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 The skin of an individual serves as the primary defense mechanism for safe guarding 
vital organs in the body. Although this barrier effectively protects internal organs from a variety 
of threats, it is still prone to damage from viral, fungal, or dust-related illnesses. Even minor 
skin injuries possess the potential to escalate into more severe and hazardous conditions. A 
prompt and precise skin disease diagnosis becomes crucial in expediting the healing process 
for individuals grappling with skin-related issues. The objective of this study is to develop a 
system based on Convolutional Neural Network (CNN) that can accurately identify various skin 
diseases. The proposed architecture, known as TFFNet (Two-Stream Feature Fusion Network), 
integrates two simultaneous modules featuring a Self-Attention (SA) block. We employ Self 
Attention-Convolutional Neural Networks (SACNNs) and Depthwise Separable Convolution 
(DWSC) to establish a diagnostic system for skin diseases. In this method, two separate CNN 
models are joined together, and two parallel modules (M1 and M2) are added. This greatly 
reduces the total number of trainable parameters. In comparison to other deep learning 
methods outlined in existing literature, the proposed CNN exhibits a notably lower number of 
learned parameters, specifically around 7 million for classification purposes. The skin disease 
classification was carried out on three datasets—ISIC2016, ISIC2017, and HAM10000. The 
model achieved testing accuracies of 89.70%, 90.52%, and 90.12% on each respective dataset.

Keywords: Convolution Layer; Deep Learning; Feature Fusions; Image Classification;
Self-Attention; Skin Disease.

 Melanoma, a highly aggressive skin 
cancer, accounts for only 1% of skin cancers, yet 
it is the leading cause of death 1. Computer-aided 
methods for skin cancer detection are necessary 
due to a shortage of dermatologists per capita. 
The American Cancer Society predicts 99,780 
new melanoma cases (57,180 men and 42,600 
women) and 7,650 deaths (5,080 men and 2,570 
women) in 2022. As the field of computer vision 

and Artificial Intelligence has advanced, image 
analysis has become increasingly useful in a wide 
range of scene-parsing applications. Computer-
assisted diagnosis and detection heavily rely on 
medical image analytics 2. Early disease detection 
and diagnosis are major challenges in healthcare. 
Only then can appropriate therapy begin. Millions 
of individuals around the world are affected by 
skin diseases today, which can be detrimental to 
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both personal health and national economies if 
not addressed promptly 3. In 2021, according to 
the American Cancer Society, 7,180 individuals 
died from melanoma. Additionally, the American 
Cancer Society predicted in their 2022 annual 
report that there would be roughly 99,780 new 
instances of skin disease (melanoma), with an 
expected death rate of 7,650 people 4. Diseases 
that produce itching or pain, on the other hand, 
might lead to substantial damage and deformation. 
Damage to the skin from these disorders can 
also affect a person’s sense of well-being and 
confidence 5. The common perception is that 
some skin diseases are rather harmless. However, 
the vast majority of sufferers opt to treat their 
skin issues on their own. Medications for skin 
diseases can worsen the condition if they are not 
effective against the underlying cause. Perhaps the 
individual is unaware of the severity of their skin 
issue 6.
 Examining dermoscopic images is 
the best standard for identifying skin diseases. 
Dermatologists utilize various dermoscopic tools, 
including the pigment network, dots/globules, 
and color regression, to make diagnoses from 
dermoscopy images. However, this method has 
several drawbacks, such as the need for advanced 
dermoscopic equipment and the time and effort 
required to train dermatologists in using these 
tools 7, 8. Additionally, the inflammatory nature 
of skin diseases and overlapping characteristics 
of infectious diseases result in considerable 
visual variation and irregularities in the overall 
appearance and feel of skin lesions. Inexperienced 
dermatologists often struggle to identify subtle 
variations using their eyes alone. Recent 
advancements in artificial intelligence, particularly 
in the healthcare industry, focusing on the analysis 
of medical images, have made it an attractive 
tool for developing algorithms for medical image 
interpretation. This is especially true in the context 
of the medical industry, where machine learning 
networks have proven to be very useful in image 
analysis due to their ability to independently learn 
image representations. Dermatologists have a 
critical need for computer-aided design (CAD) 
systems based on innovative problem-solving 
approaches 9. This would not only alleviate the strain 
on the nation’s healthcare infrastructure but also 
reduce the waiting time for medical dermoscopy. 

