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	 Studies have demonstrated the association between LXR activity dysregulation with 
many diseases, including atherosclerosis, diabetes and cancer. In recent years, several LXR 
agonists have surfaced, but none have been approved for human use due to adverse effects 
or unforeseen reasons. In this study, we first analysed the mRNA and protein expression of 
LXRs across tissues, network and pathway analysis, and reinterpreted their physiological 
function and disease association by utilizing multiple biological data repositories, including 
RNA-seq database human protein atlas, DisGeNET, etc. Then, we performed ligand-based 
virtual screening, chemico-pharmacokinetic analysis, docking and simulation to identify 
potential new compounds. Our findings of mRNA, protein expression, network and disease 
enrichment analysis reveal diverse physiological functions of LXRs addressing the possibility 
of pharmacological manipulation with small molecules would provide therapeutic strategies 
for disease management. Evaluation of the docking and chemico-pharmacokinetic properties 
directed to the selection of LXR-623 and AZ876 as promising candidates for LXR-á and LXR-â 
for further in-silico investigation. Comprehensive screening for new ligands targeting LXRs 
based on the chemical structures of LXR-623 and AZ876, identified ZINC000005399501 and 
ZINC000021912941 with the highest binding affinity (“9.8 and “10.7 kcal/mol) for LXRá and 
LXRâ, respectively. Our results also supported in simulation study, along with favorable 
chemico-pharmacokinetic features. 
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	 Liver X receptors (LXR), a member of the 
nuclear receptor family are important regulators 
of cholesterol, fatty acid, and glucose homeostasis.1 
To date, two isoforms of LXRs have been 
discovered and are given the nuclear receptor 
nomenclature symbols NR1H3 (LXR-á) and 
NR1H2 (LXR-â).1 The well-established role 

of LXRs was confirmed and reaffirmed by 
the published data on LXRs in gene-disease 
association, network, mRNA and protein expression 
in tissues.2-4 LXRs have been shown to function as 
direct transcriptional regulators for genes involved 
in  cholesterol  and  lipid  metabolism  regulation, 
including ATP  Binding  Cassette transporter 
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( A B C ) ,  A p o l i p o p r o t e i n   E  ( A p o E ) , 
CholEsterylester  Transfer  Protein (CETP), 
Fatty  Acid  Synthase (FAS),  cholesterol 
7á-hydroxylase (CYP7A1), sterol regulatory 
element binding protein 1c (SREBP-1c), and 
stearoyl-CoA desaturase-1 (SCD-1). There are 
reports LXRs activation increases hepatic VLDL 
production by 2.5-fold, and produces large TG-rich 
VLDL particles in the liver.5-8 LXR accelerates 
the conversion of cholesterol to bile acids, lowers 
the amount of cholesterol at the cellular level, 
and enhances reverse cholesterol transport to the 
liver.9 Thus, evidences of links between LXR 
dysregulations and the onset of metabolic diseases 
(e.g., hyperlipidemia,atherosclerosis)9,10 attracted 
researchers to the innovation of ligands targeting 
LXRs.
	 In recent years, several LXR agonists have 
been studied in preclinical trials with the intent to 
develop new drugs for atherosclerosis, diabetes, 
anti-inflammation, Alzheimer’s disease, and 
cancer.11-15 Among these reported LXR agonists, 
T0901317, LXR-623 and GW3965 showed 
efficacy to reduce cholesterol levels not only in 
the serum but also in the liver of mice with various 
diseases.15-18 A recent study demonstrated that 
SR9243 reduces intrahepatic inflammation caused 
by nonalcoholic steatohepatitis and regulates lipid 
metabolism in cancer cells.19,20 In animal models, 
GSK3987, an agonist of pan LXR-á/â with EC50s 
of 40–50 nM, decreases triglyceride buildup and 
increases cellular cholesterol efflux.21 There are 
also LXR agonists that have been tested in clinical 
trials, including LXR-623, BMS-779788, BMS-
852927, and AZ876.22-25 Almost all the agonists 
have been abandoned owing to ineffectiveness or 
serious side effects in clinical trial.22-25 There is an 
unmet need to develop the most suitable LXR-á/â 
selective agonists with fewer side effects, as none 
of these compounds pass the clinical trial due to 
ineffectiveness or substantial side effects.
	 Molecular docking and molecular 
dynamic (MD) simulation are two of the most 
popular, quick, affordable, and straightforward 
computational computer-assisted methods for 
designing or finding small molecules for drug 
development.26-31 Docking study is often employed 
in drug discovery to predict the binding affinity and 
binding mode of a small molecule (ligand) with a 
target protein or nucleic acid.26-28,32,33 While MD 

simulation provides insights into the dynamical 
behavior of biomolecules including the motion 
of atoms and molecules over time.31,34 Combining 
these techniques provides a more comprehensive 
understanding of the ligand-receptor interaction, 
accounting for flexibility and dynamic changes. To 
confirm the understandings and determine the true 
therapeutic potential of the research, a preclinical 
or clinical experimental endorsement is required. 
	 A web-based virtual screening tool called 
SwissSimilarity (http://www.swisssimilarity.
ch/) allows quick screening of pharmaceuticals, 
bioactive small compounds, and commercially 
available ligands from PubChem, the ZINC 
database, Drug Bank, and other sources.35  
SwissSimilarity employs molecular fingerprints 
and fast nonsuperpositional or superpositional 
3D shape similarity techniques.35 In addition 
to SwissSimilarity, another popular web tool 
for calculating physicochemical attributes, 
pharmacokinetics assessment, drug-likeness, 
and medicinal chemistry friendliness of small 
compounds is SwissADME (http://www.
swissadme.ch/).36 Important characteristics of 
SwissADME are Lipinski’s rule of five, certain 
pharmacokinetic factors to help with the early 
phases of the drug discovery process, and forecasts 
of properties of drug absorption, distribution, 
metabolism, and excretion (ADME).37,38

	 Therefore, the goal of this work was to find 
ligands that have the maximum affinity to the target 
LXRs by using chemico-pharmacokinetic methods, 
molecular docking, virtual screening, in-silico 
research, and MD modelling. In addition to being 
underutilized in clinical practice at the moment, 
these ligands have less chance of side effects and 
may be used to treat cancer, atherosclerosis, and 
metabolic disorders. Furthermore, a thorough 
investigation was carried out using publically 
accessible databases to reevaluate the levels of 
mRNA and protein expression of LXR-á and 
LXR-â in both healthy and diseased tissues. This 
allowed for a revision of the associations between 
these proteins and disorders.2-4,39,40 Ligands with 
substantial binding affinities and specificities 
for LXR can be found and considered as viable 
candidates for additional research by adjusting 
the interaction between the drug candidate and the 
LXR target protein.
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Materials and Methods

In-silico study of mRNA and protein expression 
of LXRs
	 We performed an in-silico LXRs’ mRNA 
and protein expression study to learn more about 
their physiological function with gene IDs 10062 
and 736 for LXR-á and LXR-â, respectively. We 
curated the mRNA expression data for LXR-á and 
LXR-â from the HPA RNA-seq database (https://
www.ncbi.nlm.nih.gov/gene/) of normal tissues.40 
The data are shown in Figure 1a. Additionally, 
we observed the protein level expression using 
data from the Human Protein Atlas (https://www.
proteinatlas.org/).4,39 Figure 1b displays the curated 
protein expression data for LXR-á and LXR-â.
Gene-disease association analysis
	 To observe major diseases involving these 
genes, we performed gene-disease association 
(GDA) analysis for LXRs using the web-based 
platform DisGeNET v7.0 (https://www.disgenet.
org/), one of the largest publicly accessible 
collections of genes and variants linked to human 
diseases.3 DisGeNET combines information from 
expert-curated repositories, GWAS catalogues, 
animal models, and scientific literature. DisGeNET 
employs a text-mining technique to prioritise 
the genotype-phenotype associations.3 The GDA 
analysis data are shown in Figure 2a.
Analysis of gene networks and pathways
	 To obtain further insight into the 
physiological and pathological significance of 
LXR expression, we conducted a protein-protein 
interaction analysis, specifically, we examined 
the interaction using IntAct (https://www.ebi.
ac.uk/intact/). To address LXR involvement in 
biological/physiological pathways, we performed 
pathway enrichment analysis using WebGestalt 
(https://www.webgestalt.org/),  a functional 
enrichment analysis web tool.2 WebGestalt follows 
well-established and complementary methods for 
enrichment analysis, including overrepresentation 
analysis.2

