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The presence of gaussian noise commonly weakens the diagnostic precision of low-dose
CT imaging. A novel CT image denoising technique that integrates the non-subsampled shearlet
transform (NSST) with Bayesian thresholding, and incorporates a modern method noise Deep
Convolutional neural network (DCNN) based post-processing operation on denoised images
to strengthen low-dose CT imaging quality. The hybrid method commences with NSST and
Bayesian thresholding to mitigate the initial noise while preserving crucial image features, such
as corners and edges. The novel aspect of the proposed approach is its successive application
of a DnCNN on initial denoised image, which learns and removes residual noise patterns from
denoised images, thereby enhancing fine detail preservation. This dual-phase strategy addresses
both noise suppression and image-detail preservation. The proposed technique is evaluated
through the use of metrics, such as PSNR, SNR, SSIM, ED, and UIQI. The results demonstrate
that the hybrid approach outperforms standard denoising techniques in preserving image
quality and fine details.
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Medical imaging refers to the different
imaging techniques used in modern hospitals and
clinics for medical diagnosis. X-rays, CT imaging,
ultrasound scans, magnetic-resonance imaging
(MRI) techniques are used to scan within the body to
assess the cause of disease and provide appropriate
treatment for medical conditions. In CT imaging
, X-ray radiation is directed at the patient’s body
from multiple projections to scan bone fractures,
organs, fat, and blood vessels. Although repeated
scans in patients provide invaluable information
for the clinical diagnosis of various diseases, there
is a potential risk of cancer threat'. Hence, it is

essential to minimize radiation exposure. Lowering
radiation exposure improves noise, blur and other
minute artifacts in tomographical images®. Low
dose CT images exhibit noise due to electrical
interference, quantum effects and mathematical
computations. An effective denoising technique is
required to explicitly reduce the noise and artifacts
from distorted CT images *°. CT image denoising
techniques can be classified as classical CT image
denoising, post-processing, and deep learning
related methods.

Classical denoising techniques are
classified as spatial and transform domain filtering
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methods. Spatial filtering methods manipulate
the intensity values of the pixels directly based
on spatial coordinates. Here, denoising is applied
to the whole image. Spatial domain filtering
methods,*”** make use of low-pass filtering,
suppressing noise to some extent and resulting
in blurry images, for example, wiener, mean,
bilateral and nonlocal means (NLM) filtering
show the correlation between pixel intensities in
their neighboring pixels around a given pixel. This
results in average smoothing, and a loss of sharp
features in an image.

Transform domain filtering methods
analyze images in terms of their frequency levels,
for example., Discrete fourier transform, Discrete
cosine transform, Wavelet, and Shearlet transform
domain'®1213 In transform domain filtering,
thresholding method is applied to denoise noisy
CT images, and inverse transformation is used to
reconstruct original images. Thresholding methods
like SureShrink, VisuShrink, and BayesShrink.
VisuShrink is a global thresholding method
based on the pixel quantity in an image, where
as SureShrink and BayesShrink based on each
subband to evaluate the threshold values. The
non-subsampled shearlet transform provides spatial
localization and sparse representation of multiscale
and multidirectional features to capture different
directional features of an image to overcome
the limitations such as isotropic features and the
absence of multidirectionality of the wavelet
transform. The shearlet transform is effectively
used to capture and represent anisotropic features
such as edges, corners, and fine details, and well-
localized structures exhibit different features in
different directions.

Unlike previous denoising techniques,
post processing methods explicitly handle the
reconstructed images in CT imaging, that is
reconstruction without projectional data, which
improves the performance of generalization.
Traditional post-processing methods, Block-
matching and 3D filtering (BM3D)", adaptive
nonlocal means (NLM)", K means singular-valued
decomposition (KSVD)'® methods effectively
reduce noise and artifacts but the computational
cost is high.

Hybrid methods are combinations of
spatial and transform domain methods that provide
improved image-denoising results, for example,
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denoising CT images through total variation
using the shearlet domain'” with a multi-variate
model, and method noise-based approach yield
better results in suppressing noise, preserving
the edges and structural details. The detection
of noisy COVID-19 (SARS-CoV-2) virus on
LDCT imaging using the nonlocal means filter in
conjunction with method noise yields improved
SSIM results compared to other existing methods'®,
for example, nonlocal means!® | total-variation
methods® using wavelets, to reduce noise while
preserving image features in detail. However,
images suffer from noise and artifacts owing to
poor directionality, shift sensitivity, and a limited
ability to capture directional information.