Convolutional neural networks (CNNs) and 
other forms of deep learning have demonstrated 
superiority over conventional methods in human 
disease diagnosis. The availability of powerful 
computational resources has led to the continuous 
development of more advanced deep learning 
systems. Nevertheless, due to the extensive 
training time required, these intricate systems could 
occasionally be wasteful. Due to their ability to 
achieve accurate results with fewer parameters and 
less effort, CNN models have gained popularity. In 
this study, the MobileNetV2 and NASNetMobile 
backbone architectures are employed to categorize 
skin diseases.
 Below is the outline for the remainder of 
the paper. We reviewed the studies that have been 
conducted on the topic of skin disease classification 
in Section 2. The methodological approach and 
overall structure of the model are detailed in 
Section 3. In Section 4, we examine the training and 
validation processes for the model. The proposed 
work concludes with some last notes and an outline 
of potential future work in Section 5.
Literature Review 
 Skin diseases are a major health risk 
for humans. The diagnosis might be impacted 
by factors such as high sensitivity, the need for 
laborious laboratory procedures, considerable time 
investment, and intricate physical manipulation. 
Furthermore, the similarity among many skin 
lesions often leads to frequent misidentifications 
10. This work aimed to construct a unified CAD 
model for segmenting and classifying skin lesions 
using a deep learning architecture. At the outset 
of this procedure, source dermoscopic images are 
pre-processed using a variant of a bio-inspired 
multiple exposure fusion method that emphasizes 
contrast enhancement. The second step is to 
create a bespoke CNN architecture with 26 layers 
specifically for the task of identifying and isolating 
skin lesions. Finally, four CNN models are learned 
from the segmented lesion images (ResNet-50, 
Xception, VGG16, and ResNet-101). Finally, a 
convolutional sparse image decomposition fusion 
method is used to combine the deep feature vectors 
that were obtained from each CNN model. In 
the last stage, the ideal features are chosen for 
classification using univariate measurements and 
the Poisson distribution feature selection method. 
The final step in the classification process involves 
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employing a multi-class support vector machine 
with the selected features.
 The first steps involve using a lightweight 
attention module to identify feature correlations, 
fine-tuning a pre-trained model (ResNet-50) on 
the HAM10000 dataset to extract latent high-level 
features, increasing the number of samples from 
underrepresented groups using synthetic minority 
class oversampling, and feeding those into an 
XGBoost model for training and prediction 11. This 
combination of high-level attributes and generic 
statistics will be employed. A hybrid network with 
multi-scale Gaussian difference preprocessing, 
dual-stream convolutional neural networks, and 
transformers12 is used to reliably separate skin 
lesions found with dermoscopy. To cautiously 
improve the lesion area and edge information and 
eliminate noisy features like hair, three Gaussian 
difference convolution kernels were trained. By 
utilizing multi-scale Gaussian convolution, the 
model can effortlessly extract and incorporate 
edge and lesion information while simultaneously 
reducing noise. Secondly, for accurate alignment, a 
dual-stream network is employed to extract features 
from both the original image and the Gaussian 
difference image separately. Then, these features 
are fused in the feature space. Combining models 
from vision transformers with convolutional neural 
networks enhances data consumption on a local and 
global scale. Lastly, self-attention and coordination 
techniques are utilized to make important aspects 
more noticeable. A densely connected Res2Net and 
feature fusion attention module-based approach is 
proposed for gesture image recognition 13. Using 
dense connections and group convolution, they 
propose the densely connected Res2Net to improve 
upon Res2Net. By using SK-Net to choose features, 
densely connected Res2Net is made more adaptable 
to the receptive field. The resulting network is used 
to extract features from high- and low-level gesture 
images. The FFA was created to combine high-level 
and low-level features and eliminate superfluous 
data from features.
 The AlexNet model 14 was modified 
by changing the activation function to detect 
skin tumors in the HAM10000 dataset. F-score, 
accuracy, and recall all reached a new high of 
98.20%. To classify skin lesions, an ensemble 
model 15 was introduced, combining stacked 
ensemble techniques from Inceptionv3, 

