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ABSTRACT

Imaging technology is an important part of the diagnosis and management of spinal trauma.
However, many efforts have been made to develop new diagnostic biomarkers through advanced
imaging techniques. Unfortunately, there is still no consensus for practical use of biomarkers in
SCI patients. The authors conducted an all-encompassing literature review and relevant images
were included as examples. Spinal cord and soft-tissue injuries are best evaluated by magnetic
resonance imaging (MRI). However, advanced MRI techniques provide researchers with a non-
invasive approach that allows evaluation of physiological and biochemical condition of the spinal
cord and the brain at cellular and molecular level. The advent of new rehabilitation and treatment
strategies could demand more precise and advanced techniques to approach the pathophysiology
and anatomy of the spinal cord, offering more accurate and non-invasive support to research and
clinical follow up.

Key words: Spinal trauma, Imaging techniques,
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INTRODUCTION

The spinal cord is located in the vertebral
canal which starts from the medulla oblongata to
the level of the second lumbar vertebrae.  It is
surrounded by cerebrospinal fluid  (CSF) with an
average length of about 45 cm in adults 1. Then,
nerve roots from the lumbosacral segments
descend in the vertebral canal in the form of cauda
equina. The spinal cord divides into 31 segments,
each of which has an emerging pair of spinal nerves

that transmit information to and from the peripheral
nervous system. The spinal cord is divided into; 8
cervical, 12 thoracic, 5 lumbar, 5 sacral and 1
coccygeal nerves2. The butterfly-shaped gray matter
is located in the inner part of the spinal cord and
consists of mainly cell bodies, dendrites and axons,
which are surrounded by the white matter; it is
organized into three funiculi (anterior, lateral and
posterior) in each half of the spinal cord3. The
descending and ascending axonal tracts running
in these white matter funiculi convey sensory, motor,



892 NALEINI et al., Biomed. & Pharmacol. J.,  Vol. 8(2), 891-903 (2015)

and autonomic information between the peripheral
nervous system and cerebral regions. When
damage occurs to the spinal cord, sensory input,
movement of cer tain par ts of the body, and
involuntary functions such as breathing can be lost
or greatly impacted. When temporary or permanent
impairment occurs due to damage to the spinal cord,
it is classified as a spinal cord injury (SCI)4.

Spinal cord injury (SCI) is a major cause
of morbidity due to related neurological conditions
such as paraplegia and quadriplegia5. Patients with
inclusive spinal trauma and poor motor or sensory
response may have little chance of improvement6.
However, patients with incomplete injury could have
good prognosis if early diagnosis is made and
treatment of fracture and/or hematomas
immediately starts7. It should be noted that the cause
of fracture is different according to age and sex, for
example young men mostly suffer from trauma; but
elderly female’s fractures are due to osteoporosis8.
In addition to traffic accidents, there are other
causes of trauma such as fall, sports or violence.
Moreover, treatment of spinal injury may include
stabilization and determination of the location and
extent of SCI, most of the cases would undergo
surgical operation followed by medications such
as Methylprednisolone which could have potential
side effects as well9.

There are two general classes of SCI:
Traumatic SCI (TSCI) and non-TSCI (nTSCI) (10).
TSCI occurs when an external physical impact, such
as the one resulting from a motor vehicle accident,
a fall, or from violence, damages the spinal cord.
TSCI as an acute, traumatic lesion of the spinal
cord with varying degrees of motor and/or sensory
deficit or paralysis results in motor, sensory and
autonomic dysfunction could affect multiple body
systems and may cause a life-long risk of various
secondary complications10. In addition, it has a
considerable impact on the lives of injured
individuals and their social surroundings. In this
definition, injuries of the cauda equina, the most
caudal part of the spinal cord, were also included.
According to instructions from related SCI
organizations, TSCI could include fractures,
dislocations and contusions of the vertebral
column11.