Recently, deep learning techniques have
played a crucial role in image denoising. The
progress in CNN-based methods?'** has improved
in CT image denoising in LDCT imaging. The
deep denoising convolutional neural network with
residual learning strategy (REDCNN) is a CNN
architecture used in image denoising that includes
residual mapping trained deeper networks to resolve
the vanishing-gradient problem and allows deeper
networks to be trained easily. The efficiency of the
deep CNN differs at different CT radiation dose
levels. For example, the Wasserstein distance-based
generative adversarial network (W-GAN) provides
superior GAN performance, and perceptual loss
evaluates perceptual features with filtered output at
ground truth level to maintain critical information
and effectively reduce noise in CT images®.
Currently, transformer models play a significant
role in image- processing. The Transformer model
is a (DL) deep learning architecture, which is
a self-attention mechanism that captures long-
range dependencies between input and output
tokens*. A vision transformer (ViT) is a kind of
neural-network framework, especially applied in
domains like image recognition, recognition, and
segmentation. Transformer-based Encoder-decoder
Dilation network (TED) effectively preserves the
structure and fine details while denoising images?.
Problem statement

CT imaging is essential for accurate
healthcare diagnostics because it provides precise
images for the detection of health conditions.
However, the existence of Gaussian noise in CT
images significantly diminishes their quality,
contributing to potential challenges in disease
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prediction and identification. This study aims to
address the significant need for effective noise
suppression method to improve CT image quality,
thereby improving diagnostic precision and patient
clinical judgement.

Major contribution

The study presents a novel CT imaging
denoising technique that combines method noise-
based CNN with a non-subsampled shearlet
transform to effectively mitigate Gaussian
noise .The proposed technique improves noise
suppression while retaining crucial image features
by leveraging the multi-scale and multi-directional
analysis of the shearlet transform. Additionally,
the method noise-based CNN method intends to
reduce residual noise patterns in denoised CT
images. This hybrid strategy significantly improves
image quality and diagnostic accuracy, providing
an effective solution to noise-related challenges in
LDCT imaging.

The rest of this paper is presented as
follows. Section 2 introduces a brief literature
review of CT image-denoising approaches.
Section 3 outlines the major concepts of shearlet
transform and DnCNN architecture. Section 4
discusses the proposed hybrid algorithm for CT
image denoising with a method noise-based CNN
method using a shearlet transform. The findings
from the experiments and a comparison with
various existing denoising methods are shown in
Section 5. Finally, the conclusions and proposed
future studies are presented in Section 6.
Literature review

Clinical imaging plays a major role
in diagnostic decision making using different
modalities, to improve the accuracy of clinical
diagnosis of the internal human body. In,*
Abhisheka proposed that the prominent medical
imaging modalities include X-radiation, CT scan,
MRI, Positron-Emission Tomographical (PET)
imaging, and Ultrasound scans. These modalities
effectively visualize a detailed image of inside the
human body. For example, X-rays can be used
to identify bone fractures, dislocations. Unlike
X-ray, a CT scan provides a fast, more detailed
image for medical diagnosis. CT scan is used to
detect organ abnormalities, blood clots, subtle bone
fractures, and internal bleeding. MRI scans provide
highly detailed images of soft tissues. Ultrasound,
or sonography, exploits high frequency sound
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waves to provide detailed imaging of human body,
detect problems in the liver, kidney, heart, blood
vessels, valvular regurgitation, and abdominal
aorta etc. PET scans are used for detecting organ
abnormalities, including soft tissue-related
issues such as finding tumors, neurological
(brain) diseases, cardiovascular (heart) diseases.
These medical image modalities are used by
healthcare professionals to diagnose various
medical conditions in a timely, accurate, and
non-invasive manner, thereby improving patient
outcomes.

The proposed literature review primarily
concentrates on CT imaging using various deep
learning approaches. In,”” Sehgal proposed novel
CT image denoising algorithm, Political-Taylor
Anti-coronavirus Optimization (PT-ACVO)
combines deep learning and advanced optimization
techniques to mitigate noise and enhance image
qualities effectively. The method detects noisy
pixels in images using a Deep Residual network
(DRN) and reconstructs them using the Political
Taylor-Anti-Coronavirus Optimization (Political
Taylor -ACVO) algorithm and image-enhancement
is achieved through Vectorial-Total-Variation
approach. Image denoising was performed using
Discrete Wavelet transform and NLM filtering,
followed by image fusion to obtain final denoised
image. However, the DRN and the Political-
Taylor-ACVO Optimization algorithm might cause
higher computational complexity and there is a
requirement for extensive parameter-tuning.

The evolution of Deep learning methods
has emerged as a rapid progress in CT image
denoising®®. To improve the quality of LDCT
imaging,?® Zhang proposed an innovative
denoising method using U-net and multi-attention
mechanisms for effective feature extraction.
This includes three attention modules. The local
attention module provides localized surrounding
pixel feature extraction based on feature mapping.
The multi feature and channel-attention-module
automatically acquire, extract, suppress noise, and
contribute different weights to the existing feature-
map based on different tasks. The hierarchical
identification module enabled a deeper CNN
for a substantial amount of feature extraction.
Additionally, a study suggests that the enhanced
learning-module increases the network depth by
stacking a multi-layered CNN, activation layer and
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batch-normalization (BN) enabling the learning
and maintenance of detailed image information.
The Experimental quantitative analysis results
show that the module effectively suppressed noise.