Xception, DenseNet121, DenseNet201, and 
InceptionResNet-V2, based on fine-tuning and 
transfer learning. Compared to state-of-the-art 
approaches, the proposed model achieved a 
higher accuracy of 97.93%. They initiated the 
image classification process by introducing their 
innovative ESRGAN preprocessing strategy for 
ISIC 2018 images. Subsequently, they applied 
different deep learning models16, achieving 
an overall accuracy of 83.2%. Notably, CNN, 
Resnet-50 (83.7%), InceptionV3 (85.8%), and 
InceptionResnet (84%) contributed to this success. 
The pre-trained versions of the deep learning 
models MobileNetV2 and DenseNet201 were 
improved by adding more convolution layers, 
which allowed for more accurate diagnosis of skin 
cancer 17. In the most recent iteration, both models 
have three convolutional layers stacked on top of 
one another. The approach that has been presented 
has the potential to distinguish between benign and 
malignant types. With an accuracy of 95.50 percent, 
the modified version of the DenseNet201 model 
that was proposed beats both the state-of-the-art 
baselines and the state-of-the-art approaches from 
the most recent literature review. Additionally, the 
enhanced sensitivity of the DenseNet201 model is 
93.96%, while its specificity is 97.03%.
 A lightweight model capable of accurately 
diagnosing skin lesions was proposed 18. Even 
though this results in a very small number of 
trainable parameters, the employment of 
dynamically scaled kernels in the layers is what 
allows for the achievement of optimal outcomes. 
Within the framework of the suggested paradigm, 
the activation functions ReLU and leaky ReLU are 
both put to use. The model correctly categorized 
every class included in HAM-10000, with a 
success percentage of 97.85% overall. Employing 
HAM-10000 19, researchers tested 11 distinct 
CNN models by using seven skin disease classes. 
They addressed the problem of imbalance and the 
striking similarities between images of different 
skin diseases by employing transfer learning, 
fine-tuning, and data augmentation. DenseNet169 
emerged as the top-performing algorithm out of 12 
different CNN architecture variants. The system 
achieved 92.25% accuracy, 93.59% sensitivity, 
and a 93.27% F1-score. The framework developed 
for automating the SLC process of dermoscopy 
is named “Dermo-Expert” 20. The preprocessing 
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step and the convolutional stage are both included 
in the hybrid CNN’s processing pipeline. To 
develop more precise lesion feature maps, the 
hybrid CNN presented uses three distinct feature 
extractor modules. After categorizing the various 
feature maps using a variety of completely linked 
layers, the resulting maps are assembled to 
provide a prediction regarding the type of lesion. 
Lesion segmentation, augmentation (based on 
geometry and intensity), and class rebalancing are 
all components of their proposed preprocessing 
step for their methodology. These features 
include imposing a cost on the decline of every 
class and combining additional graphics with the 
underrepresented groups. After being put through 
its paces on the ISIC-2017, ISIC-2018, and HAM-
10000 datasets, Dermo-Expert earned an AUC of 
0.96, 0.95, and 0.97, respectively.
 These points summarize the problems 
with existing studies. To begin with, most of the 
research currently available relies on unprocessed 
visualizations for the purpose of identifying skin 
diseases, which is inefficient and inaccurate. 
Second, the importance of combining multiple 
features for skin disease detection is often under-
researched. To overcome the limitations of prior 
research, we propose a TFFNet (Two-Stream 
Feature Fusion Network) for skin disease diagnosis 
that can classify a wide range of skin diseases. The 
proposed approach takes both color and grayscale 
images and extracts the most relevant features from 
each.
Research gaps and motivation
 In terms of skin disease identification, the 
following research gaps have been identified:
i). The majority of research has been conducted 
using small datasets 5 6. Therefore, there is a need 
for analysis using large datasets to enhance the 
performance of trained models.
ii). Using conventional image processing methods 
to identify and extract disease-specific traits from 
skin examinations is a daunting task.
iii). As every skin disease has its own unique 
characteristics, automatic feature extraction is 
necessary to improve classification accuracy. 
However, this incurs a considerable amount of 
computation. Although the vast majority of deep 
learning models offer automated feature learning, 
tailored deep architectures are required to resolve 
the trade-off between complexity and accuracy.

