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	 Doxorubicin that is on WHO's list of essential medicines and other anthracycline 
analogues, in general, are natural metabolites isolated from Streptomycetaceae, or semi-
synthetized derivatives stated as first-generation anticancer agents. The tetracyclic scaffold 
attached mostly to amino sugar is known to be effective against solid tumors compared to other 
anticancer agents. The mechanism had been stated as intercalating agent at the minor groove of 
DNA strands during the step of releasing supercoiled DNA. Along with their anticancer activity, 
anthracyclines possess antimicrobial effects of notable MIC values. Cardiotoxicity represents 
the main challenge for both of medical care for treatment of cancers and drug discoverers. This 
exertion deals with careful structural investigation of the three-dimensional, fully optimized 
drugs in use. Drug-candidates in clinical studies, and leads failed in last developments. The aim 
is to find a structural gate to guard against or reduce the cardiac side effects. It deals also, with 
the topological features differentiating between antibacterial and anticancer agents bearing the 
tetracyclic scaffold features as well as between the topoisomerases as target molecules.

Keywords: Anticancer Activity; Anthracycline; Cardiac Toxicity; Doxorubicin;
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	 Scaffolds especially those derived from 
natural sources are of vital biological importance 
as antineoplastic agents. Anthracyclines dates back 

to 1960’s and their primary isolation revolutionized 
the treatment modalities for many cancers, namely 
solid tumors and neoplastic types.  Early agents 
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known were doxorubicin and daunorubicin, 
categorized as antibiotics having high affinity for 
Gram-positive bacteria but exhibited significant 
cytotoxicity which led to their exploitation as 
anticancer drugs.1-4

	 Anthracyclines are currently used in 
combination for treatment of breast cancer with the 
standard CMF (cyclophosphamide, methotrexate, 
and fluorouracil) regimen5, as well as other 
combination.6,7 The enclosure of an anthracycline 
has been proved to decrease mortality rates in 
women. Anthracyclines are also used for different 
clinical indications.8,9 
	 Several anthracyclines obtained via 
biosynthesis or chemical modifications. An 
alarming aspect of their clinical use is the toxic 
risks associated with their accumulation. The 
aim has always been the development of safer 
anthracyclines, with broader spectrum of activity 
against different tumors, as well as enhanced 
selectivity. Most of the first, second and third 
generations share an amino-sugar moiety essential 
for DNA binding and intercalation.10-12 The main 
drawback associated with the use of anthracyclines 
lies in their considerable affinity to the cardiac 
tissue, lead to cardiotoxicity.13  In order to avoid 
and/or minimize the risk of cardiomyopathy and 
congestive heart failure, this work relates the extent 
of cardiotoxicity and structural differences in 
each drug by considering the topology of the fully 
optimized 3D-structure. The physicochemical data 
of the optimized structures are also considered. 
Anthracyclines bind to topoisomerases II and DNA 
resultant in a ternary complex, and preventing 
re-ligation.14,15 The cardiotoxicity involves 
production of free-radical, which results in 
damaging DNA, proteins, and lipids and leads to 
cellular dysfunction.16 Thorough, investigation of 
occurrence in cells and organs of topoisomerases 
mentioned that doxorubicin targets both of 
topoisomerases namely, alpha (Top2A) and beta 
(Top2B). Human topoisomerase TOP2A is encoded 
by the  Top2A-gene on chromosome-17q21-22, 
and Top2B is encoded by the  Top2B-gene on 
chromosome-3p24. Cardio-myocytes express 
Top2B but not TopP2A.15-18