In,*® Huang proposed a deep cascade
residual network (DCRN) that offers promising
denoising results, combining attention mechanisms
to enhance model performance, a hybrid loss
function to provide better generalization ability of
the model, and iterative refinement to iteratively
refine the denoised image to obtain a better-
quality image. In,*' Selig proposed a Dilated
Residual U-Net (DRU-Net) for better LDCT
image reconstruction and image enhancement
to enhance image quality and performance. This
involves two-stage process: Initially, filtered-
back projection (FBP) was performed to improve
image reconstruction. DRU-Net is pre-trained for
denoising natural grayscale images, and mapping
low-dose filtered back projection is applied to
the reconstructed images to enhance the CT
images. DRU-Net is fine-tuned and performs
downstream image enhancement by leveraging
LDCT imaging and appropriate normal-dose
computed tomographical (NDCT) images. This
method secured the topmost ranking in the low
dose parallel beam CT-challenge (LoDoPaB),
was computationally more efficient than Institute
of Technology Network (ItNet), and increased the
SSIM metric value. Here, the U-Net model was
pretrained only for Gaussian denoising. If the pre-
trained task and target CT image denoising differ,
affects the performance of the model.

In,* Song introduced a NeXtResUNet-
CNN for industrial CT image denoising. It includes
industrial CT image systems that operate on
diverse energies and significantly affect distinct
spatial resolutions. The proposed algorithm
initiates an image fusion network that combines
Con-vNeXt, ResNet, and U-Net, is assigned to a
self-generated industrial tomographic denoising
dataset. NeXtResUnet simulates a transformer
model to acquire global features, and ResNet is
used to extract the image details. CT-image noise
reduction can be accomplished by downsampling
the CNN. This results in an improved Peak signal-
to-noise ratio (PSNR) and image-denoising,
image segmentation, and contrast normalization.
The NeXtResUNet network structure is concise
and expandable, making it applicable to image

KATTA et al., Biomed. & Pharmacol. J, Vol. 17(3), 1875-1898 (2024)

denoising and image vision-based tasks, like CT
image super-resolution and auto-segmentation
involving industrial CT data.

In,** Byeon proposed the use of a
lightweight Deep CNN with multi-directional fuzzy
non subsampled shearlet transformation (FNSST)
for better image decomposition and suppression
of noisy patterns and artifacts in LDCT imaging.
FNSST is a multi-scale and multi-directional
localization technique used for the decomposition
of low and normal dose images to produce high
and low-resolutional subimages. High-resolutional
subimages with varying noise levels in a fuzzy
setting and other artifacts were given as input to
the CNN to establish an association between the
LDCT high-resolution subimages and the residual
subimages generated throughout the training
process. FNSST-CNN discriminates low and
high-frequency subimages while testing process
to suppress noise and other relevant artifacts. In
LDCT imaging, FNSST-CNN effectively reduces
noisy patterns while preserving the edges and
structural features. The main limitation is that the
cost of implementing fuzzy-based methods is high.

In,* Li proposed a multistage noise
reduction framework for LDCT images. The
framework was mainly trained using un-paired
data. The (PCCNN) Progressive-Cyclical-CNN
performs latent -space utilization from CT images
to suppress noisy areas and other artifacts. PCCNN,
a multistage denoising framework, suggests a
noise transfer model that enables the transfer of
noise from low-dose to normal dose CT images.
The PCCNN also has a progressive module
that includes a multi-stage wavelet transform to
extract high frequency coefficients to reduce noisy
coefficients and preserve contours of the image.
The main constraint is that there is a need for pairs
of perfectly matched low and normal-dose images
to elevate model performance.

In,* Cali®kan introduced, effective
method for identifying and handling noisy pixels
in 2D images using to enhance the quality of CT
images, specifically focusing on accurate detection
of noisy pixels in 2 Dimensional CT images using
hidden resource decomposition approach. The
hidden resource decomposition approach with
extreme learning Machines (ELM) to improve
efficiency in training and high learning speed
suitable for handling large volumes of the CT
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images to preserve critical structural information
in detail. The ELM method markedly improved
noise suppression and imaging quality, attaining
peak performance with 250 hidden layer neurons.
he ELM method significantly reduced mean-
squared-error (MSE) and peak-signal-to-noise
ratio (PSNR).The incorporation of hidden resource
decomposition with ELM may result in complexity
in implementation.In,*® Cali’kan suggested, deep
learning-driven hybrid approach to categorize
seven mineral types, with precision, employing
refined feature selection and the complement
rule for clustering. The method utilizes deep
learning models for feature-extraction and applied
metaheuristic optimization to identify key features,
and complement rule for grouping ineffective
features for achieving exceptional classification
precision. The image denoising can be obtained
using metaheuristic optimization algorithm due to
their capability to explore vast and complex search
spaces.
Major concepts

The following section presents some
essential concepts that were exploited to implement
the proposed methodology.
Non-subsampled Shearlet transform

The NSST transform is constitutes an
extended variant form of wavelet transformation
and is a mathematical tool,’” used in image
processing, particularly for image denoising
and feature extraction. The nonsubsampled
shearlet transform is a multi-directional, multi-
dimensional, shift-invariant, and well-localized
analysis that combines multiscale and directional
analysis separately. NSST coefficients are related
to sparse and capture the mathematical and
geometric properties of an image. NSST is depicted
in conjunction with Nonsubsampled-Laplacian
pyramid (NS-LP) and shearing-filters. Initially,
(NSLP) is used to analyze the images into different
low (approximation) and high (detail) frequency
components, and directional filtering helps to
generate various subbands and extract shearlet
components. The shear matrix accomplishes
directional filtering and provides an analysis across
various directions.

