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	 Ferrocene is a remarkable organometallic compound with an iron ion sandwiched 
between two cyclopentadienyl rings. This unique molecular structure and diverse characteristics 
such as improved solubility, altered reactivity, and enhanced biological activity make them 
potential candidates for drug development and diverse applications including cancer therapy. 
Additionally, ferrocene-based compounds exhibit a lower tendency to induce severe side effects, 
making them a safer option for cancer treatment. They also have shown potential in overcoming 
resistance encountered by platinum compounds in treating certain types of cancer. The three 
primary metabolic pathways for ferrocene include oxidation, cyclization catalyzed by acid, 
and hydroxylation, forming quinone methide, cyclic indene, and allylic alcohol, respectively. 
Building on this foundation, researchers have delved deeper into synthesizing and assessing 
novel ferrocene derivatives to enhance their effectiveness in addressing cancer and other 
illnesses. This review comprehensively examines potential derivative reactions, highlighting 
the possibilities for tailoring these compounds to achieve specific therapeutic objectives.
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	 Organometallics are the metallic 
complexes of organic compounds. Organometallics 
have a greater diversity of stereochemistry than 
organic compounds, ranging from linear to 
octahedral and even beyond (30 stereoisomers 
exist for an octahedral complex with six different 
ligands). Kinetic properties of the organometallics 
can be controlled using rational ligand design. 
Additionally, their metal atoms have a low 
oxidation state, without any charges, are kinetically 
stable, and are highly lipophilic. Organometallic 
compounds offer abundant opportunities for 

creating innovative categories of pharmaceutical 
compounds, potentially showcasing distinctive 
mechanisms of action specific to metals. This arises 
from their fundamental distinctions compared to 
traditional coordination metal complexes1.
	 Organometallics employed for medical 
applications contain Fe, Ru, Co, Zr, Pt, Ti, V, Nb, 
and Mo. Among them, platinum compounds are 
most commonly employed. Despite enormous 
success, platinum compounds have two major 
side effects: they are ineffective against platinum-
resistant tumors and have serious adverse effects, 



1434 Jagdale et al., Biomed. & Pharmacol. J,  Vol. 17(3), 1433-1444 (2024)

such as nephrotoxicity. The latter drawback arises 
from the medication’s focal point being DNA, a 
ubiquitous component in all cells. Furthermore, 
due to the particular chemical structure of platinum 
complexes, there are few opportunities for rational 
improvements that could increase its tumor 
specificity and lower undesirable side effects2. 
In contrast, ferrocene has fewer side effects and 
can be used to prevent platinum-resistant tumors. 
Historically, ferrocene’s therapeutic potential has 
been studied because it was the first organometallic 
substance for which anti-proliferative effects were 
noted2,3.
Ferrocene
	 Ferrocene (Figure 1) was first identified 
in 19514,5. Later, Wilkinson and co-workers, 
and Goermen and co-workers determined its 
precise structure6,7. Woodward and co-workers 
named these novel iron compounds ferrocene 
because of their similarity with benzene8. Modern 
organometallic chemistry was founded as a result 
of the elucidation of the ferrocene molecule’s 
structure, which was a significant discovery 
in the history of chemistry. Today, the words 

“sandwich compound” and “metallocene” describe 
a considerably wider variety of compounds 
containing various metals in addition to ferrocene 
and its derivatives9. Due to its intriguing chemistry, 
ferrocene immediately caught the interest of the 
scientific and technical world9,10. Without delay, 
chemists began to develop synthetic approaches 
that developed ferrocene derivatives and explored 
their uses in various scientific fields11. Ferrocene 
has several applications in materials science, 
including sensors12-21, catalysts19,22-27, electroactive 
materials28-33, and aerospace materials34-35, because 
of its advantageous electrical characteristics and 
ease of functionalization. Ferrocenes are well-liked 
molecules for biological applications due to their 
stability in aqueous and aerobic media and their 
variety of possible derivatives35-42.
	 There are ongoing studies on the uses 
of ferrocenes in pharmaceutical applications. 
Numerous studies have demonstrated that some 
ferrocene derivatives are highly effective both 
in vitro and in vivo against a variety of diseases, 
including bacterial and fungal infections43-44, 
malaria40, 45-47, human immunodeficiency virus 
(HIV) infection48, and cancer36-42. The anticancer 
efficacy of ferrocene compounds having amine 
or amide groups against lymphocytic leukemia 
P-388.48  led Brynes and coworkers49 to report 
the anticancer potential of ferrocene derivatives 
in the late 1970s.  Since then, different ferrocene 
compounds have been synthesized and their 
anticancer abilities were evaluated. Ge X and 
coworkers50 studied ferrocene appended iridium 
(III) complexes for anticancer activity. Shen-Zhen 
Ren and coworkers synthesized and evaluated 
COX-2 inhibition activity of ferrocene-pyrazole 
derivatives51. Ferrocene-modified analogs such as 
ferrocene phenol hybrid52, Imatinib and Nilitinib53 
have been studied for anticancer activity. Fig. 1. Ferrocene