Target protein identification and selection
	 Clinical data has shown that LXRs play 
a significant role in controlling glucose, fatty 
acid, and cholesterol homeostasis. Additionally, 
LXR agonists have been shown to be successful 
in treating mouse models of cancer, anti-
inflammation, atherosclerosis, and diabetes. The 

aforementioned proteins are highly essential in the 
overall management of atherosclerosis, diabetes, 
anti-inflammation, Alzheimer’s disease, and 
cancer due to the complexity of LXRs’ role in the 
pathophysiology and the promising outcomes of 
using LXR agonists. They are also suitable for in 
silico studies. Therefore, the target proteins for the 
current molecular docking investigation are LXR-á 
and LXR-â, whose PDB IDs are 1uhl and 5ajy, 
respectively. Ligands chosen according to their 
affinity for these structures have been redocked 
for both target LXRs.
Ligand preparation for docking
	 Chemical ligands were identified 
through a  l i terature  search:  T0901317, 
A Z 8 7 6 ,  B M S - 7 7 9 7 8 8 ,  B M S - 8 5 2 9 2 7 , 
GSK3987, LXR-623, SR9243, GW3965, 
24S-hydroxycholesterol, 24R-hydroxycholesterol, 
and 5,6-epoxycholesterol.18-20,22,25,41,42 Using 
MarvinSketch, a ChemAxon’s desktop programmes 
for chemistry programme for sketching and 
visualising chemical structures, the structures 
were reprocessed in PDB or Mol2 format. We 
added hydrogen atoms for the compounds lacking 
hydrogen atoms and defined rotatable bonds that 
will be used for flexible docking. The ligands 
obtained from a database screening were selected 
for creating a new structure using ChemAxon 
software. We cleaned the ligand structure by 
removing any unwanted atoms or molecules, such 
as solvent molecules or counter ions. Generated 
the 3D coordinates for the ligands using the same 
software or web tool. The ligand structures are 
optimized by minimizing the energy using a 
molecular mechanics force field. We saved the 
ligand structure in a format that is compatible with 
the docking software, such as PDB or Mol2 format.
Target protein preparation for Docking
	 The target protein sequence for LXR-á 
(1uhl) and LXR-â (5jy3) was obtained from the 
PDB online platform (https://www.rcsb.org/). 
Then we selected and deleted the ligands and 
water (LXR-á/â-drug) from the complex using 
PyMOL2.5 software,43,44 because ligand-free and 
water-free cocrystallized 3D protein structure is 
needed for molecular docking assay.45 A molecular 
insertion study was conducted to identify the 
binding sites between the target protein and 
different chelating agents. We saved the target 
protein structure in a format that is compatible 
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with the docking software, such as PDB format. In 
order to identify the binding pockets in the chosen 
target proteins where the ligands are most likely 
to bind with stable free energy, we used the web 
applications 3DligandSite and COACH-D.46,47

Screening of compound libraries
	 For LXR-á and LXR-â, ligands with 
comparable chemical structures and therapeutic 
potential were screened using the online tool 
SwissSimilarity (http://www.swisssimilarity.
ch/). SwissSimilarity allows screening a wide 
range of compound libraries such as DrugBank, 
ChEMBL, LigandExpo, ZINC, and many more.35 
The SMILES format was used to submit the 
query molecule. These ligands were identified 
using the chemical structures of the compounds 
that showed the highest affinity for LXR-á and 
LXR-â during docking tests. The ZINC provided 
the ligands in SDF format for download.48 The 
format was changed using OpenBabelGUI 3.0.1 
to be compatible with AutoDock 4 and AutoDock 
Vina. The rotatable bonds were then identified and 
the required charges were added.45

Molecular Docking Analysis
	 We conducted molecular docking 
analysis using PyRx (https://pyrx.sourceforge.
io/), a virtual suite programme for Computational 
Drug Discovery.49 PyRx is built with many 
established open source software including 
AutoDockTools to generate input files, python as 
a programming/scripting language, wxPython for 
cross-platform GUI, the Visualization ToolKit, 
Enthought Tool Suite including Traits for 
application building blocks, Open Babel  for 
importing SDF files and removing salts and 
energy minimization, matplotlib for 2D plotting, 
AutoDock 4  and AutoDock Vina for docking.49 
We uploaded the ligand and protein files to the 
PyRx interface as mol2 and pdb files, respectively. 
Protein and ligand files were again cleaned and the 
structures processed to be devoid of unlikeliness 
such as missing atoms, protonation states, and 
water molecule removal before running the docking 
analysis. Here, we used Open Babel to create a 
pdbqt file (protein.pdbqt, ligand.pdbqt) for the 
ligand and protein files. To facilitate the docking 
calculations a 3D grid around the target binding 
site in the receptor is created using AutoGrid. The 
grid box dimensions were set x,y,z dimension, 
and the center grid box coordinates x, y, z center, 

respectively. In this study, the grid box dimensions 
were set x,y,z as 55, 55, 55 Å, and the coordinates of 
center x, y, and z were 44.53, -2.4883, and 21.7037 
Å, respectively.
	 The binding affinity between the ligand 
and receptor is estimated by the Autodock Vina 
docking algorithm. The Autodock Vina uses 
scores each ligand poses and ranks the poses 
to identify potential binding candidates. The 
scoring function in AutoDock Vina calculates 
intermolecular interactions such as van der Waals 
forces, hydrogen bonding, steric and electrostatic 
interactions between the ligand and the protein, 
and the desolvation energy. Once the calculations 
are done, results will be populated as seen in the 
below table with the Binding Affinity (kcal/mol) 
values. The more negative the numerical values 
for the binding affinity, the better the predicted 
binding between a ligand and a protein. In the 
context of docking evaluation, the RMSD is 
computed relative to the native ligand to ascertain 
how well the anticipated posture approaches 
the crystallographic pose. When it comes to 
computational molecular docking, algorithms 
are considered legitimate and dependable if they 
generate poses with RMSD values less than 2 Å, 
where RMSD is determined to the native ligand. 
A lower RMSD value indicates better accuracy 
of the docking technique and a better fit between 
the anticipated and experimental positions49. 
A validation of the results is performed using 
experimental data or by comparing with known 
binding modes. Docking results are visualized into 
2D and 3D images by Pymol and Biovia Discovery 
Studio, both are powerful molecular visualization 
tools and are used for docking analysis to visualize 
protein-ligand interactions. 
Validation of docking method 
	 A commonly used strategy is called “pose 
selection,” which entails re-docking a chemical 
with a known conformation and orientation—
usually from a co-crystal structure—into the 
target’s active site using docking algorithms. When 
programmes can return poses with a RMSD value 
from the known conformation—which, depending 
on ligand size, is frequently 1.5 or less than 2 Å—
they are considered effective.
Chemico-Pharmacokinetic Profile Predictions
	 Using the online technology provided 
by SWISSADME (http://www.swissadme.
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ch/), we evaluated the pharmacokinetics, drug-
likeness, and medicinal chemistry compatibility 
of small molecules that were identified as the 
most promising candidates for LXR-á and 
LXR-â through molecular docking and virtual 
screening. The ligands were filtered based on 
Lipinski’s “Rule of Five,” which encompasses 
criteria such as molecular weight (MW) being less 
than 500, log P being less than 5, the number of 
hydrogen bond donors being less than 5, and the 
number of hydrogen bond acceptors being less 
than 10. Additionally, we employed established 
ADME pharmacokinetics prediction methods, 
including assessment of aqueous solubility (PlogS), 
blood/brain permeability (PlogBB), intestinal 
barrier permeability (logHIA), cell permeability 
(PCaco-2), substrate/non-inhibitor status (logPgp), 
as well as cell permeability (LogPapp) and CYP 
inhibition, to identify the most suitable ligands for 
LXR-á and LXR-â targeting. The query molecules 
were submitted in SMILES format.
Molecular dynamics simulation
	 Further assessment of the binding 
stabilities of these putative LXR-á/â-agonists is 
done using molecular dynamics simulation with 
QwikMD and NAMD (https://www.ks.uiuc.edu/
Research/qwikmd/). Using the SwissParam-
generated ligand force field and the CHARMM 
general force field for proteins, the structure 
of the ligand–receptor complex in the optimal 
docking position was simulated. The simulation 
was run with an implicit solvent model and a salt 
concentration of 0.15 M. We present the results 
of a 50 ns production simulation of the ligand–
LXR-á/â complexes using the VMD1.9.4a53 
toolset. To analyze the results of the simulation 
in QwikMD, in the simulation setup, we load 
the corresponding .qwikmd file. The pop-up 
menu provides the option to load any generated 
trajectory (e.g., equilibration, production, etc.), 
from which we select the “production” option and 
specify a trajectory frame step. For equilibration 
simulation we set a temperature of 60 K to 300 K at 
1.242-second frequency and production simulation 
we set a constant temperature of 300 K. The 2.5 
ps frequency at which the simulation results were 
saved was used. During the examination of the 
simulations, RMSF and RMSD values for the 
ligand–LXR-á/â complexes were documented. 
To ensure greater precision MD simulation was 