Research contributions
 The primary research contributions of the 
proposed effort are as follows:
i). This study establishes a new architecture known 
as “TFFNet” by modifying the conventional 
CNN design and creating two parallel modules: 
the CNN with a Self-Attention (SA) block 21 and 
the Depthwise Separable Convolution (DWSC) 
module. After implementing these changes, the 
overall number of trainable parameters dropped 
significantly. The proposed approach learned 
more than seven million characteristics to identify 
diseases, surpassing other deep learning approaches 
detailed in the literature.
ii). The proposed architecture achieved good 
classification accuracy while utilizing minimal 
processing resources. In contrast to CNN models 
such as MobileNetV2 and NASNetMobile, these 
networks employ appropriate customization to 
address the complexity versus accuracy trade-off.
iii). We used three datasets and 13,894 images to 
depict various skin diseases in this work. After 
developing six data pre-processing correction 
methods for image enhancement, we progressively 
merged the unique information from each modality.
Methodology
 The system’s proposed workflow is 
illustrated in Figure 1, providing an overview of 
the entire process.
Proposed network’s architecture
 The system’s proposed workflow is 
illustrated in Figure 1, providing an overview 
of the entire process. Skin disease classification 
has recently utilized various cutting-edge 
CNN models. This investigation incorporates 
MobileNetV2 and NASNetMobile as foundational 
architectures. These models have demonstrated 
superior performance with reduced computational 
complexity in addressing a range of computer 
vision challenges compared to alternative methods. 
The key components include SACNNs and 
DWSC modules. The newly proposed network, 
named ‘TFFNet,’ integrates existing CNN 
architectures through the incorporation of two-
stream feature fusion modules. Figure 2 illustrates 
the comprehensive design of the proposed model. 
In contrast to traditional CNN networks, it aims to 
provide accurate categorization while minimizing 
the number of parameters involved. Table 1 
provides a breakdown of the 21 layers. Here, we 
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will discuss the importance of each module in the 
proposed architecture.
DWSC Module
 Initially, Sifre 22 proposed DWSC, which 
found application in image classification. The 
concept entails decomposing the convolution 
operation, a strategy known as DWSC. This 
approach converts a conventional convolution 
operation into a blend of depthwise separable 
and pointwise convolution operations. In the 
depthwise separable convolution process, each 
input channel undergoes filtration independently, 
and the resultant linear input channels are 
subsequently merged. This convolutional method 
substitutes a solitary convolutional layer with 
two distinct layers — one for spatial filtering and 
the other for merging purposes. Consequently, 
depthwise separable convolution effectively 
reduces both the model’s size and the parameter 
count. By combining depthwise separable and 
pointwise convolution, this method turns a regular 
convolution into something new. Prior to merging 

the linear input channels, the separable convolution 
procedure applies a separate filter to each channel 
input. Rather than using a single convolution layer, 
this convolutional method splits the processing into 
two distinct layers: one to perform spatial filtering 
and another to combine results. Both the size of 
the model and the number of parameters can be 
successfully reduced using depthwise separable 
convolution. When it comes to input feature maps, 
however, a typical convolution kernel just requires 
three parameters: the height (H), width (W), and 
input channel (Ic). With Oc standing for the number 
of output channels, the resulting convolution layer 
(h × w × )  is depicted as K × K × ×. Two crucial 
operations are involved in depthwise separable 
convolution: the depthwise separable convolution 
operation and the pointwise convolution operation. 
To put it mathematically, the operation of depthwise 
separable convolution is:
M1£D(Y,X,J) = ∑u=1

K ∑(v=1)
K K(U,V,J) × I (Y+U-

1,X+V,J)
 ...(1)

Fig. 1. Shows the proposed method’s workflow

Fig. 2. The architecture of the proposed network TFFNet
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 In the context of the depthwise separable 
convolution operation, K denotes the kernels 
characterized by dimensions K × K × Ic . The input 
feature map (I) is used to regenerate the G output 
feature map by applying the nth filters of the K 
kernels to the nth set of channels. Using pointwise 
convolution is a part of learning new features. In 
mathematical terms, this can be expressed as the 
following:

P (Y,X,L) = ∑J=1
Ic D(Y,X,J) × O(J+L) 

...(2)
 In pointwise convolution, the kernel’s 
dimension is 1 × 1 × Ic × Oc.
 One advantage of this module (DWSC) 
over regular convolutions is the reduced number 
of parameters. Both ReLU and global average 
pooling are connected to the three 3 × 3 depth-wise 
convolutions and the two 5 × 5 DWS convolutions.  
Results showed that DWSC improved training 
speed in stages 1-3 with little overhead on 
parameters, while in stages 4–8, it vastly increased. 
An optimal trade-off between training time and 
parameters was achieved. 
SACNN Module
 Firstly, let’s establish the meanings 
of the terms “convocation-layer” and “SA”. 

Subsequently, we delve into an elucidation of the 
mechanics underlying the SA-CNN.
Convolution neural network
 Features are extracted using the two 
models from both color and grayscale images. 
To reduce the overall cross-entropy loss between 
multi-label predictions, we employ a method that 
is co-trained by pairs of images from two different 
modalities. IRGB‘s loss function is denoted by LFrgb, 
Igray's by LFgray, and LFfusion's by Ifusion. The cross-
entropy loss function is denoted by CrEnt (). We 
train the RGB branch, the grayscale branch, and 
the fusion branch jointly using a loss function that 
combines the below three loss functions.
LFrgb= ∑i=1

nth CrEnt(IRGB)  
LFgray= ∑i=1

nth CrEnt(Igray)
LFfusion= ∑i=1

nth CrEnt(Ifusion) ...(3)                                                                                            
Loss= LFrgb+ LFgray+ LFfusion ...(4)
                                                                                                    
 We have developed the proposed method 
to obtain the multi-receptive field of skin disease 
in order to gain insight into a wider variety of 
skin diseases. The multi-receptive fields are made 
up of nested convolution layers with different 
kernel sizes, like 5 × 5 and 7 × 7.  In order to 
obtain more diseased areas multi-receptive fields 
are used to cover a broader area of skin disease. 