	 In area of drug discovery scientists usually 
locking in the main pharmacophore that fits the 
pharmaco-dynamic interactions. Derivatization 
on the skeleton rely on addition, removal, and/or 

modification of adaptable entities on the skeleton 
that lead to selectivity and specificity whenever 
isoforms found. Considering cardiomyocytes 
that express Top2B but not Top2A and the 
inhibitor’s level of effects and side effects.19-22 
Topoisomerase-2 necessitates ATP to act. It makes 
a temporary break and rejoin via trans-esterification 
utilizing phosphate-diester (Figure 1). Thus, 
inhibition of topoisomerase II preventing DNA 
repair and causing DNA damage and cell-death. 23 
	 Several strategies are mentioned for 
tumor selectivity such as (a) - It can be boosted 
if aided by specific transporters to malignant 
tissues in specific organs,24-27 (b) - Liposomal 
formulations as well as binding to polymers (31), 
and (c) - Prodrug preparations that are favorably 
activated intracellular.28-33 These tactics were used 
to increase selectivity and reduce undesirable 
effects.34,35 This work is a thorough structural 
and topological investigation of anthracyclines. 
Molecular modeling of each selected approved 
drug or candidate structure studied as fully 
optimized at full self-consistent field (SCF) levels 
by using MOPAC36,37; a general molecular orbital 
package implemented with molecular mechanics 
software MMXPC.38 This study is to find the 
structural modalities differentiating between toxic 
anthracyclines, safer anthracyclines, anthracyclines 
bearing both antibacterial and anticancer effects, 
and the related tetracyclines. It is a continuation of 
our interest in compounds bearing anti-cancer, anti- 
inflammatory and antimicrobial activities.24,39-52 The 
answer for topology differences between approved 
antimicrobial and antineoplastic tetracyclic 
structures can be gathered in throughout the article.
Structural characteristics of drugs approved 
candidates of anthracyclines
	 The structural differences of derivatives in 
medical use mainly attributed to three substructures 
in the tetracyclic skeleton namely C-4 (Ring A), 
C-7 and C-9 (Ring D). The entities involved are 
amino-sugar (Figure 2, R1), the minor differences 
of aglycone moiety (Figure 2, R2) and the whole 
acyl group (Figure 2, R) at C-9.53-76 The important 
physicochemical data for these drugs and/or 
candidates are considered as calculated partition 
coefficient.54,55-76

	 The calculated partition coefficients of 
clinically used analogs range from CLogP: 1.734 
for the more lipid soluble, like idarubicin to CLogP: 
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0.648 for the less lipid soluble one like doxorubicin. 
Lipid solubility is important for effects and side 
effects as well.56-76 
Brief Biosynthesis of anthracyclines
	 Biosynthesis of doxorubicin involves 
many steps reported in conventional articles. It 
starts by a three carbons unit; propanoyl-CoA; 
(Figure 3) which combines by a decarboxylation 
coupling with malonyl-CoA. Malonyl-Co-A is, 
repeatedly added via carriers after losing carbon 
dioxide in each step to provide a skeleton of 21 
carboxylic acid bearing 10 carbonyl groups.2,79-81 
The poly-carbonyl 21-carbon acid manipulated 
successively by different enzymes to yield 
tricyclic; alkanoic acid, then to the aglycone; 
rhodomycinone.  Rhodomycinone undergoes 
structural modifications and coupling with amino-
sugar, via several bio-transformations to provide 
doxorubicin.82,83

Medical importance of anthracyclines in cancer 
treatment
	 Anthracyclines are still very important 
for treatment of acute lymphocytic and chronic 

myelogenous leukemia; the disease in which the 
bone marrow makes too many white blood cells. 
Doxorubicin also, succeeded to show a substantial 
efficacy against solid tumors.84 Several types of 
solid tumors are responsive to doxorubicin, as 
breast carcinoma, small-cell lung carcinoma, and 
ovarian carcinoma.85  
Pharmacological effects and toxicological 
profiles of anthracyclines
	 Not only disrupting topoisomerase-
II-mediate DNA repair, anthracyclines also, 
produce free radicals by reversible quinonoid 
transformation. Free radicals damaging membrane, 
DNA and proteins.  In addition, reactive oxygen 
can make epoxidation of fatty acids leading to 
membrane and DNA damage, oxidative stress, and 
triggering apoptosis.86,87 Alternatively, doxorubicin 
can enter the nucleus and poison topoisomerase-II, 
also resulting in DNA damage, cell cycle control 
and cell death.88-91 
	 The cumulative dose-dependent cardiac 
toxicity of doxorubicin represents unwanted 
health problem from essential medicines. There 

Table 1. Non anthracycline topoisomerase-2 inhibitors

Compound Name, 	 Chemical Structure	 Findings	 References
Number, cLogP

Compound 7:		  Amino acridine frequently used 	 60,64,65 
Amsacrine		  in mixtures. It produces 
CLogP: 4.69		  consistent but acceptable 
		  cardiotoxic effects.