repeated twice for each complex, and the average 
outcome was employed for analysis. We also 
determine the nonbond interaction energy (kcal/
mol) between the ligand and protein. Frame 0 
serves as the reference frame in RMSD analysis, 
and each frame’s structure is aligned with frame 
0’s to measure real structural fluctuations that occur 
throughout the simulation.

Results

Many physiological processes and disorders are 
regulated by LXRs, as evidenced by mRNA and 
protein expression, gene-disease association, 
network, and pathway enrichment analysis
	 Using the publicly accessible RNA-
seq databases (https://www.ncbi.nlm.nih.gov/
gene/) and the human protein atlas (https://www.
proteinatlas.org/), we initially looked at both 
mRNA and protein expression across organs.4,39,40 
LXR-á expression is restricted to the liver, 
kidney, gut, fat tissue, lung, and spleen and is 
predominantly detected in fat. LXR-â is expressed 
in almost all tissues and organs (Figure 1a, b). 
While LXR-á/â show overlap in a number of 
tissues, their tissue distribution patterns diverge 
greatly. The divergent expression patterns suggest 
that LXR-á/â has different functions in regulating 
physiological processes. Based on DISGENET’s 
gene-disease association analysis, LXR-á has 
been associated with several metabolic disorders, 
including atherosclerosis, coronary heart disease, 
metabolic syndrome, type 2 diabetes, and coronary 
hyperlipidemia.3 LXR-â has also been connected to 
a number of metabolic diseases as well as cancer 
(Figure 2a).
	 Based on network analysis, it was 
projected that LXRs physically associate or directly 
interact with many proteins such as transporters 
(PPARA), transcription factors (RXRG, RXRA, 
RXRB, NCOR1), enzymes (KDM1A, SUV39H1), 
and other essential proteins (EDF1, MDFI, 
CORO2A) (Figure 2b). It is commonly recognised 
that these transporters, transcription factors, 
and enzymes regulate lipids and cholesterol. 
WebGestalt’s (https://www.webgestalt.org/) 
pathway enrichment study also identified the main 
pathways implicated in LXRs. Nuclear receptors 
in lipid metabolism and toxicity, cholesterol and 
lipid homeostasis, cholesterol-derived oxysterols, 
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(a) The bar graph represents mRNA expression, data curated from the RNA-seq data repository. The upper panel shows the mRNA 
expression of LXR-á, and the lower panel shows the mRNA expression of LXR-â. Data are presented as the mean+SEM. (b) The 
bar graph represents protein expression, data curated from the human protein atlas database. The upper panel shows the protein 
expression of LXR-á, and the lower panel shows the protein expression of LXR-â. Data are presented as scores. Protein expression 
scores are based on a best estimate of the “true” protein expression from a knowledge-based annotation. Basic annotation parameters 
include an evaluation of staining intensity, such as not detected, low, medium, or high, which depicts 0%, <25%, 25-75%, and 
>75% of stained cells, respectively.

Fig. 1. mRNA and protein expression of LXRs in different tissues
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(a) The bar graph represents the sum of gene-disease association (GDAs) scores of LXR-á and LXR-â. For the GDAs score, 
DisGeNET considers the number and type of sources (level of curation, organisms) and the number of publications supporting 
the association, and the scores range from 0 to 1. (b) The networks depict protein protein interactions for LXR-á and LXR-â from 
the IntAct. The interactions are either physical association or direct interactions with other proteins while working as transcription 
factors or master regulators. (c) The bar graph represents the pathway enrichment scores for LXR-á and LXR-â found in WebGestalt. 
a Functional enrichment analysis web tool. Data presented in total score within the pathway molecules and the p values.

Fig. 2. Gene-disease association, networks and pathway analysis for LXRs
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(a) The 3D structures depict the most stable binding pose with LXR agonists: T0901317, BMS-779788, BMS-852927, SR9243, 
GSK3987, AZ876, GW3965, 24(S)-hydroxycholesterol, LXR-623, and 22(R)-hydroxycholesterol. Structures are visualized by 
PyMOL software. (b) The 3D structure depicts the LXRA–LXR-623 complex and the orientation of LXR-623 within the binding 
pocket of LXR-á. The 3D structure was visualized by Biovia Discovery Studio software. (c) The 2D structure depicts key residues 
involved in the formation of van der Waals forces, conventional hydrogen bonds, carbon hydrogen bonds, halogen (fluorine) 
bonds, and Pi-cation and Pi-anion interactions in the LXR-á-LXR-623 complex within 4 Å. The 2D structure was visualized by 
Biovia Discovery Studio software.

Fig. 3. Binding models of LXR–á agonist complexes.

(a) The 3D structures depict the most stable binding pose with LXR agonists: T0901317, BMS-779788, BMS-852927, SR9243, 
GSK3987, AZ876, GW3965, 24(S)-hydroxycholesterol, LXR-623, and 22(R)-hydroxycholesterol. The 3D structure is visualized 
with PyMOL software. (b) The 3D structure depicts the LXR-â-AZ876 complex and orientation of AZ876 within the binding pocket 
of LXR-â. The 3D structure was visualized by Biovia Discovery Studio software. (c) The 2D structure depicts key residues involved 
in the formation of vander waals forces, hydrogen bond, pi-sigma, pi-sulfur, amide-pi-stacked, alkyl and pi-alkyl interactions in 
the LXR-â-AZ876 complex within 4 Å. The 2D structure was visualized by Biovia Discovery Studio software.