Fig. 3. Predicting skin diseases using self-attention using CNN
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The lesser convolutional kernel and the larger 
convolutional kernel work together to train layers 
with varying weights that correspond to their 
respective receptive fields. They probe a wider 
diseased area, which ultimately enhances the 
model’s precision. In order to execute channel-
integrated and non-linear processing, we combine 
the feature maps of all convolutions and the ReLU 
+ 5 × 5 convolution layer. Before this, we used the 
7 × 7 and 5 × 5 convolutional layers+Max pooling 
layer combination. The 5 × 5 convolution is sliding 
a filter across the image to create feature maps. 
ReLU is then applied to the feature maps to keep 
only the positive values, aiding the neural network 
in recognizing important patterns in the data. The 
filter calculates the feature map region’s average 
using two average and max pooling layers. Thus, 
max pooling returns the most prominent feature in 
a feature map patch, while average pooling returns 
the average of all features.
 In the TFFNet method, the diseases 
identified by their characteristics are given equal 
weight through the use of a maximum and average 
pooling process. When we pool features, we start 
with a feature vector F and end up with a vector V. 
In the instance where one makes use of maximum 
pooling, this vector  Vmp  is given by:

                                                                                                                      ...(5)
 where C is the feature map’s channel 
count. For feature map n = (1, C), let  be the set. 
The network produces a total of C similar feature 
maps as its output. All the features included in 
make up the f, and the mp denotes the max pooling 
operation. And when we consider the use of 
average max pooling, this vector Vavg  is given by

 
...(6)

Self-attention mechanism
 Employing the attention mechanism 
across the sequence of hidden states obtained from 
convolution allows us to compute the vector for 
convolved features. Here at the convolution layer, 

our model made use of the intra-layer convolution 
connection that we just described. Therefore, 
because of the convolution link, Hu hidden units 
will influence numerous nearby units through the 
employment of right context Hu

R and left contexts 
Hu

L, as defined as:

 
...(7)

 The vectors are obtained in self-attention 
by taking into consideration all hidden states, 
which are represented by convolve features. 
Convolutional features will yield a context vector 
Cv. Hu in the following way, using a weighted sum 
of all convolve features

 ...(8)
 The attention weight (Aw) and weight 
matrix (Wm) are used here. With convolution 
training, , which stand for vectors, learn together. 
Focusing on convolve characteristics that 
significantly impact patient disease prediction is 
the goal of these attention vectors.
SACNN
 We combined the context vector that 
was computed before with the convolution in the 
following way for the SACNN (Fig. 3):

...(9)

 Where  represents a weight matrix with 
dimensions defined by the product of a=1, 2, 
…. i and b= 1, 2, …. j, where i and j are specific 
parameters. The term I(t) corresponds to the input 
text representation, and  B1 is the bias term.  C(t-1)θ 
denotes a previously computed convolution at time 
(t-1). signifies an attention vector, and the result 
of a convolution obtained from  is considered the 
feature-map.
 Rectified Linear Unit (ReLU) activation 
functions capture non-linear correlations in feature 
maps. ReLU is mathematically defined as:

                                                                                                                 
...(10)
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Table 1. Fused Layers with SAConv and DWSC modules

Stage M1 M2 stride Layers

0 DWSC1 3×3 - 1 1
1 DWSC2 5×5 - 1 2
2 DWSC3 3×3 Conv1 5×5 2 4
3 DWSC4 5×5 Conv2 7×7 2 6
4 DWSC5 3×3 Conv3 5×5 2 8

Table 2. Specifics of the data set used

Data-set  Classes Test set Training set 

ISIC 2016 Benign, Malignant 379 900
ISIC 2017 Benign nevi, Melanoma,  600 2000
 Seborrheic keratosis
HAM10000 Basal cell carcinoma, Actinic keratoses,  3004 7011
 Dermatofibroma, Benign keratosis,
 Melanocytic nevi, Melanoma, Vascular lesions

Table 3. The classification results of two single models on different datasets

                            Single network - ISIC -2016 Dataset
Model Precision Recall F1-Score Testing Accuracy

MobileNetV2 77 79 78 79
NASNetMobile 73 78 74 78
Single network - ISIC -2017 Dataset
MobileNetV2 74 79 65 79
NASNetMobile 74 80 69 80
Single network - HAM10000 Dataset
MobileNetV2 72 79 62 79
NASNetMobile 68 81 70 81

