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	 A broad range of gram positive and gram negative bacteria have been demonstrated 
to be effectively suppressed in growth by Metal Oxide Nanoparticles (MONPs), suggesting 
that these particles may be useful in the fight against antibiotic resistance. The antibacterial 
characteristics of MONPs, including those of silver, zinc, titanium, zirconia, iron, copper, 
magnesium, and cobalt oxide are widely recognized. The use of these nanoparticles made 
of synthetic and natural materials in dentistry is developing quickly, has been included in a 
variety of dental materials and has assisted in the treatment of oral disorders as well as the 
removal of biofilms and smear layers. The reader will gain up-to-date knowledge on MONPs, 
their modes of action, and their significance in endodontics in this review.
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	 Human body biology is associated with a 
variety of microbial symbionts and their genomes. 
The microbial population rapidly colonizes both 
the inside and outside of our bodies, developing 
an organ that is essential to our physiology and 
general health. There are about 1000 different types 
of bacteria in the mouth, making the populations 
incredibly complicated. They are second in 
complexity in the body, after the colon, according 
to estimates1. One of the body’s most varied micro 

biomes is in the human mouth2. Viruses, protozoa, 
archaea, fungus, and bacteria make up the oral 
microbiome3.
	 With an elevated risk of infection 
during various operations, the oral cavity is 
the home to a multitude of bacteria which is 
significant in the dental profession. Normal 
microflora typically comprises of a modest 
number of mutans microorganisms (most notably 
Streptococcus mutans and Streptococcus sobrinus) 
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and non-mutans streptococci (such as Streptococcus 
salivarius, Streptococcus sanguis, etc.). Any 
disruption to the microbial ecosystem could make 
it easier for more pathogenic microbes to enter 
the environment, including Escherichia coli, S. 
aureus, Aggregatibacter actinomycetemcomitans, 
Porphyromonas gingivalis, and others4.
	 A significant worldwide problem is the rise 
in bacterial resistance to one or more antibiotics5 . 
Newly, Nanomaterials have emerged as a weapon 
against bacteria resistant to many drugs. These 
nanoparticles can be employed as nanomedicines 
to combat resistant bacteria by working alone or in 
concert with other antibacterial substances. In order 
to improve physical and chemical characteristics 
and therapeutic efficacy, nanomaterials are often 
employed as drug delivery vehicles. A highly 
researched class of nanomaterials against bacteria 
resistant to many drugs are metal and MONPs. 
Metals such as gold, silver, titanium, copper, zinc 
and aluminum as well as metal oxides including 
silver, copper, magnesium, calcium and zinc oxide 
can be used to create these nanoparticles6.
	 Materials with unique features at the 
nano scale, or between 1 and 100 nanometers, 
gave rise to the field of nanotechnology, which 
was first described by Norio Taniguchi in 1974 
and began to take shape in the 1980s. The 
incorporation of nanoscale features into material 
components including those intended for dental use 
is made possible by nanotechnology7. Innovative 
methods in dentistry make use of nanoparticles 
that have therapeutic properties on their own or 
employ nanotechnology to improve the results of 
current treatments8. The primary advantages of 
nanomaterials in dentistry are their efficient and 
broad antibacterial properties, which come with a 
low cost of production for the nanoparticles and a 
minimal chance of bacterial resistance developing9. 
The current article aims to provide an overview 
of the antibacterial properties of metal oxide-
containing nanoparticles used in dentistry.
Microbiology of Root canal Infections
	 Aerobes and facultative anaerobes 
initially predominate in the bacterial ecology of the 
root canal10,11 The ecology of the root canal system 
changes as the condition worsens. These alterations 
may be connected to the oxygen tension during 
root canal openings for therapeutic purposes, 
the application of root canal irrigants, and pH 

variations in the root canal as a result of different 
materials being inserted. Due to genetic population 
shifts, this leads to phenotypic changes12,13,14. 
An endodontic infection may be primary or 
secondary. Apical periodontitis, or inflammation 
of the supporting tissues, is the ultimate result 
of microbial byproducts or microbial invasion, 
which typically causes pulp inflammation and root 
canal infection as its primary infection. Infections 
that return in teeth after root canal therapy can be 
classified as secondary infections, post-treatment 
infections, emergent or acquired reinfections, or 
persistent residual infections15. Polymicrobial 
infections cause primary endodontic infections14,16. 
The most common species among them include 
Eubacterium, Camphylobacter, Fusobacterium, 
Treponema, Prophyromonas, Prevotella, and 
Bacteroides.