Fig. 4. Binding models of LXR–â agonist complexes

the PPAR alpha route, the development of white fat 
cells, and the PPAR signalling pathway are among 
the pathways (Figure 2c). All of these findings point 
to the possibility that small molecules can interfere 
in atherosclerosis through pharmacological LXR 
activation.
Molecular docking analysis targeting LXR-á 
for the selected ligands shows distinct binding 
affinities and patterns of interaction with amino 
acids 
	 The 3D structure of the ligands was 
obtained from the literature search. Both the 

ligands and active sites of the protein were 
prepared carefully to meet the requirements of the 
docking software. Our docking analysis results 
demonstrated the binding affinity of ligands 
within the binding pocket and the interacting 
amino acid for AZ876, BMS-779788, BMS-
852927, GSK3987, GW3965, LXR-623, SR9243, 
T0901317, 24(S)-hydroxycholesterol and 22(R)-
hydroxycholesterol (Figure 3 and Table 1). Out 
of all the ligands investigated, LXR-623 had the 
highest binding affinity for LXR-á, indicating the 
most potential for a robust interaction with LXR-á. 
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This figure shows the small molecules identified for LXR-á in the ZINC database. The structures are drawn using ChemAxon, a 
Chem-bioinformatics software

Fig. 5. The most promising ligands identified for LXR-Á in the ZINC database

	 Our results showed the interacting amino 
acids for T0901317 were GLU308, VAL311, 
GLN313, SER383, ARG387, ILE389, and LYS435 
while 24R-hydroxycholesterol, having the lowest 
docking score (-6.5 kcal/mol), showed interaction 
with ARG387, ILE389, ARG443. The ARG387 

and GLN313 illustrated traditional hydrogen 
bonds, halogen (fluorine) bonds were represented 
by GLU308, SER383, and VAL311, and Pi-cation 
and Pi-anion interactions were shown by LYS435 
in the LXR-á-T0901317 complex within 4 Å. The 
ILE389 demonstrated Pi-alkyl interaction, while 
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The top ten small molecules identified for LXR-â in the ZINC database. The structures are drawn using ChemAxon, a Chem-
bioinformatics software.

Fig. 6. The ten most promising ligands identified for LXR-â in the ZINC database

the GLU312, HIS386, LEU383, and ASP390 
displayed vander waals interaction in the LXR-
á-T0901317 complex. 
	 AZ876 interacts with THR292, ARG369, 
PRO370, ASN371, ARG415, TRP443, and 
ASP444 and has an affinity of “8.5 kcal/mol for 
LXR-á. BMS-779788 and BMS-852927 interact 
with PHE229, LEU260, VAL263, SER264, 
ASP318 ILE370, and ARG373, ALA374, LYS452, 
ARG497, LEU501, LEU504, PHE503, ALA528, 
with binding affinities of “ 8.3 and 8.2 kcal/mol, 
respectively. GSK3987 binds to SER366, VAL386, 
GLU387, HIS390, PHE404, LEU408, LEU411, 
and ARG415. Its binding affinity is “7.4 kcal/mol. 
GW3965 interacted with amino acids ARG226, 
PHE229, VAL263, ARG305, and TYR306, with an 
affinity of -7.0 kcal/mol. Although LXR-623 had a 
“10.6 kcal/mol affinity for LXR-á, it also binds to 
LYS452, ARG497, GLU378, ALA374, ASN377, 
MET525 and ARG373. 

Molecular docking analysis targeting LXR-â for 
the selected compounds shows distinct binding 
affinities and patterns of interaction with amino 
acids 
	 LXR-â complexed with BMS-852927 
(PDB ID 5jy3) was redocked, binding affinities 
and the RMSD were computed for AZ876, BMS-
779788, GSK3987, GW3965, LXR-623, SR9243, 
T0901317, 24(S)-hydroxycholesterol and 22(R)-
hydroxycholesterol, following a similar protocol 
to that for LXR-á. Table 2 displays the affinities 
for LXR-â that all of the chosen compounds have 
shown. Of the ligands that were studied, AZ876 
interacts with the amino acids PHE268, PHE271, 
THR271, LEU274, ALA275, SER278 MET312, 
LEU313, GLU315, THR316, ARG319, PHE329, 
PHE340, LEU345, PHE349, ILE 350, ILE353, 
HIS435 and had the highest affinity of “10.8 kcal/
mol for LXR-â (Figure 3, Table 2). The interacting 
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(a) Three-dimensional structure depicting LXR-á and the top three newly identified compound complexes and orientation within the 
binding pocket of LXR-á. (b) The 2D structure depicts key residues involved in the formation of van der Waals forces, conventional 
hydrogen bonds, carbon hydrogen bonds, halogen (fluorine) bonds, and Pi-cation and Pi-anion interactions in the LXR-á-new 
compound complex within 4 Å. The 3D and 2D formats are visualized by Biovia Discovery Studio software.

Fig. 7. The 2D and 3D formats of the most promising ligands tested in interactions between amino acids of 
LXR-á

residues involved in the formation of vander waals 
forces, hydrogen bond, pi-sigma, pi-sulfur, amide-
pi-stacked, alkyl, and pi-alkyl interactions in the 
LXR-â-AZ876 complex within 2.4 Å. Although 
van der Waals force was demonstrated by SER278 

LEU313, GLU315, THR316, PHE340, PHE349, 
and ILE350, PHE271 showed traditional hydrogen 
bonds; LEU274 represented the carbon-hydrogen 
bond; alkyl and pi-alkyl were demonstrated by 
PHE268, ALA275, PHE329, LEU345, ILE353, 
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a) The 3D structure depicts LXR-â and the top three newly identified ligand complexes and orientation within 
the binding pocket of LXR-â. (b) The 2D structure depicts key residues involved in forming vander waals forces, 
conventional hydrogen bonds, carbon-hydrogen bonds, halogen (fluorine) bonds, and Pi-cation and Pi-anion 
interactions in the LXR-â-new ligand complex within 4 Å. Interacting 3D and 2D formats visualized by Biovia 
Discovery Studio software.

Fig. 8. The 2D and 3D formats of the most promising ligands tested in interactions between amino acids of 
LXR-â
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a) The results of MD simulation: The simulation was carried out using namd2 with qwikMD in VMD. X axis represents MD 
simulation time vs. the Y axis root mean square deviation (RMSD, in Å). The left panel indicates the MD simulation time and 
RMSD graph of LXR-á-LXR-623 vs LXR-â- ZINC000021912941, and the right panel indicates MD simulation time and RMSD 
of LXR-â-AZ876, LXR-á-ZINC000005399501 and complexes for 50 ns. b) The RMSF plot indicating number of atomic residues 
Vs root mean-square ûuctuation (RMSF, in Å). The left panel indicates residues and RMSF graph of LXR-á-LXR-623 vs LXR-
â-ZINC000021912941, and the right panel indicates residues and RMSF graph of LXR-â-AZ876, LXR-á- ZINC000005399501 
and complexes for 50 ns. 

Fig. 9. RMSDs and RMSF profile of the protein backbone of the first MD simulation for each LXR–ligand 
system for 50 ns

HIS435, pi-sigma by ILE353, and pi-sulfur by 
ARG313, MET312. 
	 The compound BMS-779788, which 
interacts with PHE271, ALA275, ILE309, 
MET312, PHE329, PHE340, LEU345, and 
HIS435; and BMS-852927, which interacts 
with PHE271, ALA275, LYS305, ILE309, 
MET312, PHE329, PHE340, LEU345, HIS435, 
and SER436; both have lower affinity than SR9243, 
22R-hydroxycholesterol, GW3965, LXR-623, 
T0901317 and GSK3987 (Table 2). GSK3987 
has a binding affinity of -9.8 kcal/mol and binds 
to the ALA275, LEU345, and HIS435. GW3965 
and LXR-623 had a similar affinity of -9.8 kcal/
mol, despite the differences in the amino acid 
interactions. In LXR-623, the amino acids that 
interacted were PHE268, LEU274, ALA275, 
LEU345, ILE353, and HIS435, whereas in 
GW3965, they were PHE271, LEU274, ALA275, 
MET312, PHE329, PHE340, LEU345, and 