Compound 8: 		  Conditional approval was 	 60,66,67
Pixantrone		  granted by the European 
CLogP: 0.772		  Medicines Agency

Compound 9: 		  Anthraquinone derivative. 	 60,68-70
Mitoxantrone		  Approved by FDA. Less 
CLogP: 1.099		  cardiotoxic effects.	
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Table 2. Important investigational and experimental anthracyclines

Compound name, 	 Chemical structure	 References, Clinical phase, Situation
Number, cLogP

Compound 10: 		  Ref.71
13-deoxy-doxorubicin, 		  https://clinicaltrials.gov/ct2/show/
natural. CLogP: 1.444		  NCT04704635?rank=1 
			   Clinical Phase II terminated. Reason 
			   is the development of heart failure. 
			   https://patents.justia.com/patent
			   /5948896 
			   Situation: Investigational candidate

Compound 11 		  Ref.72-74
Esorubicin; 4'-deoxy-		  Clinical Phase I/II terminated. 
doxorubicin		  Reason toxicological issues. 
CLogP: 0.879 		  Situation: Investigational candidate 
			   National Prostatic Cancer mentioned 
			   that this candidate was associated 
			   with hematologic toxicity with 50% 
			   of patients Further trials do not 
			   appear to be warranted in advanced 
			   prostate cancer
	
Compound 12		  Ref.60-75
Zorubicin 		  https://pubmed.ncbi.nlm.nih.gov
CLogP: 3.0322		  /9332680/	
			   Situation: Experimental candidate

Compound 13 	 It is doxorubicin in P-glycoprotein-	 Ref.60-78
SP1049C	 targeting Pluronic.	 Cardiotoxicity was reduced to 50% 

are some differences between the anthracycline’s 
congeners in toxicological profile and upon 
comparing their ability to induce topoisomerase 
II-mediated DNA cleavage.92-94 Cardiac toxicity 
as reported in several articles attributed to the 
cellular oxidative stress induced by free radicals. 
Unfortunately, doxorubicin preferentially interacts 
with cardiomyocytes, and the side effects resulted 
as reflection of free radicals on DNA, protein and 
lipid as reported elsewhere (Figure 4).95-97 
	 Oxidative stress resulted as reflection 
of coordination reactions between metals such as 

iron and functionalities of the co-planar system at 
rings B and C (Figure 4). The complex of metal 
and anthracyclines catch soluble oxygen that 
accordingly producing superoxide. Superoxide 
dismutase: the natural cellular antioxidant change 
catalyzes the disproportionation of superoxide to 
be converted into two less damaging species.  
Comparative cardiac toxicity and potential 
chemical modifications to decrease side effects
	 The relevant chemical entities involved 
in oxidative stress-are mentioned on tetracyclic 
structure of anticancer as well as antibacterial 
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Table 3. Important used drugs, investigational, and experimental tetracyclic structures optimized at full self-
consistent field (SCF) levels by using MOPAC