 The attention method is incorporated into 
the convolution that follows a non-linear operation 
in the convolution that has been developed. When 
compared to some established approaches that are 
considered to be state-of-the-art, the experimental 
results reveal that the convolution that was 
developed achieves a higher level of accuracy.
Max pooling layer
 The DWSC and SACNN modules are 
concatenated before the max pooling layer. In 
order to carry out the pooling procedure, the 
feature map  C(t)a,b

2 derived from convolution in 
order to identify, P(Y,X,L) from DWSC and select 
large-granular features from images of diseases. 
Assuming that image-level granular features are 
obtained, the pooling process is anticipated to yield 
phrase-level granular features, as shown below

                                                                                      ...(11)
 Where C(t)b

3 illustrates the feature-map 
that was produced as a result of the max-pooling.
Fully connected layer
 Furthermore, at this particular layer, a 
fully connected operation is carried out on the 
feature map C3 , which is produced from the max-
pooling layer, as illustrated in Figure 2

C4 = W4. C3 + B4 ...(12)

 Here, C3 and C4 denote the feature 
maps derived from pooling and full connection 
operations, respectively. B4 and W4 represent the 
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Table 4. The classification results of fused models on different datasets

                       Late fusion - ISIC -2016 Dataset
Model Precision Recall F1-Score Testing Accuracy

MobileNetV2 + NASNetMobile 77 79 80 82
Late fusion - ISIC -2017 Dataset
MobileNetV2 + NASNetMobile 81 76 81 84
Late fusion - HAM10000 Dataset
MobileNetV2 + NASNetMobile 76 80 81 83

Table 5. The classification results of proposed models on different datasets

                                      Proposed method - ISIC -2016 Dataset
Model Precision Recall F1-Score Testing Accuracy

TFFNet 82 78 80 89
Proposed method - ISIC -2017 Dataset
TFFNet 78 82 81 90
Proposed method - HAM10000 Dataset
TFFNet 83 80 81 90

Fig. 4. Precision, recall, F1score, and accuracy comparison of (a) single models; (b) fused models, and (c) 
proposed model

bias and weight parameters of the full connection 
layer.
 Each of the feature maps that are derived 
from full connection and pooling procedures 
is denoted by C3 and  C4 in this context. The 
parameters of the fully connected layer are denoted 
by W4 and B4, which stands for weight and bias.

 The pseudo-code of the skin disease 
feature detection based two stream fusion 
algorithms is shown in Algorithm 1.
Algorithm 1 skin disease feature detection based 
two-stream fusion
Input: Two-stream model two input images  Irgb and 
Igray, the proposed model includes MobileNetV2 

and NASNetMobile models, Maximum epochs 
Mepoch= 120 with batch size of Bs = 16 for 
the Network, and LR (learning rate) = 0.001.  
Output: The optimized feature detection based 
two-stream feature fusion network      
1: While M1<Mn × Bs do 
2: Two-stream images batch as Irgb and Igray.
3: Apply Pre-processing (image resize, shift range, 
rescale, rotation, shear & zoom, flip) to both RGB 
and Grayscale images.      
4: Apply fusion on CNN models and add DWSC 
by Equations (1, (2), and (3).
5: Proposed approach jointly using a loss function 
by Equation (4).
6: Extract gradient images using gradient operator 
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Table 6. Analysis of TFFNet with different models on 
trainable parameters

Models Training parameters

MobileNetV2 3,257,895
NASNetMobile 4,125,468
MobileNetV2 + NASNetMobile 8,684,985 
TFFNet  7,572,286

Table 7. Accuracy comparison with a previous 
related reference for the HAM10000 dataset

Authors Year Accuracy (%) 

Gouda 26 2022 83.2
Hoang 27 2022 86.33
Kim 28 2023 88.6
Ours 2023 90.12

Table 8. Accuracy comparison with existing 
methods for the ISIC 2017 dataset

Authors Year Accuracy (%) 

Al-masni 29 2020 81.57
Yilmaz 30 2021 82
Kim 28 2023 87.5
Ours 2023 90.52

Table 9. Accuracy compared with previous 
methods for the ISIC 2016 dataset

ss Year Accuracy (%) 

Al-masni 29 2020 80
Yu 31 2020 86.8
Wei 32 2020 87.6
Dahou 33 2023 88.19
Ours 2023 89.70

by Equation (5), and (6).
7: Employing the Self-attention-based convolution 
by Equation (9), and (10).
8: Jointly optimized feature detection based dual-
scale fusion network by Equation (11),                  and 
(12).
9: End