HIS435. GSK3987 has a binding affinity of -9.8 
kcal/mol and binds to the ALA275, LEU345, and 
HIS435. 
	 SR9243 and T0901317 bind to the 
amino acid PHE268, SER274, ALA275, ILE309, 
MET312, LEU313, PHE329, LEU330, LEU345 and 
ARG319, THR316, GLU281, PHE329, LEU330, 
LEU345, ILE353, with affinities of -10.3 and -9.7 
kcal/mol, respectively. Despite being isomers, 
24R- and 24S-hydroxycholesterol displayed 
varying levels of binding affinity. The binding 
affinity of 24R- and 24S-hydroxycholesterol were 
-9.8 and 8.1 kcal/mol, respectively. In relation 
to 24R-hydroxycholesterol, the interacting 
amino acids were LEU274, ALA275, SER278, 
PHE 329, LEU345, and HIS435; in contrast, 
PHE268, ALA275, MET312, PHE329, LEU274, 
LEU345, ILE353 and HIS435 were associated with 
24S-hydroxycholesterol.
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Table 1. The binding affinity of ligands within the binding pocket and the amino acids that interact with LXR-á

Ligand	 Binding 	 rmsd/ub	 rmsd/lb	 Interacting amino acid
	 Affinity 
	 (Kcal/mol)

LXR-623	 -10.2	 2.153	 1.402	 GLU308, VAL311, GLN313, SER383, ARG387, 
				    ILE389, LYS435
AZ876	 -8.5	 5.52	 2.891	 ILE370, ARG373, ALA374, TRP376, LYS452, 
				    LEU504, PHE508
BMS-779788	 -8.3	 1.746	 1.312	 GLU308, GLU312, HIS386, ARG387, ILE389, 
				    LEU396, LYS435
BMS-852927	 -8.2	 30.743	 26.208	 ILE370, ARG373, ALA374, LYS452, ARG497, 
				    LEU501, LEU504, PHE503, ALA528
GSK3987	 -7.4	 8.99	 3.51	 ILE370, ARG373, ALA374, GLU378, LEU501, 
				    LEU504, ALA528
T0901317	 -7.3	 4.489	 2.429	 ARG373, ALA374, ASN377, GLU378, LYS452, 
				    ARG497, LEU501, LEU504, MET525
SR9243	 -7.2	 10.006	 3.63	 GLU312, HIS386, ARG387, ILE389, LEU396, 
				    LYS435, LEU438
GW3965	 -7.0	 4.685	 2.761	 ARG373, ALA374, ASP450, ARG497, LEU504
24S-hydroxycholesterol	 -6.9	 5.959	 4.397	 ILE445, TYR468, LEU490, LEU493, PRO494
24R-hydroxycholesterol	 -6.5	 2.06	 1.466	 ARG387, ILE389, ARG443

RMSD (root mean square deviation), rmsd/lb (root mean square deviation/upper bound), rmsd/lb(root mean square deviation/
lower bound) are calculated by the AutoDock Vina of PyRx tool (total runs=9).

Table 2. The binding affinity of ligands within the binding pocket and the amino acids that interact with LXR-â

Ligand	 Binding 	 rmsd/ub	 rmsd/lb	 Interacting amino acid
	 Affinity 
	 (Kcal/mol)

AZ876	 -10.8	 1.625	 1.734	 PHE268, PHE271, LEU274, ALA275, MET312, 
				    PHE 329, LEU345, ILE353, HIS435
SR9243	 -10.3	 2.122	 1.466	 PHE268, SER274, ALA275, ILE309, MET312, 
				    LEU313, PHE329, LEU330, LEU345
22R-	 -9.8	 1.731	 1.857	 LEU274, ALA275, SER278, PHE 329, LEU345, 
hydroxycholesterol				    HIS435
GW3965	 -9.8	 2.702	 1.642	 PHE271, LEU274, ALA275, MET312, PHE329, 
				    PHE340, LEU345, HIS435
LXR-623	 -9.8	 1.387	 1.766	 PHE268, LEU274, ALA275, LEU345, ILE353, 
				    HIS435
T0901317	 -9.7	 3.589	 2.528	 PHE272, SER274, ALA275, GLU281, MET312, 
				    THR316, ARG319, PHE329, LEU330, LEU345, 
				    ILE353
GSK3987	 -9.2	 3.57	 2.39	 ALA275, LEU345, HIS435
BMS-779788	 -9.0	 2.213	 2.81	 PHE271, ALA275, ILE309, MET312, PHE329, 
				    PHE340, LEU345, HIS435
BMS-852927	 -8.9	 3.09	 2.356	 PHE271, ALA275, LYS305, ILE309, MET312, 
				    PHE329, PHE340, LEU345, HIS435, SER436
24S-hydroxycholesterol	 -8.1	 2.714	 2.472	 PHE268, LEU274, ALA275, MET312, PHE329, 
				    LEU345, ILE353, HIS435

RMSD (root mean square deviation), rmsd/lb (root mean square deviation/upper bound), rmsd/lb(root mean square 
deviation/lower bound) are calculated by the AutoDock Vina of PyRx tool (total runs=9).
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Table 3. The similarity score obtained from swisssimilarity (https://www.swisssimilarity.ch/), binding affinity 
within the binding pocket and interacting amino acids of new ligands with LXR-á

Ligand	 Similarity 	 Binding 	 rmsd/ub	 rmsd/lb	 Interacting amino acid
	 score	 Affinity 
		  (Kcal/mol)	

ZINC000001550221	 0.985	  10.2	 2.153	 1.402	 ARG373, ALA374, ASN377, GLU378, 
					     LYS452, ARG497, LEU501, LEU504, 
					     MET525
ZINC000000985503	 0.926	  9.8	 5.52	 2.891	 GLU312, HIS386, ARG387, ILE389, 
					     LEU396, LYS435, LEU438
ZINC000058101934	 0.837	  10.13	 1.746	 1.312	 ARG373, ALA374, ASP450, 
					     ARG497, LEU504
ZINC000095464663	 0.817	  12.3	 3.743	 2.208	 ILE445, TYR468, LEU490, LEU493, 
					     PRO494
ZINC000003243391	 0.709	  9.6	 8.99	 3.51	 GLU378, ARG464, TYR468, PHE486, 
					     LEU490, LEU491, PRO494
ZINC000016130131	 0.637	  8.2	 4.489	 2.429	 ARG373, ALA374, ASN377, GLU378, 
					     LYS452, ARG497, LEU501, LEU504, 
					     MET525
ZINC000001042265	 0.568	  7.4	 1.746	 1.312	 ARG373, ALA374, ASP450, ARG497, 
					     LEU504
ZINC000031669066	 0.526	  7.3	 3.743	 2.208	 ILE445, TYR468, LEU490, LEU493, 
					     PRO494

Utilization of virtual screening to find new 
compounds that target LXR-á and LXR-â
	 Using the SwissSimilarity (http://www.
swisssimilarity.ch/) online platform, a virtual 
search was done in the ZINC online database 
to find new compounds that target LXR-á and 
LXR-â. SwissSimilarity provides a diverse 
range of small molecule databases that can be 
used for screening purposes. These databases 
encompass drugs and clinical candidates, bioactive 
compounds, commercially available compounds, 
and synthesizable molecules. Various molecular 
fingerprints/vectors, which can either represent 
the 2D molecular structure or the 3D conformation 
of a compound, are employed by SwissSimilarity 
to identify structures that bear similarity to the 
query compound. The 2D methods involve the 
application of path-based FP2 fingerprint, extended-
connectivity fingerprint with diameter 4, MinHash 
fingerprints, 2D pharmacophore fingerprints, and 
extended reduced graph fingerprints. Conversely, 
the 3D methods encompass Electroshape 5D 
vectors and extended 3D fingerprints. 
	 SwissSimilarity analysis was employed 
to discover new compounds that target LXR-â. 