For image data with dimensions of n=2,
and for j>0, keR, /eR?

SHYf (G, k, D =<t U}

(1)
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Where WU, kD are called shearlets.
Here, j > 0, keR, [eR’, the shearlets are evaluated
as:

W 1= |detF; W[ 2W (F ) g (x-1))

i Wik
Where fi,x = Y &; = ( 0 \':)
\.'_.f

The anisotropic-dilation is represented as:
0

i
%= (0 \5)
where j>0, manages the shearlet’s scale,
and provides the frequency to obtain finer scales.

The shearing transformation matrix is obtained
as follows:

1 k
= ({] 1)
The shearing matrix manages only the
shearlet direction.
Hence, the shearlet transform is determined by

the three variables, includes scale j, orientation k
and location 1.

Q)

Each feL? (R?) is restored using:

r +oo +oo daj
R R R A P T j—idkdf
Q)

The Discrete shearlet transform is used
to represent multi-dimensional functions. Here
Jj=k=-L with m, I=ke and LeZ.

The Discrete shearlet transformation can be
denoted as:

U gy = |det Xop? Y(VEXEx — K)

where Xy = (g g) and Y, = (3 1)

..(4)
From each function f'e L? (R?), the given method

is reconstructed using the characteristics of y as
described below:
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f =XjLezkezz <LWjrx > VjLx
(5

The fundamental framework of DnCNN
is depicted in Fig. 1.

Architecture of DnCNN

The DnCNN architecture,?® has been
extensively utilized in image restoration and
artifact removal. DnCNN is a popular neural
network denoising framework that is intended
to denoise additive white Gaussian noise, image
restoration, single image super-resolution, and
deblocking JPEG images. For a given noisy input
image, the noise observation is denoted as x =y
+ v, and the discriminative model for denoising
attempts to acquire the mapping-function, F(x) =
y. The DnCNN approach leverages the residuals
or skip connection learning process to train the
residual transformation R(x) = v; subsequently, y
=x - R(x), and DnCNN applies the loss function (/)
to enhance model parameters that are R (0) specific
to the DnCNN framework.

The Loss function is calculated as the
average mean-squared error among the residual
and the predicted image based on noisy images.

The training process of the DnCNN was
performed using a loss function.

1(@)=——3V

2N, =1

[IR (x5 0) — ((ei— w:)|e -
(13)

where,

0 represents trainable parameters of the DnCNN
network.

N represents the pairs of clean and distorted
training image patches.

The architecture of the DnCNN was
accustomed to reduce boundary artifacts. It
includes
Deep architecture

DnCNN architecture with depth D,
includes 3 types of layers.

Layer 1: Convolutional layers + ReLu
(Rectified Linear Unit) activation function,
including 64 filters with each aspect of existed
dimensions [3 X 3 x c] (total channels) to generate
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64 feature representations and Rectified Liner
Units. Here, non linearity is obtained by ReLu
((max (0,.)). Here, the channel quantity for
grayscale image is 1; The number-of-channels for
a color image is 3 (R-red, G-green, B-blue).

Layer 2: Convolutional layer + ReLu +
Batch normalization (BN) through the addition of
64 convolutional filters, the size of each dimension
is 3 x 3 x 64, batch normalization was performed
between each aspect of the convolutional layer
and the (ReLu ) activation function, and the depth
of the layers was 2 ~ (D - 1).

Layer 3: The convolutional layer is
mainly applied for image restoration via 64 filters
of size 3 x 3 x 64.

Reducing boundary artifacts: In general,
core vision techniques require the size of resulting
image to be consistent with the given input image.
Here, DnCNN applies simple-zero padding and
does not exhibit any artifacts. DnCNN directly pads
the zeroes before convolution; thus, each feature
mapping relating to existing middle layers exhibit
a size equivalent to that of the specified image.

The main contribution of DnCNN in noise
reduction approach is that, it effectively utilizes the
residual network strategy and batch normalization
process to expedite the training and regularize the
learning problem. The image Denoising approach is
represented as a Discriminative-learning challenge
to separate distortion from latent images.

Method noise refers to residual noise or
artifacts introduced by the denoising algorithm
used in image processing. The residual noise retains
pixel information in the image after applying a
noise suppression or denoising algorithm. This
shows the discrepancy among a noisy input and a
(filtered) denoised image.