Compound	 % PSA	 % UnSA	 SE	 Str	 bnd	 DM	 HF	 CLogP

Compound 1: Doxorubicin	 37.72	 14.25	 -97.6	 1.480	 9.203	 7.433	 -383,43	 0.648
Compound 2: Daunorubicin	 35.26	 14.25	 -99.2	 1.422	 8.306	 5.598	 -346.62	 0.959
Compound 3: Epirubicin	 37.84	 14.35	 -98.5	 1.509	 8.875	 7.52	 -384.24	 0.648
Compound 4: Idarubicin	 35.72	 16.02	 -84.4	 1.373	 7.091	 6.595	 -310.49	 1.734
Compound 5: Amrubicin	 45.36	 26.55	 -73.4	 1.688	 5.960	 6.245	 -201.03	 0.113
Compound 6:  Annamycin	 37.76	 14.04	 -110.0	 1.871	 8.839	 5.608	 -369.53	 1.599
Compound 10:13-deoxy	 30.66	 13.30	 -103.1	 1.290	 7.265	 2.758	 -397.34	 1.444
-doxorubicin
Compound 11: Esorubicin	 34.89	 13.88	 -95.6	 1.394	 7.440	 5.655	 -343.02	 0.879
Compound 12: Zorubicin	 27.45	 20.97	 -128.6	 13.850	 12.000	 13.886	 -303.78	 3.032
Compound 14: Mutamycin E	 32.68	 14.22	 -115.0	 1.930	 9.837	 6.179	 -447.55	 2.613
Compound 15: Tetracycline	 44.55	 15.61	 -143.7	 1.717	 7.152	 5.215	 -238.7	 0.911

PSA = Polar Surface Area, UnSA = Unsaturated Surface Area, SE = Standard Entropy, Str = stretching, Bnd = bending, DM = dipole 
moment, HF = heat of formation, and ClogP = Calculated partition coefficient for n-octanol/water obtained from chemdraw 8 ultra. 

Table 4. Important used drugs, investigational, and experimental tetracyclic structures calculated 
in-silico- for pharmacokinetics by Swiss ADME

No.	 Compound	 MR	 Consensus 	 Pgp 	 Bioavail-	 Lead-likeness 
			   Log P	 substrate	 ability Score	 #violations

1	 Doxorubicin	 132.66	 0.52	 Yes	 0.17	 1
2	 Daunorubicin	 131.5	 1.18	 Yes	 0.17	 1
3	 Epirubicin	 132.66	 0.5	 Yes	 0.17	 1
4	 Idarubicin	 125.01	 1.14	 Yes	 0.55	 1
5	 Amrubicin	 120.2	 0.82	 Yes	 0.55	 1
6	 Annamycin	 137.59	 0.99	 Yes	 0.17	 1
7	 13-deoxy-dextrorubicin	 134.18	 0.95	 Yes	 0.17	 1
8	 Esorubicin	 136.2	 1.76	 Yes	 0.55	 1
9	 Zorubicin	 167.5	 2.24	 No	 0.17	 2
14	 Mutamycine E	 132.12	 0.56	 Yes	 0.17	 1
15	 Tetracycline	 110.22	 -0.56	 No	 0.11	 1

MR = Molar refractivity, Consensus Log P = It is method is similar (but not identical) to the ClogP method in 
Swiss ADME

activities. The group of drugs and candidates 
realized for elaboration of topology and SAR 
study (Figure 5). The structural entities responsible 
for chelation and free radical production are 
highlighted. Compounds are mentioned by 
numbers and names (Figure 2 and Table 2).  An 
anthracycline; Compound 14; Mutamycin E 
(Figure 5) fulfills the features of doxorubicin 
except the C-9 alpha-hydroxy acetyl group. 
This compound as active but not considered for 
further preclinical effects as anticancer. On the 

other-hand, tetracycline (Figure 5, Compound 15) 
which has no amino-sugar attachment at C-7 is 
in use as antibacterial medicine with high safety. 
The two compounds 14 and 15 are included 
with anthracyclines to elaborate the important 
topological differences on biological activity. The 
differences are important to verify the clinical 
usefulness of tetracyclic structures as anticancer 
and/or antibacterial activity.  
	 Doxorubicin (Compound 1, Figure 2) is 
in wide use especially in solid tumors and used 
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Table 5. Comparative cardiac effects versus doxorubicin and/or each other