This search identified 400 ligands based on the 
configuration of AZ876, with similarity scores 
ranging from 0.94 to 0.354 (Supplementary file S1). 
Based on the structure of LXR-623, we identified 
265 compounds in our inquiry with similarity 
scores ranging from 0.767 to 0.196 (Table 3 and 
Supplementary file S2). Figure 5 presents the 2D 
structure of the compounds identified for LXR-á 
in the ZINC database and figure 6 displays the 
2D structure of the ten most significant molecules 
identified and screened for LXR-â in the ZINC 
database. A compound is completely distinct if its 
score is 0, and it is identical if it is 1 according to 
the SwissSimilarity study.
Molecular docking analysis of the novel 
compounds targeting LXR-á and LXR-â show 
distinct binding affinities and patterns of 
interaction with amino acids 
	 Among the identified novel compounds, 
ZINC000005399501 presented the highest 
binding affinity for LXR-á as determined by 
docking analysis. The binding affinity of the novel 
compounds identified targeting LXR-á ranges 
from -12.3 to -7.3 Kcal/mol as shown in Table 
3. ZINC000005399501 interacts with ARG387, 
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Table 4. The similarity score obtained from swisssimilarity (https://www.swisssimilarity.ch/), binding affinity 
within the binding pocket and interacting amino acids of new ligands with LXR-â

Ligand	 Similarity 	 Binding 	 rmsd/ub	 rmsd/lb	 Interacting amino acid
	 score	 Affinity 
		  (Kcal/mol)

ZINC000021912941	 0.96	  10.7	 2.122	 1.466	 PHE272, SER274, ALA275, GLU281, 
					     MET312, THR316, ARG319, PHE329, 
					     LEU330, LEU345, ILE353
ZINC000021912951	 0.795	  10.2	 1.625	 1.734	 PHE268, LEU274, ALA275, LEU345, 
					     ILE353, HIS435
ZINC000021913098	 0.787	  10.03	 1.325	 1.724	 LEU274, ALA275, LEU345, ILE353, 
					     HIS435
ZINC000021913127	 0.600	  9.8	 1.731	 1.857	 ALA275, LEU345, HIS435
ZINC000095446598	 0.496	  9.8	 2.702	 1.642	 PHE271, ALA275, ILE309, MET312, 
					     PHE329, PHE340, LEU345, HIS435
ZINC000036398658	 0.485	  9.5	 1.625	 1.734	 PHE268, LEU274, ALA275, LEU345, 
					     ILE353, HIS435
ZINC000037207255	 0.48	 -9.2	 2.531	 1.257	 PHE272, LEU274, ALA275, LEU345, 
					     ILE353, HIS435
ZINC000040555976	 0.47	 -8.7	 1.724	 1.625	 PHE268, LEU274, ALA275, LEU345, 
					     ILE353, HIS435
ZINC000014043132	 0.447	 -9.1	 1.857	 1.325	 GLU281, MET312, THR316, ARG319, 
					     PHE329, LEU330, LEU345, ILE353
ZINC000019867701	 0.443	 -8.9	 1.642	 1.731	 SER274, ALA275, GLU281, MET312, 
					     THR316, ARG319, PHE329

Table 5. The basic physicochemical properties and computational descriptors of LXR-623, AZ876, and the 
newly identified molecules, as determined in SwissADME

Features	 LXR-623	 ZINC000005399501	 AZ876	 ZINC000021912941

Heavy atoms	 29	 26	 31	 29
Aromatic heavy atoms	 21	 12	 12	 12
Fraction Csp3	 0.1	 0.2	 0.38	 0.15
Rotatable bonds	 4	 6	 5	 7
H-bond acceptors	 6	 9	 3	 6
H-bond donors	 0	 2	 1	 1
MR	 100.85	 79.68	 132.74	 109.93
TPSA (Å2)	 17.82	 74.78	 78.1	 118.23

ILE389, ASP390, LYS435, LEU438, GLU308, and 
GLU312, according to the 2D study of the LXR-
á-ZINC000005399501 complex. The interactions 
involved were van der Waals, alkyl, pi-alkyl, 
amide-pi stacked, conventional hydrogen bond, 
and carbon-hydrogen bond. The predominant 
interaction observed was the conventional 
hydrogen bond, followed by pi-sulfur, amide-pi 
stacked, alkyl, and pi-alkyl interactions involving 
GLU312, ILE389, LYS435, and LEU438. Fluorine 
and benzene are commonly used to enhance the 

properties of chemical compounds and displayed 
interaction with ARG387, ILE389, GLU308, 
SER383, HIS386, and GLU312. Specifically, the 
N (2 ((1R) 2,2,2 trifluoro 1 hydroxyethyl) phenyl 
group interacts with GLU308 and SER383, the 
benzene group interacts with GLU312, ARG387 
and ILE389, and the sulfonamide group interacts 
with HIS386 and LYS435 (Figure 6).
	 The 2D configuration, the similarity 
score, and the affinity towards LXR-â resulting 
from the process of docking for the ten most 
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Table 6. Lipophilicity of LXR-623, AZ876, and the newly identified molecule, determined in 
SwissADME

Features	 LXR-623	 ZINC000005399501	 AZ876	 ZINC000021912941

iLOGP	 3.53	 1.92	 3.7	 2.83
XLOGP3	 6.54	 4.14	 4.51	 2.49
WLOGP	 8.69	 7.08	 4.56	 7.52
MLOGP	 5.94	 3.13	 2.41	 0.62
Silicos-IT Log P	 6.88	 3.26	 2.81	 1.73
Consensus Log P	 6.32	 3.91	 3.6	 4.04

Table 7. Water solubility prediction values of LXR-623, AZ876, and the newly identified molecule, 
determined in SwissADME.

Features	 LXR-623	 ZINC000005399501	 AZ876	 ZINC000021912941

ESOL Log S	 -6.85	 -4.87	 -5.36	 -3.82
ESOL Solubility (mg/ml)	 5.93E-05	 5.39E-03	 1.91E-03	 6.24E-02
ESOL Solubility (mol/l)	 1.40E-07	 1.35E-05	 4.33E-06	 1.51E-04
ESOL Class	 Poorly 	 Moderately 	 Moderately 	 Moderately 
	 soluble	 soluble	 soluble	 Soluble
Ali Log S	 -6.71	 -5.42	 -5.87	 -4.62
Ali Solubility (mg/ml)	 8.21E-05	 1.53E-03	 5.91E-04	 9.99E-03
Ali Solubility (mol/l)	 1.94E-07	 3.82E-06	 1.34E-06	 2.41E-05
Ali Class	 Poorly 	 Moderately 	 Moderately 	 Moderately 
	 soluble	 soluble	 soluble	 soluble	
Silicos-IT LogSw	 -9.49	 -6.06	 -6.74	 -5.64
Silicos-IT Solubility 	 1.38E-07	 3.48E-04	 8.05E-05	 9.43E-04
(mg/ml)	
Silicos-IT Solubility 	 3.26E-10	 8.71E-07	 1.83E-07	 2.28E-06
(mol/l)
Silicos-IT class	 Poorly 	 Poorly 	 Poorly 	 Moderately 
	 soluble	 soluble	 soluble	 soluble

Table 8. Predicted pharmacokinetic parameters of the tested compounds.