Method noise = noisy input image - denoised
(processed) image.

Method noise was applied to assess the
effectiveness of the denoising techniques while
preserving image structure and fine details.
Proposed methodology

In this portion, firstly describe the
flowchart and proposed methodology in detail.

Mathematically, image denoising can be
represented as:
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where X1 (i, j) denotes a clean image, Y 1
(i, j) denotes a noisy or distorted CT image, and
nl is supposed to be (AWGN) Additive-White-
Gaussian-Noise in conjunction with a standard
deviation (o), and (i, j) represents pixel’s locations
in an image.

The comprehensive summary of the
suggested approach is depicted in Fig. 2.
The proposed hybrid approach combining
the preprocessing approach of NSST and
postprocessing approach of method noise with
CNN to achieve superior denoising results, i.e.,
effectively combining the structural features
of NSST, the statistical features of Bayesian
thresholding,*® and the learning capability of
method noise-based CNN ,* will further enhance
the image denoising approach.

Proposed Algorithm
Input: A Pre-processed, noisy CT image A
Output: Final denoised CT image "A, .

Step 1: Perform NSST transform to decompose
gaussian noisy input CT image A to acquire low-
frequency components NSST, ' and high-frequency
components NSST," (HL ", LH " and HH ™).

Step 2: Implement CT image denoising using the
following steps:
1. Evaluate noise variability.
il. Determine thresholding value.
ii. Implement empirical Bayesian
thresholding method on noisy NSST," coefficients
to obtain thresholded NSST coefficients.
Evaluate noise variance

Estimate noise variance ¢ noisy from
noisy shearlet coefficients using robust median
estimation *° of CT image noise level in (HH)

Noisy CT image
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high-high shearlet diagonal coefficients.
Estimate the noise standard deviation ¢ noisy
~ _ med
Onoisy™ G e7as

.(6)

med= median (|c, (:)[), e//H subbands
where
c represents set of high frequency (HH) coefficients
of NSST decomposition of noisy CT image.
med represents median absolute deviation of all
coefficients.

The constant 0.6745 is used for robust
estimation of the noise level.
Calculate noise variance 6 noisy?

2

. . med
Onotsy” _(0.6745)

(7

Implement Bayesian thresholding process

The threshold value is calculated for
retaining the image’s intricate details of an image
and perform noise suppression effectively.

The threshold value is selected as:

Xij= J2(8roisy2)log(B™(4; ) (8)

where,

M.j denotes the threshold value used for empirical

Bayes thresholding.

o noisy> denotes the estimated noise variation.

6" (A, )) denotes the amount of elements of image .

log signifies the natural logarithm function.
Perform thresholding of coefficients tk

using empirical Bayes thresholding.

Bayesian soft thresholding process:

a) For each coefficient |Ai’j|, find the absolute value
of A..
i

Residual image

—» o0 —>

K
D

Conv + ReLU

Conv +BN +ReLU

Conv +BN +RelLU

Conv

Y

Conv +BN +RelLU

Fig. 1. Framework of the DnCNN network
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b) Compute the sign of the coefficients.
1 if4;;>0
For each coefficient A;;: sign(4;;) = {—1 if 4;; <0
..(9)
¢) Apply Bayesian soft thresholding approach for
each coefficient, is described as:

X;j=sign (4;;)-max (| 4;;|— X;;,0).
(10)
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This function works as follows for thresholding:

If| AiJ| is 1~ess than or equal to (<=), the
given thresholding A is set to 0. This procedure
effectively removes small coefficients assumed to
be dominated by gaussian noise. Then replace the
original noisy coefficients A, with thresholded
coefficients tk

Noisy CT Image, A

b,

NSST algorithm

|

.

Approximation part ]
(LL)

bmau part [.HI..LE.]EI]IJ]

l

|

Baves threasholding
{HL]!!TI-' ,LHII!"H-' . HH“W}

Inverse NSST

l

Output image, B ]—'[ A-B

A 4

[C}L‘E based method noise approach ]

on (A-B)

A'+B

k

e

Denoised CT image, A™

Fig. 2. Flowchart of proposed CT image denoising using NSST with method noise-based CNN



1883

Step 3: Perform inverse NSST transform on
thresholded NSST", coefficients (HL™", LH ™" and
HH ") to reconstruct the semi denoised CT
image, B,

Calculate the residual image or method noise Al

A'yj=Aij-Bij

(1)

Here A" represents the discrepancy between a
noisy image A, ; and its reconstructed semi denoised
image counterpart B...

When A'ij approaches 0, the noise in the original
signal is successfully eliminated through denoising.
is A',. residual image that also has some noisy
coefficients that affect the quality of image.

Step 4: Calculate C; by applying method noise
CNN on residual image 4’i.e., DnCNN on (A", ).