Compound	 Comparative cardiotoxicity	 References / Findings

Daunorubicin; 	 By contrast, daunorubicin was approximately  	 Ref  (119, 120)
Compound 2 	 half as cardiotoxic when compared with 	 1- C-9 acetyl instead 
versus doxorubicin	 doxorubicin. Daunorubicin was less 	 of hydroxyl-acetyl	
	 cardiotoxic among survivors of 	 2- Sugar at C-7 substituents 
	 childhood cancer.	 differently arranged
		  3- Methoxy-substituent at C-7.
Epirubicin; 	 Clinical trials demonstrated safety 	 Ref (92, 121-123) 
Compound 3 	 comparable to that of doxorubicin 	 It is the diastereomer of 
versus doxorubicin	 in early and advanced breast cancer. 	 doxorubicin. Sugar C5' 
	 Epirubicin has been favored over 	 alpha-hydroxyl group. 
	 doxorubicin for lower cardiac toxicity	 1- C-9 acetyl instead of 
		  hydroxyl-acetyl. 
		  2- Sugar at C-7 substituents 
		  differently arranged. 
		  3- Methoxy-substituent at C-7.
Idarubicin; 	 It is more cytotoxic than doxorubicin,  	 Ref (124) & Ref. (92, 100, 125-127) 
Compound 4  versus 	 explained by higher hepatic 	 1- C-9 acetyl instead of hydroxyl-
doxorubicin 	 penetration because of high 	 acetyl. 
	 lipophilicity. Orally active. 	 2- Amino-sugar at C-7.  
	 It is less cardiotoxic than doxorubicin 	 3- No substituent at C-4.	
	 in phase II clinical trials.
Idarubicin; 	 A significantly lower accumulation in 	 Ref. (126-129)
Compound 4 	 cardiomyocytes was obtained with 	 1- C-9 acetyl instead of hydroxyl-
vesus Epirubicin	 epirubicin and idarubicin compared 	 acetyl. 
	 with carminomycin and doxorubicin.	 2- Amino-sugar at C-7. 
		  3- No substituent at C-4.	
Esorubicin; 	 For human solid tumors in vitro in 	 Ref. (130-132)
Compound 11 	 clonogenic assay appeared to be more 	 Experimental: 
(CLogP: 0.879) 	 potent on a weight basis than DOX. 	 1- C-9 hydroxyl-acetyl, similar. 
versus doxorubicin 	 ESO has been reported to have 	 2- Deoxy-sugar at C-7 substituents 
	 decreased cardiac toxicity in 	 (a hydroxyl group is missed from 
	 preclinical models as compared to DOX. 	 the C-7 entity). 
		  3- Methoxy-substituent at C-7, 
		  similar
Amrubicin; 	 There was no significant cardiac 	 Ref (133, 134), (58, 135)
Compound 5 	 toxicity, and concluded that 	 1- C-9 acetyl instead of hydroxyl-
versus doxorubicin 	 amrubicin has efficacy	 acetyl. 
N.B. Not approved FDA 	 comparable to doxorubicin. 	 2- No amino group and no methyl 
but approved in Japan 	 Amrubicin showed lower cardiotoxicity 	 group in the sugar at C-7. 
	 at equivalent dosages. This seems to 	 3- No substituent at C-4.
	 be due to the restricted distribution 
	 of the active metabolite in non-tumor tissues.
Annamycin;  	 Annamycin have little to no cardiac toxicity.  	 Ref (137), (62), (63, 136, 137)
Compound 6 	 It is formulated in a nano-molecular 	 1- C-9 hydroxyl-acetyl. 
versus doxorubicin	 bi-lamellar liposomal system. Side effect 	 2- Sugar at C-7 the substituents 
	 (136) Bone marrow toxicity delaying 	 with iodine and no amino group. 
	 its development.	 3- No substituent at C-7.
Zorubicin; 	 Toxicity appears high grade granulo- 	 Ref (138-141)
Compound 12 	 cytopenia, thrombo-cytopenia, 	 It is the phenylhydrazone of  
versus doxorubicin 	 Cardiotoxicity appears like DOX.	 daunorubicin. 
		  1- C-9 acetyl instead of 
		  hydroxyl-acetyl. 