Features	 LXR-623	 ZINC000005399501	 AZ876	 ZINC000021912941

GI absorption	 Low	 Low	 High	 High
BBB permeant	 No	 No	 No	 No
Pgp substrate	 Yes	 No	 No	 No
CYP1A2 inhibitor	 Yes	 No	 No	 No
CYP2C19 inhibitor	 Yes	 Yes	 Yes	 Yes
CYP2C9 inhibitor	 No	 Yes	 Yes	 Yes
CYP2D6 inhibitor	 Yes	 No	 Yes	 No
CYP3A4 inhibitor	 No	 Yes	 Yes	 Yes
logKp (cm/s)	  4.24	  5.8	  5.78	  7.06

promising compounds that have not been utilized 
in pharmacotherapies are visually represented in 
Figure 7. The compound ZINC000021912941 
demonstrated the uppermost binding affinity 

for LXR-â in the current virtual screening 
investigation, indicating its potential as a viable 
candidate for the development of a drug targeting 
LXR-â due to its potentially effective interaction 
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Table 9. Drug likeness, medicinal chemistry, and lead-likeness parameters for the tested compounds.

Features	 LXR-623	 ZINC000005399501	 AZ876	 ZINC000021912941

Lipinski violations	 1	 0	 0	 0
Ghose violations	 1	 1	 1	 0
Veber violations	 0	 0	 0	 0
Egan violations	 1	 1	 0	 0
Muegge violations	 1	 0	 0	 0
Bioavailability Score	 0.55	 0.55	 0.55	 0.55
PAINS alerts	 0	 0	 1	 0
Brenk alerts	 0	 0	 0	 0
Leadlikeness violations	 2	 2	 2	 1
Synthetic Accessibility	 2.94	 3.07	 4.25	 3.63

Table 10. RMSD and binding free energy of the selected drugs–LXRs complexes, 
determined in QwikMD

Complex	 RMSD (Å)	 Binding free energy (kcal/mol)

LXR-á- ZINC000005399501	 1.81±0.3	 –23.33±0.39
LXR-â- ZINC000021912941	 1.9±0.32	 –22.36±0.63
LXR-á-LXR-623	 2.49±0.71	 –13.79±1.03
LXR-â-AZ876	 2.24±0.41	 –17.89±0.35

with the target (as depicted in Figure 7 and Table 
4). Previous reports in the scientific literature 
have documented that the binding affinities of 
compounds targeting LXR-â, as determined 
through in silico studies, fall within a range of 
-8.1 kcal/mol to -10.8 kcal/mol. In the current 
examination, it is noted that the binding affinity of 
all the top ten molecules falls within this typical 
range commonly observed in scientific publications 
(as illustrated in Figure 8 and Table 4). Notably, 
the compound ZINC000021912941 exhibits the 
highest affinity for LXR-â and forms interactions 
with the amino acids PHE271, MET312, PHE329, 
LEU345, and HIS435 (depicted in Figure 7). While 
the N-(2,3-dimethylphenyl) group interacts with 
the amino acids PHE271, LEU345, and HIS435, 
the 2,3-dihydro-1 lambda6,2-thiazol group in the 
compound contributes only one interaction with 
the protein (shown in Figure 8).
In  s i l i co  evaluat ion  of  the  chemico-
pharmacokinetic profile of the known and newly 
identified compounds
	 In the process of finding new drugs, 
it is vital to anticipate the pharmacokinetic 
characteristics, medicinal chemistry, druglike 

nature, and ADME parameters of one or more 
small molecules by computing physicochemical 
descriptors. We utilized SwissADME to evaluate 
the chemico-pharmacokinetic characteristics 
of newly discovered and existing candidates in 
silico. Table 5-9 and Supplementary file S3-S5 
display the results of the chemico-pharmacokinetic 
parameters that were determined after the data 
was processed and entered into the SwissADME 
system. The molecular weight of the 8 molecules 
identified by Swissimilarity for LXR-á were less 
than 500 Da, there are less than five hydrogen-bond 
donors or less than ten hydrogen-bond acceptors 
(nitrogen and oxygen atoms), the computed logP 
(ClogP) is less than 5.  They are either inhibitors 
or non-inhibitors of five major isoforms (CYP1A2, 
CYP2C19, CYP2C9, CYP2D6, CYP3A4) of 
the cytochrome P450 enzyme systems. We 
observed all 8 molecules are not only non-
permeable to the blood-brain barrier but also 
low in GI absorption, and non-substrate of p-gp 
(Supplementary file S4). Similar to LXR-á, the 
400 molecules found by Swissimilarity for LXR-â 
had chemicopharmacokinetics characteristics that 
were smaller than 500 Da. The H-bond acceptor 
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and donor scores were 3, and 9, respectively. 
The consensus ClogP is less than 5, our findings 
revealed a variety of characteristics of these ligands 
in relation to the cytochrome P450 enzyme systems 
(Supplementary file S5). 
	 The  molecular  weight  of  LXR-
623 ,  Z INC000005399501 ,  AZ876  and 
ZINC000021912941 were 481.33 399.31, 439.57 
and 414.43 Da, respectively, which reflects their 
suitability for oral drug development (Table 
5). These compounds not only meet Lipinski’s 
criteria of molecular mass of less than 500 Da but 
also have no more than 5 hydrogen bond donors, 
no more than 10  hydrogen bond  acceptors, and 
calculated  implicit log P (iLOGP) that does not 
exceed 5 (or MlogP>4.15) (Table 5). In addition to 
Lipinski’s criteria, the MR (molecular refractivity) 
from 40 to 130 indicates additional features that 
increase druglikeness, and the TPSA (topological 
polar surface area) of a  molecule greater than 
1.40 nm2 tends to be poor at permeating cell 
membranes, while TPSA less than 0.90 nm2  is 
usually needed to penetrate the  blood–brain 
barrier.  Thus, except ZINC000021912941, all 
LXR-623, ZINC000005399501, and AZ876 have 
the potential to penetrate the blood-brain barrier 
(Table 5). Lipophilicity or hydrophilicity are also 
important parameters of a molecule with a limited 
number of hydrogen bond donors and acceptors 
are more likely to achieve GI abroption because 
they can easily pass through the intestines’ cellular 
membrane and enter the bloodstream.33-35 Based on 
the calculated logP values all tested compounds 
proved to be lipophilic with consensus values 
ranging 3.6–4.98 (Table 6) There is less absorption 
of a medicine the more water soluble it is. All 
the selected candidates analysed water-solubility 
demonstrates moderately-soluble (Table 7). 
	 Given the undeniable benefits of the 
oral route of administration, LXR-623 and 
ZINC000005399501 are expected to have low GI 
absorption, but AZ876 and ZINC000021912941 
exhibit high GI absorption, which is a highly 
beneficial feature of a drug candidate. With very few 
exceptions, none of these substances are anticipated 
to function as CYP1A2 and CYP2D6 inhibitors, 
which are involved in the biotransformation of 
a number of significant medication classes. It is 
anticipated that all four of the substances under 
test will inhibit CYP3A4, CYP2C9, and CYP2C19. 