	 Treatment failure is thought to be mostly 
caused by bacteria that continue to exist in the 
root canal system after treatment17,18,19. After 
root canal therapy, the diversity and number 
of bacterial species in primary infections can 
change, as well as the proportions of different 
bacteria. Microbial flora in secondary infections 
often adapt to harsh conditions such as broad 
pH ranges and nutrient-limited environments. 
The microbial phenotypes of primary infections 
and subsequent infections differ significantly, 
with gram-positive bacteria predominating in the 
latter18,19,20.  Research has indicated that specific 
species, including Enterococci, Streptococci, 
Lactobacilli, Actinomyces, and fungus (like 
Candida), are more common in teeth that have 
had post-treatment infections. Specifically, it was 
found that a significant percentage of Enterococcus 
faecalis was present in patients with persistent 
apical periodontitis21,22.
Mechanism of Action of Metal Oxide (MO) 
Nanoparticles
Breakdown of the cell membrane caused by 
electrostatic interaction
	 The negatively charged surfaces of bacteria 
interact with positively charged nanoparticles 
through the law of attraction between negative and 
positive charges, causing NPs to accumulate on the 
surface of bacterial cells. Because of the efficient 
bonding between these positively charged NPs and 
the cell membrane, the structure of the cell wall is 
disrupted, which makes the cell more permeable 
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and makes it easier for NPs to enter the bacteria and 
cause cellular content escape. Those nanoparticles 
impact DNA replication, division, and respiration 
by attaching to mesosomes23,24.
Generation of Reactive Oxygen Species (ROS)
	 When nanopar t ic les  penetra te  a 
microorganism’s cell membrane, they release ROS, 
which puts the cell under stress due to oxidation and 
initiates the bacterium’s attack. The attack results 
in reduced respiration and ATP synthesis, which 
damages the cell membrane. Active redox reactions 
and the pro-oxidant functional group on the metal 
oxide nanoparticles interface allow a metal oxide 
to produce ROS25.
Enzyme and protein malfunction
	 By initiating the oxidative process of 
the amino acid chain, NPs promote the creation 
of carbonyls, which are naturally protein bound 
and result in protein breakdown, the deactivation 
of numerous enzymes, and disruption of catalytic 
activity26,27.
Genotoxicity and Inhibition of Signal 
Transduction
	 Through their electrical properties, 
nanoparticles interact with amino acid molecules, 
impairing signal transduction and negatively 
affecting chromosomal and plasmid transcription 
processes28,29,30.
Effective Physiochemical Properties of MONPs 
on Antimicrobial Activity
Chemical composition of MONPs
	 The antibacterial ability of metal oxides 
is impacted by the kind of metal ion particles 
and the composition of their molecules. Metal 
ions including Ca2+, Mg2+, Cu2+, Zn2+, Co2+, 
Fe2+, and Ni2+ are required for various metabolic 
processes in the majority of surviving bacterial 
strains, but at larger quantities, they may be 
toxic. Ag+ and Hg+, two unnecessary metal ions, 
demonstrated a significantly higher antibacterial 
action at remarkably low quantities31. The ability 
of metal ions to bind selectively to ligand atoms 
found in biomolecules and cellular constituents 
may contribute to their antibacterial action. 
Hard soft acid base theory is the foundation for 
the interaction between ligand atoms and metal 
ions (HSAB principle). According to the HSAB 
principle, hard acids join with hard bases, while soft 
acids join with soft bases32.  An excellent affinity of 
divalent copper for biological molecules is shown 

by the Irving Williams series of ligand affinity for 
the essential first-row transition divalent metal ions. 
This shows that at higher concentrations, divalent 
copper may be most dangerous33. 
MONPs Size and Surface Properties
	 Particle size has a major impact on 
how MONPs interact with bacterial cells and 
other biological systems. Because of their 
increased surface to volume ratios and noticeably 
higher particle numbers per mass, nanoparticles 
demonstrated stronger antibacterial activity than 
microscaled (bulk) particles. Numerous reports 
have documented the size-dependent interaction 
between bacteria and MO nanostructures. Under 
normal lighting conditions, the Zinc Oxide 
Nanoparticles (ZnONPs) considerably inhibit 
gram-positive as well as gram-negative bacteria 
in comparison to the bulk particles34,35,36. The zeta 
potential of MONPs describes their surface charge 
characteristics. The Point of Zero Charge (PZC) 
is the pH at which the surface charge is neutral. 
MONPs can exhibit positive, negative, or neutral 
charges. NPs with the highest positive charge show 
the greatest antibacterial activity, followed by those 
with neutral, then negative charges. When the pH 
is below the PZC, the oxide surface is positively 
charged; when above, it is negatively charged.