1353El-Shorbagi et al., Biomed. & Pharmacol. J,  Vol. 17(3), 1347-1364 (2024)

		  2- Amino-sugar at C-7. 
		  3- Methoxy substituent at C-4.
Amsacrine; 	 Amsacrine in clinical trials it developed 	 Ref. (142-146) 
Compound 7 	 occasional instances of acute cardiac 	 Acridine derivative
versus doxorubicin 	 arrhythmias and cardiomyopathy. 
	 Amsacrine-related cardiac events are less 
	 common than those related to 
	 anthracycline chemotherapeutic agents. 
Pixantrone;  	 It is of reduced cardiotoxic potential 	 Ref. (66, 67, 147, 148) 
Compound 8 	 compared with doxorubicin 	 Benzo(g)isoquinoline derivative
versus doxorubicin	 and mitoxantrone
Mitoxantrone; 	 Active DNA intercalating agent 	 Ref. (125, 149-151) 
Compound 9; 	 with low cardiotoxic potential.	 Aza-anthraquinone derivative
versus doxorubicin
SP1049C; Compound 13; 	 P-glycoprotein for increasing cellular 	 Ref. (126, 127, 152, 153)
doxorubicin in 	 uptake, transport, and half-lives of drugs. 
P-glyco-protein 	 It is not approved, yet. It reduces the 
versus doxorubicin	 relative cardiotoxity to about half of 
	 that of doxorubicin.

Fig. 1. Topoisomerase-II mechanism of releasing the supercoiling and rejoining DNA

admixed with other agents to reduce as possible 
the side effects on heart (98).  In addition to the 
entities that are highlighted for their contribution in 
free radical formation (Figure 4), doxorubicin has 
three main groups represent the differences with 
congeners. The most important entities are: 
i. A coplanar C-4-methoxy group. 
ii. Amino-sugar (pyran ring) substituent attached 
to C-7 of three groups a methyl, a hydroxyl and 
one amino group.
iii. A hydroxy acetyl group-oriented beta as a 
substituent at C-9. 
	 Daunorubicin has the same structural 
entities at C-4 and C-7 but having acetyl instead 

of hydroxyl-acetyl at C-9. This small difference 
led to a product of less side effect on heart.98-100 
	 The (Figure 6) shows a graphical 
representation of doxorubicin G1 as coplanar four 
fused rings part C, the substituent at C-7 as part A 
and the substituent at C-9 as part B. Doxorubicin 
G2 as optimized at full self-consistent field (SCF) 
levels by using MOPAC; a general molecular orbital 
package implemented with molecular mechanics 
software MMXPC.36-38 In the general substituted 
tetracyclic system, the structure part C is planar. 
Part B (the C-9 substituent) appears perpendicular 
up with the planar C and the amino-sugar; part 
A appears perpendicular down to the planar 
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Fig. 2. Clinically useful anthracyclines, the orphan drug amrubicin and annamycin 

system. The following monographs are introduced 
for comparative purposes between tetracyclic 
structures of anticancer activity concomitant with 
severe side effect on heart with those having less 
side effect and with the others bearing antimicrobial 
activity rather than cytotoxicity.  
	 Candidates of analogs as anticancer 
compounds, in addition to compd. 14 a natural 
product (101) bearing antibacterial and cytotoxic 
activities and tetracycline are studied as 3D-optized 
structures at full SCF and outlined in (Table 4).101,102 
A very important value gathered from the table is 
the tetracycline having very high percentage of 
polar surface area (% PSA, 44.6%). The candidates 
failed in clinical development like compound 10 
and compound 12 bearing the least percentage of 
polar surface area (% PSA 22.5 and 30.6%). It also 
indicates the importance of the ketonic-function of 
substituent at C-9.103-106 

	 The methods by which anthracyclines 
can be prepared are semi synthesis, genetically 
engineered Streptomyces peucetius and from total 
synthesis.107-110