Step 5: calculate final denoised image 4 " =AB,

..(12)

By combining inverse thresholded NSST

coefficients B, with the denoised method noise-

based CNN on the residual image C,, to get the
final denoised image ( ”,.J.).

o

(b)
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A brief explanation of proposed methodology
During the experiments , noisy CT
images are commonly contaminated by Gaussian
noise, The hybrid approach, non-subsampled
shearlet transform is applied for decomposition
of noisy image into an approximation (LL ™)
and detail part (LH "¥, HL ¥ and HH ™). The
(approximation) high frequency components are
further decomposed into multidirectional subbands
to represent image features in a detailed manner.
The noise variance was estimated in high frequency
components using the median-absolute-deviation
(MAD).The Bayesian thresholding function, which
selects all noisy NSST coefficients, then calculates
optimal threshold values to obtain the denoised
coefficients. The inverse NSST transform is used
to reconstruct denoised CT images from high
frequency thresholded NSST coefficients, resulting
in a denoised CT image. The denoised image, that
is, the reconstructed image, preserves fine details
but retains some residual noise. To solve this
problem, calculated the method noise to visualize
the discrepancies among the noisy and denoised
NSST coefficients. Here, the method noise process
was applied to capture residuals or any distortions
introduced during the CT image denoising process.
The deep CNN, network architecture is applied

(c) (d)

Fig. 3. Clean CT image dataset : (a) CT1 image, (b) CT2 image, (c) CT3 image, (d) CT4 image

(a) (b)

Fig. 4. Noisy CT image database ¢ = 10: (a) CT1 image; (b) CT2 image; (c) CT3 image; (a)CT4 image.

(c) (d)
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to method noise to learn complex noise patterns
in order to capture intricate details effectively
and reduce noise components. Finally, residual
learning denoised image was combined with the
NSST high frequency thresholded denoised image
to acquire the final denoised CT-image. The final
restored image preserves fine details and structural
information while simultaneously removing noise
and other artifacts.

RESULTS AND DISCUSSION

The exploratory evaluation is carried
out on noisy grayscale CT images with pixel’s
size 512x512. Initially, CT scan test images are
obtained from “large COVID-19 CT-scan slice

1889

dataset” to determine the efficacy of the suggested
denoising method. The Noise-free or clean CT
images are required as a reference image to analyse
the denoising method’s performance. Fig. 3. is
considered as CT images 1, 2,3, and 4 respectively.
Fig. 4. depicts the addition of additive gaussian
with a noise variance of 10. To test the experimental
results, Additive-white-gaussian-noise is added at
different noise levels (6 =5, 10, 15, 20) to analyze
the effectiveness of various denoising techniques
and assess the qualitative performance of noisy CT
images.
Quantitative evaluation metrics

The qualitative result analysis of the
suggested methodology uses diverse quality factors
, 1.e., PSNR, SNR, SSIM, ED, and UIQI,'*".

(2) (b)

(c) (d)

Fig. 5. Outcomes of the Wiener filter [9]

(a) (b)

(c) (d)

Fig. 6. Outcomes of the Median filter [6]

(a) (b)

Fig. 7. Outcomes of the Bilateral filter [7]

(c) (d)
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PSNR (Peak Signal-to-Noise ratio) is used
to assess the quality of restored images relative
to the original images. PSNR evaluates the ratio
between the given maximum signal strength and
the power of distorted noise, i.e., the difference
between the clean image and filtered image. For
the input CT image X and the denoised CT image
Y.

PSNR is denoted as

PSNR = 10log10 (25;);‘;55) (14)
MSE = — ¥, ¥, [X(, ) = ()]
(15)

(a) (b)

Fig. 10. Outcomes of the Curvelet transform [12]

1890

Where MSE represents the mean-square-
error between the original image and the denoised
CT image.

X (i, j) depicts the clean CT image.
Y (i, j) depicts the filtered CT image.

m x n represents the pixel’s size of clean CT image
and a denoised CT image.

(SNR) Signal-to-Noise ratio is a qualitative
metric to measure and quantify the desired signal
strength related to the distortion or noise level. It
is measured in the form of decibels, and it is also
used to analyze the image quality.

(c) (d)
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SSIM (Structural-Similarity-Index-

SNR = 10logl O(Psignal) Meas.ure.) isa metric serves as ameasure tF) evah.late
Pnose .(16) the similarity among two images. It is mainly

relying on three parameters: luminance, contrast,

(a) (b) (c) (d)

Fig. 11. Outcomes of the Contourlet transform [13]

(a) (b) (c) (d)

Fig. 12. Outcomes of the DnCNN [28]

(a) (b) (c) (d)

Fig. 13. Outcomes of the Proposed method

and structural features, and the SSIM values
vary between -1 and 1, where 1 denotes absolute
similarity and -1 denotes discrepancy between two
images.

__(epxpy+C1)(2oxy+C2)
SSIM (X, Y) = (13 +pz+c1)(o%+ o2+C2)

(17)

X represents clean CT image.