Concentration of MONPs
	 With increasing concentration in the 
media, MONPs exhibit increased antibacterial 
activity37. Greater MONP concentrations may 
be associated with a greater surface area, this 
eventually promotes stronger contact with bacterial 
cells and increased antibacterial activity. The 
Minimum Inhibitory Concentration (MIC) is the 
most often used metric in microbiology to quantify 
the in vitro antibacterial activity assessment of 
MONP38. The MIC of an antimicrobial drug is 
the concentration at which, following overnight 
incubation, bacteria cannot grow visibly39.
T h e  s h a p e  d e p e n d e n t  a n t i b a c t e r i a l 
characteristics of MONPs
	 Each form of nanoparticle has unique 
physicochemical properties, such as surface 
characteristics, solubility, and the potential to 
produce ROS in certain metal oxides, which 
influence their antibacterial activity. Studies 
show that different forms of MO-NPs exhibit 
varying antibacterial properties. For instance, 
ZnO nanopyramids have significantly greater 
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antibacterial activity against Methicillin-Resistant 
Staphylococcus aureus (MRSA) compared to 
nanoplates and nanospheres40. Another study found 
that spherical ZnO NPs possess higher antibacterial 
power than rod-shaped ZnO NPs34.
Various MONPs in Endodontics
Iron Oxide (IO NP)
	 The biological and medical fields 
find application for iron compound (FeO2) 
nanoparticles. Iron oxide, a sustainable and 
biocompatible material that can be made on a big 
scale at a low cost by simple chemical synthesis 
techniques, is now included in FDA-approved 
formulations for chronic treatment. 
	 Despite the fact the NaOCl is considered 
the “gold standard” for endodontic irrigants41, it 
have been observed that 40% to 60% of root canals 
still contain live bacteria even after irrigation42. 
Similar antibacterial activity to NaOCl has also 
been demonstrated for chlorhexidine43. But only 
the surface layers of the dentin exhibit antibacterial 
activity and both irrigants have shown decreased 
efficiency in disinfecting dentinal tubules44. IO 
NP/H2O2 had strong antibacterial activity that 
was notably superior to chlorhexidine and sodium 
hypochloride in the treatment of dentinal tubule 
infections caused by E. faecalis, especially in the 
central and peripheral zones. Because of IO NP’s 
innate “peroxidase-like activity,” which activates 
H2O2, a high degree of disinfection can be made 
possible, which catalyses the production of free 
radicals on the spot, which quickly destroys 
bacteria45.
Silver oxide
	 The most extensively studied antibacterial 
for endodontic infections is silver nanoparticles. 
While retaining the physicochemical characteristics 
of the produced sealers, it was discovered that 
adding 10 weight percent Ag with SiO2 decreased 
the viability of E. faecalis during both immediate 
and longitudinal study46. It was discovered to help 
regulate the growth of bacteria in the intracanal 
environment and to be just as effective against 
E. faecalis and Staphylococcus aureus as 5.25% 
NaOCl47. Nevertheless, extended exposure 
to bacteria is necessary for their successful 
eradication, which has been described as a good 
substitute for an intracanal medication but not as 
an irrigant48.

Copper oxide
	 Copper is a cheap, readily available 
metal that can be affordably manufactured 
into nanoparticles. Either copper metal ions 
or oxidized cupric ions produced from copper 
nanoparticles (sizes ranging from 1 to 100 
nm) have antimicrobial action. It is simple 
to mix and link copper nanoparticles with 
polymers, ceramics and other metals. In certain 
combinations, they exhibit physiochemical stability 
as well49. Copper is a common metal in dental and 
medical research because of its low toxicity and 
antibacterial properties50. According to reports, 
Copper Oxide Nanoparticles (CuO NPs) exhibit 
antibacterial properties and prevent the formation 
of biofilms51. Copper nanoparticles’ high surface 
area to volume ratio amplifies their antibacterial 
activity52. Furthermore, dose dependence is 
shown in the antibacterial activity of copper oxide 
nanoparticles53. The antibacterial properties of 
these nanoparticles have been well studied, yet it 
is unclear how precisely copper nanoparticles work 
against microorganisms54,55,56. These nanoparticles 
are effective against both gram positive and gram 
negative bacteria because they have the ability to 
enter bacterial cell membranes and damage the 
organism’s vital enzymes. They possess some 
antifungal properties as well57.
	 In caries prevention, copper nanoparticles 
have the ability to inhibit S. mutans from growing 
and colonizing on the surface of tooth roots, hence 
preventing root caries58. Composites with distinct 
physio chemical properties can be created by 
simply incorporating copper oxide nanoparticles 
into polymers. Copper oxide nanoparticles can be 
used to dental adhesive to prevent early or carious 
white spot lesions because they are antibacterial 
without compromising shear bond strength59,60. 