ReSuLTS AND DISCuSSION

 This section offers a comprehensive 
explanation of the dataset, along with the techniques 
for experimentation, model training, and validation. 
The final sub-section of the paper provides an 
analysis of performance utilizing several cutting-
edge models.
Implementation Details
 In this Google Colab Keras experiment, 
we utilize the K80, P100, and T4 GPUs. To 
maximize the effectiveness of segmentation 
networks, we use a batch size of 16 with the Adam 
optimizer. We employed a learning rate of 0.001. 
The optimal values for the maximum number of 
epochs are 80 for transfer learning and 120 for the 
fused model. Images are randomly downsized to 
256 × 224 for CNN training and then horizontally 
flipped.
Dataset description
 Images utilized in this study were sourced 
from the HAM10000 23, ISIC2017 24, and ISIC2016 

25 databases. All three datasets contain 13,894 
images, each depicting various skin diseases across 
different areas of the body. Table 2 displays the 
distribution of images across the different datasets. 
The effectiveness of the proposed method in 
identifying skin diseases is demonstrated using 
each dataset. The models are divided into training 
and testing sets in a 70:30 ratio.
Data Preprocessing
 In this section, we provide a full 
description of the preprocessing conducted on the 
datasets. The preprocessing involves resizing the 
images and augmenting the data.
Resize
 Images of high resolution are found in the 
HAM10000, ISIC2016, and ISIC2017 datasets. 
When used directly for training, images of skin 
lesions have a resolution of 600 × 450 pixels, which 
results in a significant increase in the amount of 
calculation required. Therefore, to comply with 
the specifications of the model, we reduced the 
dimensions of each image from 600 × 450 pixels 
to 224 × 224 pixels. We allocate 70% for training 
and 30% for testing. 
Data augmentation
 Despite the fact that the three datasets 
contain 13894 images between them, this amount 
of information is insufficient to satisfy the 
requirements of deep learning algorithms. As a 
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result, we apply six different data augmentation 
procedures to the training samples. These include 
randomly rotating the samples, shifting them 
horizontally and vertically, randomly zooming, 
randomly twisting, flipping, and resizing them.
evaluation Metrics
 Accuracy, precision, recall, and F1 score 
are some of the evaluation measures we utilize 
based on recommendations from our dataset. 
Definitions for these quantitative measures can be 
found in (13)-(16). Following is the formula for 
their computation:
 

                      
...(13)

 
...(14)                                     

   
 

...(15)                                                        

 
 ...(16)

Findings and comparison
 This segment provides a thorough 
perspective on experimentation, comparison, 
and discussion. In the concluding subsection, an 
evaluation of performance is showcased through 
the analysis of various cutting-edge models.
The findings from single models
 Table 3 displays the classification 
results for multiclass skin diseases using the 
HAM10000, ISIC2016, and ISIC2017 datasets 
with two single-model frameworks: MobileNetV2 
and NASNetMobile. The NASNetMobile model 
combined with the HAM10000 dataset achieves the 
best results, with an accuracy of 81%. It also attains 
a 70 F1-score, 81 recall rate, and 68 precision rates. 
On the ISIC2017 dataset, the NASNetMobile 
model performs second-best, achieving an accuracy 
rate of 80% with an F1-score of 69, recall of 80, 
and precision of 74. The highest-performing 
metrics are bolded for emphasis. Additionally, 
the NASNetMobile model has approximately 4.1 
million trainable parameters, while MobileNetV2 
has around 3.2 million.
The findings from fused model
 Table 4 displays the classification 