Fig. 14. The line segment is used for intensity profile Y represents denoised or filtered CT image.

of image 1 for all denoising approaches
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Fig. 15. Intensity profiles of clean image, noisy image and proposed approach, respectively
(a) Intensity profile of clean image against noisy image and proposed filtered image’; (b) Intensity profile
of clean image ,noisy image and proposed filtered image®; (¢) Intensity profile of clean image ,noisy
image and proposed filtered image’; (d) Intensity profile of clean image ,noisy image and proposed
filtered image'”; (e) Intensity profile of clean image ,noisy image and proposed filtered image'’; (f)
Intensity profile of clean image ,noisy image and proposed filtered image'?; (g) Intensity profile of clean
image ,noisy image and proposed filtered image'3; (h) Intensity profile of clean image, noisy image and
proposed filtered image?; (i) Intensity profile of clean image, noisy image and proposed filtered image.

Ux and Py are denoted as the local means, Tx,
Ty are denoted as standard deviations, and 9xY is

image’s covariance of X and Y. Here, C1=":'E“:-l D)?
, C2=(k2D}‘are constant values to stabilize
division with zeros, where D is the variation in

pixel values between 28157 PST—PiEsL | g |,
Here, k1=0.01 & k2 = 0.03.

The Entropy Difference is the statistical
measure of randomness present in an image
suitable for analyzing the texture of the given
source images. Shannon entropy is estimated
between the clean image (X,) and the denoised-CT
image (Y,). The dissimilarity in the mean value is
denoted as ED.
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ED is computed as:

ED=SE(X)-SE(Y)) ..(18)
Where, SE denotes Shannon Entropy.
Shannon Entropy is computed as:

SE=Y. X{ log(Y?") (19)

UIQI (Universal-Image-Quality-Index) is a
benchmark used to determine the quality of a
denoised CT image and its corresponding reference
image.

The UIQI between two images original image
distorted image is defined as:

40xyHxty
URQIX.Y) = 75—
N (R

(20

Uz By represents the average values of the given
CT images X and Y.

o; and oy denotes the variances of X and Y.

Tx¥ represents the covariance of the images X
and Y.

For strong comparison, the noisy CT
images are denoised using various approaches, like
wiener, median, bilateral, DWT, curvelet transform,
contourlet transform, DnCNN, and the proposed
method. The performance criteria, including
PSNR, SNR, SSIM, ED, and UIQI, are assessed
across different noise variances, as presented in
Table no. from 1 to 5. The results of the proposed
method are highlighted in bold. It is clear from,
comparing Tables 1 to 5 that the proposed method
outperforms the mentioned standard methods.Table
no.l, illustrates comparative analysis of different
denoising methods based on PSNR, while Table 2,
based on SNR, while Table 3 on SSIM, while Table
4 on ED and Table 5 on UIQI.

Table no.1 shows PSNR results for
different denoising approaches applied to four
CT images (CT1, CT2, CT3 and CT4) at various
gaussian noise levels (508 = 5,10,15,20). The
PSNR refers how efficiently the signal is preserved
in relation to the level to which its representation
has been distorted by noise. The higher PSNR

KATTA et al., Biomed. & Pharmacol. J, Vol. 17(3), 1875-1898 (2024)

values generally indicates better imaging quality.
The proposed method proves to be consistently
achieving the highest PSNR values among all
mentioned methods. For PSNR, a 0.5% increase
in noise results in a considerable decrease of 2-5
points in the PSNR value. SNR measures the ratio
between intensity of the desired signal and amount
of the noise present in the image. For SNR, increase
in noise causes substantial reduction of 1-6 points
in SNR value as shown in Table no.2. The method
consistently delivers the highest SNR value in
comparison with other standard denoising methods.

SSIM is commonly employed to evaluate
the imaging quality after compression, denoising,
or other processing approaches. It plays a vital role
in assessing how well various image denoising
algorithms preserve structural information. The
SSIM range extends between 0 and 1, with values
closer to 1 indicating better denoising performance.
For instance, the SSIM values of CT image no. 3
(0.9400) and CT image no. 4 (0.9632) at 508 =
5 are somewhat inferior to those of the proposed
method, as shown in Table no.3. CT images with
SSIM values greater than 0.80 are considered to
be of high quality. It is evident that the proposed
method yields superior results compared to existing
standard methods in terms of SSIM values.

Table no.4 presents ED values of various
denoising methods. A lower ED indicates that the
denoising method has well preserved the features
of the clean image. The ED values of the Wiener
filter for CT image 2 at noise levels 10, 15, and 20
exhibit inconsistent performance, with the ED"
values changing markedly. In CT image 3, the ED’
values of the DWT approach are also quite a bit
lower compared to the proposed method at noise
levels 10, 15, and 20. However, the difference
between the proposed method and the outcomes
of other standard approaches is quite small. The
proposed method consistently outperforms the
other denoising techniques in terms of minimizing
entropy difference and preserving the original
image’s details across various noise intensity
levels.

