utilizing spectral 
			   graph theoretic features extracted from scalp EEG data. 
12.	 Anwesha Sengupta44	 2018	 Has discussed a specific method to acquire data from EEG 
			   machine so that it can be analyzed effectively for detection 
			   of neurological disorders.
13.	 L. Moumdjian 45 	 2018	 Observed what effect does the auditory stimulus has on the EEG 
			   signals that are already synchronized in the patients 
			   of neurological disorders. 
14.	 Marila Rezende Azevedo46	 2018	 Employed the neuronal groups for analyzing the changes in EEG 
			   signals of a patient having sleep bruxism. 
15.	 Alotaiby47	 2018	 Outlined the signaling pathways associated with neurological 
			   disorders.
16.	 Li S. 49	 2018	 Introduced the concept of network synchronization with 
			   periodic coupling
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17.	 Notbohm 50	 2016	 Studied the effect of light as a stimulus on the EEG signals. 
18.	 Oleksandr Popovych51	 2014	 Explored methods to counteract abnormal neuronal 
			   synchronization through invasive and non-invasive brain 
			   stimulation techniques.
19.	 Lialiana 52	 2013	 Designed a brain-computer interface that depends on the elevated 
			   correlation levels among EEG signals.
20.	 Milan Brázdil 53	 2013	 Employed synchronization patterns to investigate cortical 
			   activity in response to stimuli.
21.	 Lai Y M54	 2013	 Outlined the distinctions between clustering, de-synchronization, 
			   and synchronization in EEG signal states.
22.	 Akam 55	 2012	 Described a method to study EEG signal states through the 
			   oscillatory dynamic techniques.
23.	 Lehnertz56	 2011	 Provided fundamental terminology regarding neurophysiological 
			   signals.
24.	 Katharine Brigham57	 2010	 Utilized synchronization in EEG signals to decode an 
			   individual’s thoughts.
25.	 Ermentrout 58	 2010	 Has discussed about the Neuroscience empirically.
26.	 Schroeder59	 2009	 Discussed how neuronal oscillations can be instrumental in 
			   detecting various disorders in humans.
27.	 Velazquez 60	 2007	 Focused on activity in EEG signal states during epileptic seizure 
			   in patients.

This approach has been recognized through the 
substantial body of work conducted by Klimesch12. 
Their research revealed that lower alpha ERD is 
linked to general task demands such as attention 
processes (basic alertness, attentiveness, or 
arousal), while ERD in the upper range of the 
alpha band can indicate specific task requirements. 
Similarly, the upper alpha frequency band has 
been identified as particularly responsive to 
demands associated with insight. As outlined in 
Neuper and Pfurtscheller11, the Event-Related 
Desynchronization (ERD) of EEG activity in the 
alpha band likely reflects increased excitability and 
firing of neurons in the underlying cortical areas, 
which can be associated with an enhanced transfer 
of information in thalamo-cortical circuits11.
	 On the other hand, Event-Related 
Synchronization (ERS) of alpha activity is believed 
to signify a reduced level of dynamic information 
processing in the underlying neuronal networks, 
often referred to as ‘cortical idling’ 13.
	 Nonetheless, recent developments in this 
field of study also propose that the synchronization 
phenomenon observed in alpha-based activity is 
connected to the dynamic execution of cognitive 
tasks, potentially involving processes of cognitive 
control28. 
Data Acquisition of Synchronization Concepts
	 For the investigation of cortical activity, 

EEG signals are acquired using an EEG amplifier 
at a sampling rate of 500 Hz. Gold electrodes (9.1 
mm of diameter) are placed on an electrode cap 
following the standard 10-20 system with spaced 
positions. A single electrode is positioned on the 
forehead (Fpz), and an orientation electrode is 
located on the nose.
	 The EEG signal is adjusted for ocular 
artifacts using an automated regression-based 
method, supplemented by visual inspection to 
identify any remaining artifacts stemming from 
eye movements and muscle tension. Typically, the 
calculation of power in various bands of the EEG 
signal employs a standard Fast Fourier Transform 
(FFT) applied to time windows lasting 1000 ms 
with 900 ms overlap. This process enables the 
extraction of features within the upper alpha 
frequency band (10.5–12.5 Hz). Additionally, for 
complementary analysis, power computation in the 
lower alpha band (8.5–10.5 Hz) is carried out.
	 Based on the EEG outcomes and the task-
related synchronization of frontal alpha activity, a 
substantial level of synchronization is observed 
during top-down processing. Conversely, tasks 
involving bottom-up processing demonstrate 
marked desynchronization 24,28,30.
Detection of neurological disorders on the basis 
of oscillations
	 Several investigations suggest that the 
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Table 2. List of few main neurological disorders that have been studied along with the researchers’ names

No.	 Researchers	 Year	 Parkinson 	 Epilepsy	 Bruxism	 Hearing 	 Schizophrenia	 Stroke
			   disease			   Loss