This could be detrimental because these CYPs 
are involved in the metabolism and excretion of 
numerous clinically prescribed medications. The 
target chemicals are not shown to be able to pass 
the BBB by the computational data. 
	 The drug similarity, medicinal chemistry, 
and lead-likeness properties of the examined 
compounds were also computed. The characteristics 
of drug likelinesses are demonstrated by all of 
these compounds, with very few exceptions 
for Ghose, Egan, and Muegge breaches. The 
Abbot bioavailability score, which indicates the 
probability of a chemical exhibiting considerable 
Caco-2 permeability, was computed. Table 9 
displays the data indicating that all examined 
compounds had a 0.55 likelihood of reaching 
the previously mentioned bioavailability for 
gastrointestinal absorption based on total charge, 
TPSA, and violation of the Lipinski. Synthetic 
accessibility of these compounds was within the 
range of 2.66-4.25 with no PAINS alerts and Brenk 
alerts (Table 9)     
MD simulation of the known vs the newly 
selected compounds with LXR-á/â complexes
	 MD simulation was conducted to 
investigate the complexes of LXR-á-LXR-623, 
LXR-â-AZ876, and two novel ligand-proteins. 
Specifically, the RMSD of alpha carbon atoms, 
RMSF of all amino acid residues, and the number 
of hydrogen bonds of the selected drug-protein 
complexes were calculated for a duration of 50 ns. 
The RMSD of LXR-á-ZINC000005399501 and 
LXR-â-ZINC000021912941 showed stabilization 
after 10 ns of simulation, with average values of 
1.95±0.20 Å and 1.85±0.33 Å, respectively (Table 
10). However, the RMSD of LXR-á-LXR-623 
became unstable after 45 ns of MD simulation, 
similar to the trend observed in the LXR-â-AZ876 
complex (Figure 9). RMSF analysis, which 
explores the impact of drug molecule binding on 
the behavior of amino acid residues, revealed low 
RMSF values for LXR-á- ZINC000005399501 
and LXR-â- ZINC000021912941, indicating 
reduced flexibility compared to the known protein-
ligand complex. Additionally, the total number of 
hydrogen bonds between protein-drug complexes, 
which significantly contribute to the conformational 
stability of the complex, was calculated (Table 10). 
The LXR-á-ZINC000005399501 and LXR-â-
ZINC000021912941 complexes exhibited more 
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hydrogen bonds throughout the 50 ns simulation. 
Furthermore, binding free energy calculations 
were performed for each complex. The average 
binding free energy values were determined to 
be -28.33±0.39, -24.36±0.63, -15.21±0.06, and 
-17.89±0.35 kcal/mol for ZINC000005399501, 
ZINC000021912941, LXR-623 and AZ876, 
respectively.

Discussion

	 Because of important regulator of 
glucose, fatty acid, and cholesterol homeostasis, 
LXRs are crucial for several major physiological 
processes including the metabolic system.10,50,51 
Our in-silico study results of the distinct mRNA 
and protein expression of LXRá and LXRâ 
across the tissues also echoed their importance in 
physiological processes (Figure 1). There are milieu 
of reports stated the dysregulation of LXRs and the 
development of disease including atherosclerosis, 
Parkinsons disease, other metabolic disorders and 
cancer.10,12,52-55 These reports are aligned with our 
results of Gene disease association study, networks, 
and pathway enrichment analysis (Figure 2). 
LXR-á and LXR-â are linked to metabolic diseases 
like atherosclerosis and coronary heart disease, and 
are essential for physiological functions, interacting 
with enzymes, transcription factors, transporters, 
ion channels, and receptors (Figure 2).
	 Previous reports and our analysis of LXRs 
in physiological function and disease association 
intrigued us to find potential LXR modulators. 
Thus, we looked through the literatures and found 
out both endogenous and small molecule ligands 
targeting LXRs. Our search identified a list of 
LXR ligands and presented in table 1 and 2. Many 
of these ligands have been tested in preclinical 
phases.10,12,18,53-59 Only few of them are identified 
through screening or computer aided designing and 
tested in in-vitro settings.18,50,51,56,58 Therefore, our 
results of docking study as such binding affinities 
and presented interacting amino acids within  4 
angstrom of the binding pocket would be important 
data addition to these known compounds (Table 1 
and 2).    
	 Our results of molecular docking, 
virtual screening, and pharmacokinetic in silico 
techniques indicated that LXR-623 and AZ876 
had the best affinity with favorable drug-like 

features for LXR-á/â among these compounds 
(Figure 3, 4 and Table 5-9). For screening new 
ligands for LXR-á/â, we used a web-based 
server (http://www.swisssimilarity.ch/index.php). 
Swisssimilarity is integrated with many chemical 
structure computational models (e.g- FP2, ECFP4, 
MHFP6, Pharmacophore, ErG, Scaffold, Generic 
Scaffold, Electroshape, E3FP, etc.) and allows 
many chemical databases (e.g. ZINC, Drug Bank, 
ChemBL) for new ligand searching. In our study, 
we have identified two novel small molecules 
ZINC000095464663 and ZINC000021912925 
from the ZINC drug-like database that exhibit the 
highest affinity for LXR, -12.3 and -11.7 Kcal/mol, 
respectively (Figure 6, 8 and Table 3, 4).     Basic 
physicochemical properties, ADME parameters, 
pharmacokinetic properties, druglike nature and 
medicinal chemistry friendliness of LXR-623, 
AZ876, and the newly identified molecules are 
also favorable to the new drug molecule selection 
criteria for future drug development process (Table 
5-9). Although, these estimations are acquired 
through the use of molecular descriptors derived 
from the molecules’ chemical structures and 
machine-learning methodologies. It is imperative to 
stress that, while in silico techniques for evaluating 
a drug’s ADME qualities can be useful in the early 
phases of drug development, in vivo investigations 
should always take precedence.37,41 Rather, these 
methods serve as a faster and more cost-effective 
means of investigating the pharmacokinetic 
characteristics of small molecules.41

	 Presently, the exploration and creation 
of novel drugs involves the use of computational 
technologies including MD simulations, virtual 
screening, pharmacokinetic investigations, 
and molecular docking.26-31,34-37,41 A deeper 
understanding of drug-protein interactions, the 
ability to improve the development and optimization 
of novel molecules, and the ability to predict 
the binding affinity between potentially active 
molecules and their target proteins through precise 
molecular simulation models and analyses are just a 
few of the major benefits of in-silico studies. These 
studies also offer cost and time savings compared 
to traditional wet lab experiments, as they allow 
for rapid evaluation of a large number of candidate 
molecules.38 The present study also leveraged these 
techniques to investigate the interaction with three 
LXR isoforms, leading to the identification of two 



1519Arifuzzaman et al., Biomed. & Pharmacol. J,  Vol. 17(3), 1499-1522 (2024)

compounds that hold promise for further laboratory 
studies on atherosclerosis. These compounds 
can be thoroughly evaluated for their safety and 
efficacy profile.
	 There are certain limitations on the 
types of evaluations conducted within this 
study of molecular docking, MD simulation, 
virtual screening and Chemico-pharmacokinetic 
strategies to identify novel compounds targeting 
LXRs.29 Molecular docking analysis has provided 
valuable insights into interactions between the 
target compounds and the LXRs; however, it 
remains essential to experimentally verify these 
findings. The results of this dry lab study may not 
always match the wet lab experimental validation 
technique’s predictions, and the procedure can be 
expensive and time-consuming. The proteins are 
highly dynamic in the biological environment and 
can experience significant conformational changes 
when bound by a ligand, molecular docking 
analyses concentrate on a single static interaction 
between the ligand and its target protein. Molecular 
docking analysis has been dependent on multiple 
approximations, including the exclusion of other 
proteins from the cellular milieu and the disregard 
of solvent impact. 
	 The accuracy of the simulations may 
be compromised by these assumptions, which 
could lead to erroneous estimates. Given these 
constraints, there is potential to improve the 
study’s design by investigating new research 
directions using network pharmacology and 
molecular dynamics, which take into consideration 
the dynamic properties of proteins and possible 
interactions, the effects of solvents and ions, and 
the simulation of other cellular structures that might 
have an impact on the interaction.27,28,30

Conclusions

	 Both LXR-á and LXR-â exhibit distinct 
roles in the regulation of physiological cholesterol 
and lipids, as suggested by their distinct expression 
patterns, the associations between genes and 
diseases, and the enrichment of networks and 
pathways in both healthy and pathological tissues. 
	 Through a comprehensive examination of 
the literature and a detailed analysis of molecular 
docking, simulation, and chemico-pharmacokinetic 
features ,  we narrated two new l igands 

(ZINC000095464663 and ZINC000021912925) 
with known agonists that have the ability to 
modulate LXRs. These findings may provide 
intuition for further investigation not only in-vitro 
but also in-vivo research for the future development 
of innovative therapeutic agents targeting LXRs.
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