In soft denture liners CuO NPs were added, and 
this resulted in a considerable reduction in oral 
pathogen colonization and plaque development, 
particularly C. albicans accumulation61.
Zirconium oxide
	 Because of its metallic and optical 
characteristics that are comparable to those of 
teeth, zirconia has found extensive application 
in dentistry. Zirconium oxide (ZrO2) has been 
known as a high-performance ceramic material 
due to its superior properties, high strength, 
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resistance to corrosion, and toughness. Because of 
its insolubility in water, it has been demonstrated 
to eliminate bacterial colonization with little 
cytotoxic effects62,63. Because zirconia-based NPs 
are so effective against some infections like E. 
faecalis, they are commonly used as a type of 
antimicrobial in endodontics64.  The most used 
agent for pulp capping, whether direct or indirect, 
and root end filing is mineral trioxide aggregate 
(MTA). Portland cement is the main ingredient 
in MTA. Zirconia nanoparticles (NPs) can be 
added to Portland cement as an effective radio 
opacifier without having a detrimental effect on 
the cement’s biocompatibility. According to ISO/
ADA guidelines, both groups of micro- and nano-
sized zirconia oxide particles showed improved 
radiopacity capabilities when examined63. In caries-
affected dentine, an investigation on aluminum 
zirconate nanoparticles in etch and rinse adhesive 
revealed that 10 weight percent of the nanoparticles 
in the adhesive had the lowest survival rate of S. 
mutans65.
Titanium dioxide
	 Very stable particles with photocatalytic 
properties are titanium dioxide nanoparticles. 
Because ROS are produced, it results in oxidative 
stress. Because of its lipid peroxidation property, 
the cell membrane is disrupted and there is 
increased membrane fluidity even for the types of 
fungus that are resistant to fluconazole, it is also 
a potent antifungal5,66,67.  Because of its excellent 
aesthetics and simplicity of use, Dental resin 
composite is a useful restoration technique for teeth 
that have decayed68,69,70, its perfect finishing and 
enhanced resistance to wear make it an excellent 
choice. However, it should be mentioned that in 
the case of a long-term dental resin repair, the 
bacteria will persist in growing and forming oral 
biofilms on the surface of the resin, particularly 
in the gap that are polymerization shrinkage 
produced. These biofilms will then continuously 
deteriorate the surrounding dental tissue and the 
current resin composite, leading to secondary caries 
and treatment failure71,72.  Photo catalytic activity 
of synthesized anatase-phase Strontium Nitrogen 
Titanium dioxide (Sr, N, TiO2) was increased by 
mixing  with Nano Hydroxyapatite (nHA) fillers as 
reinforcing fillers to create a novel multifunctional 
Direct Resin Composite. It possesses antimicrobial 
and mineralizing properties because Sr, N, 

TiO2 and nHA combine. The mutans strain of 
Streptococcus (S. mutans) was the target of the 
maximum antibacterial rate of 98.96%, which 
helped the resin composite survive longer in the 
clinical environment. Consequently, they conclude 
that the Direct resin composite in conjunction with 
nHA & Sr, N, TiO2 fillers will probably be the most 
effective filler for filling dental cavities73.
Zinc oxide 
	 Although most living things require 
zinc as a trace metal for numerous metabolic 
functions, excessive amounts of zinc can be 
toxic. Because ZnO NPs are less harmful to 
humans than CuO NPs and AgO NPs and can be 
synthesized at a cheap cost, they are frequently 
utilized in cosmetic items, medicine and wound 
healing to treat fungal infections and acne. They 
also display a broad spectrum of antibacterial 
activity74.It has been discovered that ZnO NPs 
possess antibacterial qualities. Modest amounts 
of ZnO NPs had no effect on the mechanical 
properties of dental resin composites, but they did 
prevent S. mutans from growing and adhering to 
the material75. When ZnO NPs were added into 
Glass Ionomer Cement, it considerably increase 
antibacterial activities against S. mutans without 
affecting mechanical properties76. According to 
the study, ZnO NP doped with magnesium and 
silver has a stronger antibacterial effect than ZnO 
NP against S. mutans. Synthesized NP exhibits 
antibacterial activity against bacteria when its 
cell walls are compromised. These results in the 
distortion of constructional proteins, inactivation 
of enzymes, disruption of electron transport chains, 
deformation of nucleic acids, and facilitation of 
oxidative stress caused by reactive oxygen species. 