Pathophysiology of TSCI
An acute tear, compression or distortion

of the spinal cord by external forces could cause
immediate death of the cells at the site of injury,
resulting in a secondary injury that exacerbates the
tissue damage through intricate mechanisms
according to the neuropathological reviews12. After
a primary injury, immediate vascular damage may
lead to hemorrhage, ischemic changes and edema.
Moreover, an inflammatory response could arise
with neutrophil and then macrophage infiltration13.
In fact, demyelination and death of
oligodendrocytes may be associated with neuron
necrosis. Macrophages are then responsible for
removal of the damaged tissue, leading to the
formation of cavities at the level of the lesion14.
Astrocytes form a glial scar, and collagenous fibrosis
may also appear in the area of the injury. Some
peripheral types of remyelination would occur
through schwann cell activity, and varying amounts
of spinal cord tissue may be replaced by
schwannosis15. Many destructive responses, such
as excitotoxicity, the formation of free radicals and
lipid peroxidation, would contribute to additional
cell death during the acute and subacute phase
following the initial trauma. As a consequence of
local neuronal injury in SCI, secondary
degeneration can also cause progressive and
widespread changes in neural tracts at sites distant
from the lesion over several years16. Histologically,
degeneration has been shown to be spread in both
anterograde and retrograde directions after SCI in
human. Furthermore, axonal changes, such as
fragmentation and dying back, could characterize
the acute phase of degeneration, as an active
process triggered by rises in intracellular calcium
levels17. Moreover, the acute phase of degeneration
could follow by slow and progressive myelin
degradation, which can continue for a number of
years after the initial trauma. Demyelination may
also accompany by astrogliosis, which eventually
leads to isotropic scarring in regions where
degeneration has occurred18. As an endpoint of
neurodegeneration, the spinal cord becomes
atrophic after SCI. Secondary degeneration has
even been shown to reach cerebral regions, and
there would be some histological evidences of the
atrophy of corticospinal neurons in human after
SCI19. Furthermore, the grey matter volume and
thickness of the sensorimotor cortex as well as the
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white matter volume in the corticospinal tract may
be decreased after injury20. Such structural changes
were shown to be progressive during the first year
after injury, although the rate of atrophy could
decelerate in the area of the cranial CST after 6 to
12 months 21. These dynamic atrophic changes were
associated with clinical scores, suggesting better
clinical outcomes with low volume changes in the
cerebral CST after injury22.

TSCI may occur when a pathological
process other than external physical force damages
the spinal cord such as motor neuron diseases,
spondylotic myelopathies, infectious and
inflammatory diseases, neoplastic diseases,
vascular diseases, toxic, metabolic conditions, and
congenital or developmental disorders23. Also,
theranostic agents can be designed to personalize
treatment, and minimize damage to normal tissue24.

Classification of SCI into traumatic and
non-traumatic and by the severity of the injury is
particularly important for the treatment, recovery and
rehabilitation of the patients25. When SCI occurs, it
can be complete or incomplete, which, in turn, alters
whether there is total or partial motor or sensory
deficit26. The neurological extent of the injury, or how
much motor or sensory function is left intact after
the SCI, is measured by a neurological
examination. This examination could determine the
level of impairment of the patient, reported as
American Spinal Injury Association (ASIA)
Impairment Scale grade27.

Location of the injury can be diagnosed
via imaging methods which can evaluate the spine
integrity, or define the repercussion of the trauma
on the diameters of the spinal canal and neural
foramina28. Radiography is usually used to make
diagnosis; however, there are some instances of
spinal damage due to fractures which are
overlooked on radiography29. Computed
tomography (CT) or magnetic resonance imaging
(MRI) can ensure diagnosis of spinal fractures in
such cases as well as the time which the movement
of spinal column is contraindicated due to the
probability of neurological damage (Figures 1 and
2)30. Moreover, MRI could play a crucial role in
detection and evaluation of spinal trauma. In
addition, subtle bone marrow, soft-tissue, and