Scheme 1. Synthesis of Formyl Ferrocene
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Scheme 2. Synthesis of Chalcone derivatives of Formyl Ferrocene

Scheme 3. Synthesis of Chalcone derivatives of Acetyl Ferrocene
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Table 1. Reactants for furan derivatives of ferrocene

Reactants	 R1	 R2	 Product

Ferrocene carboxy hydrazide, 		  -NO2	 9a
5- Nitrofuranaldehyde

Ferrocene carboxy hydrazide, 		  -NO2	 9b
5- Nitro-2-acetylfuran

Ferrocene carboxyhydrazide, 		  -NO2	 10
5- Nitro-2-furimidate

Acetyl ferrocene, 		  -H /-CH3/-NO2	 11a/11b/11c
furanaldehyde

Ferrocene carbaxaldehyde, 		  -H/-NO2	 12a/12b
2-acetyl furan/2-acetyl-5-nitrofuran

11a, phenylhydrazines		  -H	 13

12a/12b, phenylhydrazines		  -H/-NO2	 14a/14b

Ferrocene carboxaldehyde, 		  -H	 15
acetyl furan, hydrazine at RT

11a, hydrazine		  -H	 16a
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11a, acetylhydrazine		  -H	 16b

12a/12b, hydrazine		  -H/-NO2	 17a /17b

Scheme 4. Synthesis of Cholesterol derivatives of Ferrocene
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Scheme 5. Synthesis of Diester derivatives of Ferrocene

Scheme 6. Synthesis of Steroid derivatives of Ferrocene
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Scheme 7. Synthesis of Steroid derivatives of Ferrocene with glycine as a linker group and two cholesteryl 
groups

Scheme 8. Synthesis of Steroid derivatives of Ferrocene with two cholesteryl groups

	 It was significant enough to demonstrate 
that adding a ferrocene group to the right carrier 
might increase an agent’s antitumor activity. 

Ferrocene derivatives
Formyl derivative of ferrocene
	 Tang J54 synthesized Formyl ferrocene 
through the reaction of ferrocene, CH(OEt)3, and 



1440 Jagdale et al., Biomed. & Pharmacol. J,  Vol. 17(3), 1433-1444 (2024)

anhydrous solvent (anhydrous AlCl3), followed by 
stirring to obtain the desired product.
Chalcone derivative of formyl ferrocene
	 Song QB55 synthesized ferrocene chalcone 
derivatives (Scheme 2). To synthesize compound 
3, formyl ferrocene underwent a reaction with 
bromoacetophenone (2). Subsequently, compound 
3 was subjected to treatment with Pd (0) and 
ArB(OH)2, resulting in the formation of compounds 
4a-4c. Various derivatives can be synthesized by 
using substituted Ar.
	 Alternatively, acetyl ferrocene (5) was 
reacted with bromobenzaldehyde (6). After this, 
compound 7 was treated with Pd (0) and ArB(OH)2, 
forming compound 8. Various chalcone derivatives 
(Scheme 3) can be synthesized by substituting Ar 
in ArB(OH)2.
Furan containing derivatives of ferrocene
	 Moynahan EB56 successfully produced 
Ferrocene derivatives incorporating a furan 
ring (Table 1). The condensation of ferrocene 
carboxy hydrazide with 5-nitro-2-furaldehyde 
and 5-nitro-2-acetylfuran led to compounds 9a 
and 9b, respectively. Ferrocene carboxy hydrazide 