According to a number of studies, adding ZnO 
NPs to dental adhesive systems greatly enhanced 
their antimicrobial capabilities without having a 
negative impact on the bond strength77,78,79.
	 One method that is most frequently 
utilized to treat endodontic infections is 
endodontic treatment80,81. Complete eradication 
of dental infections is not possible because to the 
polymicrobial character of endodontic infections, 
which involve a variety of bacteria and germs 
such as E. faecalis, S. mutans and S. anginosus, 
F. nucleatum, and S. aureus82,83.  An excellent 
filling material for root canals should not shrink, 
fill the channels easily, stick to the walls easily, 
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or harm the periapical tissue or permanent tooth 
germ. Additionally, two important considerations 
while selecting the best among them are their 
antibacterial and biocompatible qualities84,85.  The 
micro leakage and antibacterial properties of zinc 
oxide eugenol (ZOE), epoxy resin sealer (AH26), 
silver ZnO nano powders, and ZnO nanopowders 
were investigated. Shayani Rad reports that the 
nano ZnO sealer demonstrated better antibacterial 
properties against E. faecalis, E. coli, C. albicans, 
S. mutans, and S. aureus than two widely used 
endodontic sealers, AH26 (resin-based) and 
Pulpdent (ZnO based)86,87.  These nanoparticles 
enhance alkalinization and antibacterial activity 
against Escherichia faecalis when coupled with 
calcium hydroxide nanoparticles and chlorhexidine 
as an intracanal medication. After being coated 
with ZnO NPs and pre-treated with argon plasma, 
flawless gutta percha cones displayed antibacterial 
action against S. aureus and E. faecalis. As a result, 
there is less chance of reinfection and endodontic 
failure and an effective hermetic seal is created88. 
Calcium silicate cement containing 1 wt%  ZnO 
NPs can decrease pro-inflammatory cytokines and 
increase antibacterial activity without  altering its 
physical characteristics89.
Magnesium oxide
	 T h e  c a r i e s  p r o c e s s  i n c l u d e s 
demineralization of hydroxyapatite due to acid 
attack90,91. Alkaline nanoparticles could therefore 
be a substitute for preventing dental cavities. About 
0.5% of enamel and 1% of dentine are made of 
the alkaline metal magnesium92,93.  According 
to a study, having enough serum magnesium 
levels can slow down the onset and development 
of tooth caries by releasing magnesium ions94.  
Glass ionomer cement treated with magnesium 
oxide nanoparticles exhibited strong antibacterial 
and biofilm activity against cariogenic bacteria95. 
Limited  studies reported the use of magnesium 
nanoparticles to prevent dental cavities. Tooth 
decay and magnesium exhibit both substantial94 
and nonsignificant relationships96. According to 
the study, ZnO NP doped with magnesium and 
silver has a stronger antibacterial effect than ZnO 
NP against S. mutans. Synthesized NP exhibits 
antibacterial activity against bacteria when its 
cell walls are compromised. This results in the 
distortion of constructional proteins, inactivation 
of enzymes, disruption of electron transport chains, 

deformation of nucleic acids, and facilitation 
of oxidative stress caused by reactive oxygen 
species97,98.
Cobalt oxide
	 One of the transition metal oxides, 
cobalt oxide (CO), is a black powder having 
magnetic and antibacterial properties99. They 
were added to Pit and Fissure Sealant (PFS) in 
order to address important clinical issues related 
with PFS, including microleakage and secondary 
caries. An investigation on antibacterial potential 
of Minocycline (MNC) with CO, a pH-dependent 
cobalt oxide nanoparticle integrated with MNC, by 
characterizing and testing it against Streptococcus 
sobrinus. They discovered that 2.5% MNC with 
CO doped PFS demonstrated strong anti-biofilm 
capabilities without sacrificing mechanical 
characteristics100.

Conclusion

	 Due to their excellent mechanical, 
chemical, biological, and physical properties, 
nanomaterials (NMs) have recently become 
more and more prominent in technological 
advancements. These qualities have allowed 
performance to rise above that of its conventional 
counterparts. Nanomaterials can be used to 
fight endodontic and caries-related bacteria, 
lessen the formation of biofilms, and prevent the 
demineralization of the tooth structure. These 
results have been positive enough to open the 
door for more clinical studies that will confirm 
the usefulness of nanotechnology-based materials 
for therapeutic purposes. Thus, by promoting 
better oral health and lowering healthcare costs, 
the use of metal oxide nanoparticles in dentistry 
can ultimately benefit both individual patients and 
society at large. It can also increase the antibacterial 
efficacy, lengthen the duration of dental treatments 
and significantly reduce the incidence of dental 
diseases.
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