1.	 Woodbright, M. D 33	 2024	 √	 √	 √	 √	 √	 √
2.	 Goel, S.34	 2024		  √				  
3.	 Gulay61	 2023	 √					   
4.	 Tawhid62	 2023		  √	 √		  √	 √
5.	 Alalayah, K. M. 63 	 2023	 √					   
6.	 Mary, G. 64	 2022	 √	 √				  
7.	 Lima, A. A.65	 2022	 √	 √				  
8.	 Saravanan, N. P.66	 2021		  √				  
9.	 Boonyakitanont, P. 67.	 2020		  √				  
10.	 Raghavendra, U.41	 2020	 √		  √			 
11.	 Logroscino 68	 2019		  √	 √	 √	 √	 √
12.	 Yannick 69	 2019	 √	 √	 √	 √	 √	 √
13.	 Kidwai 70	 2019	 √	 √				    √
14.	 Acharya 71	 2018	 √	 √	 √	 √		
15.	 Kidwai 72	 2017	 √	 √	 √			 
16.	 Uva73	 2015	 √	 √	 √	 √		
17.	 Kumar, Y 74	 2014		  √				    √
18.	 Jiruska, P 75	 2013	 √	 √		  √	 √	 √
19.	 Kumar, S. P76	 2010		  √				    √
20.	 Wirrell E 77	 2008	 √	 √				  
21.	 Loddenkemper T 78	 2007	 √	 √				  
22.	 Wirrell E 79	 2006		  √	 √			 

rise in bilateral frontal alpha activity observed 
during a standardized test for divergent thinking 
is connected with enhanced creativity. This 
discovery presents the primary direct evidence for 
the functional significance of alpha oscillations in 
creative ideation.
	 A notable consequence of oscillations in 
the alpha band of EEG signals during imaginative 
thinking is cortical idling. Previous research has 
indicated that alpha band oscillations may indicate 
reduced mental activity, as a decline in alpha power 
is commonly observed during brain activations in 
tasks. Therefore, the increase in alpha power in the 
frontal cortex is suggested to represent a hypoactive 
state of this brain region, termed “hypofrontality,” 
which in turn may lead to enhanced creativity.
	 However, current research suggests that 
creativity is an active cognitive process rather than 
an outcome of decreased activity in the frontal 
cortex. Several studies have shown a decrease 

in alpha power during various other demanding 
cognitive tasks16.
	 More specifically, creative ideation 
involves internal thought processes combined with 
an inhibitory cognitive control mechanism 79,80. 
This mechanism acts to shield the internal process 
from potential disruption caused by incoming, 
attention-grabbing, but ultimately irrelevant stimuli 
31,32.
	 Hence, the amplified alpha activity 
triggered by frontal 10Hz- transcranial alternating 
current stimulation (tACS) could boost the top-
down management of internal processes, thereby 
aiding in improved creative ideation 81.
	 A consolidated chart summarizing the 
significant recent works by various experts is 
presented in Table 1.
	 The current state-of-the-art techniques 
for acquiring EEG signals and using them to 
detect neurological disorders involve significant 
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advancements in both hardware and software, 
including improvements in signal acquisition, 
processing, machine learning, and brain-computer 
interfaces (BCIs). These developments have 
enhanced the precision, usability, and clinical 
effectiveness of EEG in diagnosing neurological 
conditions. The current state-of-the-art techniques 
for EEG signal acquisition and analysis have been 
significantly advanced through high-density EEG, 
portable systems, sophisticated signal processing, 
and the application of AI and machine learning. 
These innovations have greatly enhanced the 
accuracy, accessibility, and real-time capabilities 
of EEG in detecting and diagnosing neurological 
disorders, ranging from epilepsy and Parkinson’s 
disease to Alzheimer’s and autism spectrum 
disorders.

Conclusion

	 This paper has discussed the presence 
of synchronization among bio-signals generated 
in the brain, and has highlighted its significance 
in the study and analysis of the brain through 
relevant and recent research findings. It is evident 
from the relevant literature that several authors 
have discovered that various brain activities can 
be examined by observing the synchronization 
patterns in EEG signals, with changes in these 
patterns observed when the brain responds to 
specific stimuli. Furthermore, existing research by 
scientists and doctors suggests that the correlation 
between neuronal groups can also serve as a means 
to detect various neurological disorders in humans. 
The desynchronization patterns of EEG signals can 
also be utilized to investigate cortical activity82,83. 
From the existing literature, it is also apparent 
that there are numerous techniques available for 
detecting various neurological disorders. However, 
there is a research gap in the development of a 
versatile and simple technique that can detect 
seizure-based neurological disorders with minimal 
or no alteration to its approach84,85.
	 The synchronization phenomenon in EEG 
signals has been widely employed in the study of 
brain activities and for the detection of neurological 
disorders. However, different parameters and 
approaches are utilized for detecting various 
neurological disorders. Additionally, experts 
have proposed various theories to observe 

changes in EEG signal synchronization using 
graphical methods. Yet, there has been limited 
work in developing a method that quantifies 
synchronization to facilitate brain study. Therefore, 
there is potential for developing a single-feature-
based technique that can specifically detect seizure-
based neurological disorders. 
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