Table no.5 shows a detailed comparison
of various denoising methods applied on 4 CT
images (CT1, CT2, CT3 and CT4) including
proposed method based on UIQI values at different
gaussian noise levels (6 = 5,10,15,20). Here, UIQI
is used to analyze the quality of denoised-CT
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images, where higher UIQI value indicates superior
image quality. The proposed method performs
well at (508 =5) lower noise levels. The proposed
technique achieves the highest UIQI values among
all standard methods, with DWT and proposed
method exhibiting slightly better performance.

The exploratory results of, ° as depicted
in Fig. 5 are evaluated, and it is noted that the
denoising scheme is performed well but does not
effectively preserve structural details at higher noise
levels. In the experimental data of S as illustrated
in Fig. 6, it is observed that the noise suppression
is performed effectively, but at higher noise levels,
it is unable to preserve the image’s smoothness
and edge information in detail. According to the
experimental results of,” as demonstrated in Fig. 7,
the noise suppression is done effectively. The SSIM
of CT3 and CT4 images shows better outcomes at
noise variance 5. The experimental findings of,"”
as depicted in Fig. 8, show that noise suppression
and other artifacts are reduced successfully, and it
is observed that as more noise is added, resulting
blurry images.

In the experimental results of,'' as shown
in Fig. 9, the noise suppression is performed well,
but as the noise increases, it affects image clarity
and quality. The experimental outcomes of,'? as
shown in Fig. 10, give superior noise suppression
but fail to preserve the image’s structural and fine
details at higher noise levels. The ED of the CT2
image at gaussian noise level 10, 20 gives better
outcomes. In the experimental results of,"* as shown
in Fig. 11, the suppression of noise is performed
well. If noise variance has increased, the resulting
image overall looks blurry. The experimental
results of the proposed technique as depicted in Fig.
12, illustrate that the proposed study mitigates noise
effectively and also retain edges, other structural,
and fine details of an image. The experimental
outcomes are tested on different noisy intensities;
however, the images are displayed only at noise
variance 10.

The proposed algorithm combines NSST
with a thresholding function and its noise-based
CNN approach. This approach exploits NSST
with Bayes thresholding to get denoised NSST
coefficients. Here, the NSST domain provides
various features of an image depicts in different
dimensions and different directional subbands.
The main benefit of recommended methodology is,
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applying the method noise-based CNN approach
gives better noise reduction and preserves edge’s
information. In high textured, noisy CT images,
some residuals or the image’s structural and fine
details may get damaged during denoising using
the NSST domain. To overcome that, the proposed
method noise-based approach using CNN gives
better performance in order to improve image
quality. Performance metrics like PSNR, SNR,
SSIM, ED, and UIQI have proven that the proposed
method remarkably reduces noise at different noise
intensities and also provides better images and fine
detail preservation as compared to other denoising
techniques. Here, the ED values in the proposed
method are near zero. Hence, it has been proven this
novel hybrid approach gives improvised outcomes
in case of visual clarity, quality, and performance
benchmarks.

Another critical assessment for addressing
variations among noisy CT image, clean CT image,
and denoised or filtered CT image, is obtaining the
pixel’s intensity’s profile. The outcome shows the
clean image, a noisy image (noise variance 10), and
a denoised or filtered CT image’s intensity profile
as shown in Fig. 14, the lowest difference has been
figured out between an original or clean image
and proposed denoised image i.e, the ensembled
method provides effective noise suppression as
well as preserving edges and fine details.

CONCLUSION AND FUTURE WORK

The CT images are extensively used in the
medical and healthcare domain, as they precisely
recognise the abnormality information of the
patient. In the proposed work, initially gaussian
noise was added at various levels, ranging in noise
variance from 5 to 20. These noise variances are
used to estimate the efficacy of various denoising
techniques. The proposed study includes NSST and
a noise-based CNN method to remove Gaussian
noise in CT images. Here, NSST is used as a
preprocessing operation to resolve the noisy CT
image into various frequency subbands. Bayesian
thresholding is applied to denoise noisy NSST
coefficients. After denoising NSST coefficients,
a postprocessing approach is used to get residuals
that were preserved in denoised CT images.
The DnCNN was applied to method noise to
extract structural information and fine details of
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CT images. The experimental study employed
four CT scan images, i.e., CT2, CT3, and CT4.
Standard denoising filters were applied to noisy
CT images. All experimental outcomes in proposed
method are evaluated against standard methods.
So, the ensembled method gives benchmarked
performance in case of PSNR, SNR, SSIM, ED,
and UIQI. The proposed study has proven that the
experimental results from Table.no. from 1 to 5 and
Fig.no. from 5to 15, shows better results over the
CT imaging from the perspective of visual quality.

For future work, must investigate the
integration of advanced deep learning models
to further improve denoising effectiveness and
enhance computational efficiency. Moreover,
broadening the study to encompass a larger and
more varied collection of CT images can verify the
reliability of the proposed method. Analyzing the
use of the technique in various medical imaging
modalities such as X-rays or MRI or could expand
its applicability. Implementing real-time denoising
features would improve clinical practices. Finally,
analyzing the effect of denoising on diagnostic
precision and patient outcomes would reveal
valuable insights and understanding of its practical
value.
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