outcomes of a fused model (MobileNetV2 + 
NASNetMobile) for multiscale skin diseases 
using the HAM10000, ISIC2016, and ISIC2017 
datasets. With the fused model architecture, the 
best results are achieved by the MobileNetV2 
+ NASNetMobile model on the ISIC2017 
dataset, attaining an accuracy rate of 84%. The 
NASNetMobile model achieves an F1-Score, 
recall, and precision of 81, 76, and 81, respectively. 
On the HAM10000 dataset, the MobileNetV2 + 
NASNetMobile fused model performs second-
best, with an accuracy rate of 83%. For this 
dataset, MobileNetV2 + NASNetMobile achieve 
an F1-Score, recall, and precision of 81, 80, and 
76, respectively. This fused model comprises 
approximately 8.6 million trainable parameters.
The findings from proposed model
 Table 5 presents the classification results 
obtained by applying the TFFNet model to the 
HAM10000, ISIC2016, and ISIC2017 datasets for 
the analysis of multiclass skin diseases. Testing 
the TFFNet model architecture on the HAM10000 
dataset yielded a remarkable accuracy rate of 90%. 
The proposed model achieved an F1-score of 81, 
a recall of 80, and a precision of 83, respectively. 
Similarly, the TFFNet model demonstrated strong 
performance on the ISIC2017 dataset, achieving a 
90% accuracy rate. It received scores of 81, 82, and 
78 for F1 score, recall, and precision, respectively. 
This model comprises approximately 7.5 million 
trainable parameters.
Analysis of TFFNet architecture
 The training accuracy of the TFFNet 
model proposed in this study demonstrated a 
discernible increase, characterized by a swift 
initial ascent followed by a gradual levelling off. 
In contrast, the validation accuracy exhibited a 
consistent upward trajectory, as depicted in Fig. 
4c, albeit with fluctuations throughout the training 
period. Unlike the CNN models, the validation 
curves of TFFNet displayed comparatively less 
fluctuation. Particularly noteworthy is the fact that 
signs of saturation started to emerge during the 80th 
epoch. A significant decrease in the discrepancy 
between validation and training accuracy was 
obtained compared to the CNN model. TFFNet 
consistently displayed stable performance in 
terms of validation accuracy, suggesting that the 
model’s fitting capabilities could potentially result 
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in superior generalization on unseen test data when 
compared to CNN models.
Comparison on our single, fused, and proposed 
models with three datasets
 Compared to the single and fused 
approaches, the proposed framework outperforms 
them consistently across all metrics, including F1-
score, precision, accuracy, and recall, as depicted 
in Figure 4. In this experiment, we utilized three 
distinct datasets: HAM10000, ISIC-2017, and ISIC-
2016. Testing on the HAM10000 and ISIC2017 
datasets yielded an impressive accuracy rate of 
90% for the proposed TFFNet model architecture. 
The results of the study are presented in Table 6, 
which indicates that TFFNet achieved the highest 
accuracy among all models. Additionally, TFFNet 
had fewer parameters compared to MobileNetV2, 
NASNetMobile, and the combination of the two 
models.
Comparison of proposed model with state of the 
art on HAM10000 dataset
 Among state-of-the-art methods, our 
proposed TFFNet method surpasses them all, with 
an average improvement of 1.4% over the second-
best method. Table 7 presents the results comparing 
the accuracy of the HAM10000 dataset to that of 
the previous equivalent reference.
Comparison of proposed model with state of the 
art on ISIC 2017 dataset
 We conducted a comparative analysis 
to assess the efficiency of our proposed TFFNet 
approach against the most recent and innovative 
classification strategies. The results of these 
comparisons were analyzed and evaluated. Table 
8 presents the comparison between the ISIC2017 
dataset and a relevant previous reference, aimed 
at assessing the accuracy of the ISIC2017 dataset. 
Our proposed method demonstrates superior 
performance compared to state-of-the-art methods, 
with an average accuracy that is 2.5% higher than 
the method currently considered to be in second 
place.
Comparison of proposed model with state-of-
the-art on ISIC2016 dataset
 According to Table 9, our proposed 
TFFNet method achieves the highest average 
accuracy of 89.70% among all compared 
approaches. This accuracy is 0.81% and 1.4% 
higher than the previous two methods, namely 
Dahou 33 and Wei 32, respectively.

CONCLuSION

 Skin diseases affect a significant number 
of individuals and rank among the most widespread 
categories of ailments globally. Among these, acne 
stands out at the top of the list alongside various 
other skin diseases, each posing its own set of risks, 
ranging from minor discomforts to life-threatening 
conditions. The integration of computer-aided 
diagnosis [34] has greatly facilitated the medical 
community in the identification and categorization 
of skin diseases, addressing a substantial challenge. 
The field of skin disease classification [35] has seen 
the emergence of several deep learning models. 
However, there remains room for improvement 
in areas such as computational efficiency and 
dataset-specific accuracy. To truly enhance the 
effectiveness of computer-aided diagnosis, it must 
be capable of accurately discerning specific skin 
diseases from an extensive list. However, as the 
number of skin classes increases, the complexity 
and parameter count of a model naturally escalate. 
This is where the TFFNet model comes into play, 
offering a solution with fewer parameters while 
maintaining satisfactory accuracy. Contrary 
to the assumption that augmenting parameter 
numbers enhances accuracy, the results of our 
study challenge this notion. The incorporation of 
two modules with the SA block demonstrates a 
reduction in parameters without compromising 
accuracy. The proposed TFFNet model exhibited 
total accuracies of 90.12%, 90.52%, and 89.70% on 
test datasets. Further evaluation using microscopic 
and histological images can shed light on potential 
challenges in disease categorization for this 
innovative network.
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