	 The attempts to reduce the incidence of 
cardiotoxicity can be made if several modifications 
can be applied. 
	 First is to remove the methoxy substituent 
at C-4 of the skeleton. The drugs and candidate 
such as compounds 4, 5 and 6 are of less cardiotoxic 
effect. Methoxy group on aromatic systems donates 
electrons and, in these cases, it may increase 
the chelation power of the keto-enol systems 
undergoing the chelation with iron. Other groups 
can be tried.111,112 
	 Second is the ketonic group (C=O) of 
the C-9 substituent appear of high importance for 
tumoricidal action (Topoisomerase IIá) but also in 
the pathogenesis of cardiotoxicity (Topoisomerase 
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Fig. 3. Biosynthesis of doxorubicin

Fig. 4. Anthracyclines mediated free radical formation and biological effects.

IIâ). Replacement by (CH2) decreases the effect 
topoisomerase IIá but increases the cardiotoxicity; 
topoisomerase IIâ.  Compd. 10 bears less effects 
than doxorubicin as anticancer but high side 
effects on heart. The physicochemical properties 
of compound 10 appears of less percentage of polar 
surface area % PSA and less dipole moment than 
all the clinically useful anthracyclines.113,114 
	 Third is the sugar at C-7: In doxorubicin 
there are three substituents on pyran ring 
methyl, hydroxyl, and amino groups of specific 
stereochemistry. Changing the stereochemistry 
of a single group in pyran provided a potent with 

less cardiotoxic derivative compound 3.  Amino 
group of pyran at C-7 which has been rigorously 
mentioned as essential for activity, two derivatives 
(compound 5 and 6) one of which is orphan drug, 
compound 5 having no amino group in the C-7 
pyran entity. The presence of a powerful hydrogen 
bond acceptor and donor such as NH2 or OH 
groups.115-118 
	 Fourth is the possible absence of one 
of the parts at C-7 and C-9 mentioned as A and 
B in the topology graph (Figure 6) decreases the 
cytotoxicity relative to all of the anthracyclines 
considered for developments like compound 14.   
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Fig. 5. Selected tetracyclic structures of different biological activities 

Fig. 6. Topology G1 and G2 of doxorubicin bearing the structural units for anticancer activity and 3D-fully 
optimized structure of doxorubicin
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	 Fifth, is the absence of both parts at C-7 
and C-9 mentioned as A and B in the topology 
graph (Figure 6) abolishing the cytotoxic effect and 
emerging the antibacterial activity. The compound 
15, physico-chemical data in Table 3, demonstrates 
a high percentage polar surface area of compd. 15 
(Table 4) than all the derivatives % PSA exceeding 
44%. In silico calculation of ADME (Table 4) 
showed many differences between compound 15 
and others in partition coefficient, water solubility, 
bioavailability score, and even in not being a good 
substrate for oxidase enzymes. 
	 Sixth is fail in development of the highly 
potent compound 6. The full output of the in-
silico calculation of ADME (Table 4) showed that 
compound 6 has four deviations when investigated 
for drug-likeness namely being alkyl halide, iodine 
derivative, the molecular weight, and the bone 
marrow toxicity. 
	 There are several analogs related to 
doxorubicin appear with less side effects on heart 
and Table 5 introduces the comparative data 
between these derivatives and doxorubicin as well 
as between each other.119-152 

Conclusion

	 Anthracyclines have showed a great deal 
of cytotoxic activity since their incorporation in 
cancer treatment protocols, with considerable 
attempts to ameliorate their structure to overcome 
their evident cardiotoxicity. The approaches 
towards making better anthracyclines as anticancer 
agents are slow. In this work the structures 
of drugs in clinical use, the orphan drugs, the 
candidates bearing high cytotoxic activity and 
examples of tetracyclic structures bearing weak 
and/or cytotoxicity are collected for investigation. 
Important findings have been introduced in 
different points around the topological 3D-feature 
(Figure 6). Taking in consideration the points 
mentioned about the substitutions around main 
tetracyclic structure may help in introducing a 
selective and potent anticancer with much less 
cardiotoxicity from anthracycline-scaffold which 
still very important in treatment of solid tumors.
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