was condensed with ethyl-5-nitro-2-furimidate 
hydrochloride, resulting in the synthesis of 
N-ferrocenecarboxamido-5-nitro-2-furamidine, 
designated as compound 10.
	 Acetylferrocene readily undergoes 
condensation with 2-furan aldehyde and 5-methyl-
2-furaldehyde, forming compounds 11a and 11b, 
respectively. However, this reaction failed under 
various conditions with 5-nitro-2-furanaldehyde to 
yield 11c. Alternatively, ferrocene carboxaldehyde 
can be condensed with 2-acetylfuran and 2-acetyl-
5-nitrofuran, producing compounds 12a and 12b 
respectively, which are isomeric to 11a and 11c.
	 The reaction of compounds 11a, 12a, and 
12b with phenylhydrazine resulted in the formation 
of pyrazolines 13, 14a, and 14b, respectively55. 
However, when chalcone 12a was subjected 
to a reaction with phenylhydrazine at room 
temperature, a compound presumed to be 15 was 
obtained instead of the expected pyrazoline 14a.
	 The reaction of hydrazine or acetyl 
hydrazine with 11a led to pyrazoline 16a or 16b 
formation. Reaction of isomeric chalcones 12a/12b 
with hydrazine led to pyrazoline 17a/17b56.

Scheme 9: Synthesis of steroid derivatives of Ferrocene with amino moiety as the linker group
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Cholesterol derivative of ferrocene
	 Cholesterol derivatives of ferrocene 
were synthesized by Lewkowski J and co-
workers57 in 2004 and then by Váradi M, and 
Skoda-Földes R58 in 2022. á-(Ferrocenyl)-amino 
methane phosphonous acid derivatives (19a-19d) 
were synthesized by joining the steroid moiety 
and the ferrocene group with the help of amino 
phosphonous acid (Scheme 4).
Diester derivative of ferrocene
	 1,1'-Bis-(chlorocarbonyl)ferrocene (20) 
derivatives were synthesized by Medina59. 20 after 
reaction with cholesterol in the presence of benzene 
and triethylamine, resulted in the formation of 
1,1'-diester cholesterol derivative (21).
Steroid Derivative of Ferrocene
	 Estradiol after esterification (22) with 
dicarboxylic acid (succinic acid) was converted 
to 17â- hemisuccinate (24).  Cais M60 used amino 
methyl ferrocene (23) as a conjugating reagent to 
form an amide bond with the carboxylic acid. 
Steroid derivative of ferrocene with glycine as 
linker group and with two cholesteryl groups
	 Utilizing an N-protected glycine ester, 
product 25 was synthesized via the acylation of 
cholesterol. Subsequently, following the removal of 
the protecting group, the amino derivative 26 was 
linked to ferrocene derivatives 1-chlorocarbonyl 
ferrocene (27) and 1,12 -bis(chlorocarbonyl)
ferrocene (20) through an amide bond, resulting 
in the formation of conjugates 28 and 29, 
respectively61.
	 Similarly, compound 32 containing two 
cholesteryl moieties was produced starting from 
1,12 -bis(chlorocarbonyl)ferrocene 2062.
	 1-chlorocarbonyl ferrocene (27) after 
reaction with diamino alkane gave 33, which after 
reaction with 30 yielded 3463.

CONCLUSION

	 In conclusion, the synthesis and 
preparation of diverse ferrocene derivatives 
present a compelling avenue for advancing 
research in various fields, including materials 
science, catalysis, and medicinal chemistry. 
The versatil i ty of ferrocene’s structural 
framework offers immense potential for tailoring 
properties to suit specific applications. Through 
innovative synthetic methodologies and strategic 

functionalization, researchers continue to expand 
the scope of ferrocene derivatives, unlocking novel 
properties and applications. As this manuscript 
highlights, the systematic exploration of ferrocene 
derivatives contributes significantly to advancing 
interdisciplinary research and holds promise for 
addressing complex challenges in diverse scientific 
domains. Further exploration and refinement 
of synthetic strategies will undoubtedly lead to 
the discovery of new ferrocene derivatives with 
enhanced properties and functionalities, driving 
progress in both fundamental understanding and 
practical applications.
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