spinal cord abnormalities, might not be apparent in
other imaging modalities, can also be readily
detected by MRI31. Early detection could lead to
prompt and accurate diagnosis, expeditious
management, and avoidance of unnecessary
procedures, most of the time. Many advantages of
MRI such as higher contrast resolution, multiplanar
capability, choice of various pulse sequences, and
absence of bony artifacts could make it possible to
diagnose spinal trauma more accurately than other
methods32. In addition, other important findings
about neural and extra neural injuries may require
surgical interventions, for example, significant disc
herniation and epidural hematomas can also be
observed. In cases of spinal cord edema, contusion,
hemorrhage and ischemia, MRI results may play a
role as prognostic indicators too33.

Why do we use advanced MRI techniques?
Severe central nervous system (CNS)

injury is the most common cause of death and
disability resulting from trauma. The important factors
which could determine the prognosis of patients
with CNS injury are the severity of the primary injury
followed by secondary cord injury which may begin
from the time of traumatic impact34. Although
mitigation strategies for the primary injury is not
within the scope of this review; however, most
treatments of SCI have been focused on accurate
diagnosis of primary cord injury and the prevention
of secondary, delayed cord injury. Therefore, many
efforts have been made to develop new diagnostic
biomarkers through advanced imaging techniques.
Unfortunately, there is still no consensus for
practical use of biomarkers in SCI patients35. In fact,
conventional medical imaging techniques are still
unable to accurately predict patient’s prognosis
after a SCI. Although patients with incomplete SCI
are able to regain some loss of function, this can be
disrupted by immediate physiological response that
masks the true extent of the injury25. It is important
to fully understand the complexity of a SCI before
being able to provide a way to recovery from the
disability. Fortunately, physicians are able to offer
some insight into the initial diagnosis of SCI;
however, extent of injury is difficult to predict
because of the initial inflammatory response. The
extensive damage that occurs throughout entire
axons following neuronal damage in the spinal cord
is indeed not limited to the spinal cord36.
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A number of studies have demonstrated
cortical changes including decreased number of
neurons in the motor regions of the cortex as well
as corticospinal tract as a result of SCI37. On the
other hand, currently advanced MRI techniques
provide researchers with a non-invasive approach
that allows evaluation of physiological and
biochemical condition of the spinal cord and the
brain at cellular and molecular level. Although
conventional MRI is the imaging modality of choice
for guiding management after injury and may
appear to be of value in the prediction of prognosis,
the provided information is mostly qualitative38. In
addition, in emerging clinical trials investigating
experimental cell-based, pharmaceutical or
rehabilitative interventions, there is a need for more
specific and sensitive end-point measures that
provide information about the condition of nerve
fiber tracts using noninvasive techniques39. To
determine the efficacy of agents in a timely and
economical manner, biomarkers are required that
can be used as surrogate markers of patient‘s
outcome. Recent developments in quantitative
neuroimaging of the spinal cord and brain have
the potential to detect anatomical, physiological,
biochemical, and molecular changes and
functional reorganization following SCI40. There is
now a pressing need to validate the accuracy and
sensitivity of these MRI biomarkers, in order to
increase the understanding of underlying
mechanisms of damage and consequent functional
reorganization, to identify potential therapeutic
targets, and to track potential treatment-induced
changes41.

Role of advanced MRI techniques in the
evaluation of TSCI
Diffusion tensor imaging (DTI)

Diffusion or Brownian motion refers to the
completely random displacement of molecules due
to thermal energy. The diffusion coefficient, D,
characterizes this thermal motion and is usually
expressed in units of square millimeters per second
(mm²/s)42.This constant is dependent on the
temperature, molecular weight and viscosity of the
solution. When considering biological tissues, the
apparent diffusion coefficient (ADC) is used as a
diffusion constant to incorporate the effects of
cellular structures and active processes within
tissues on diffusion39. If diffusion is equivalent in all

directions, it is called isotropic, whereas the term
diffusion anisotropy is used when diffusion is
restricted in some directions. In an isotropic medium
such as free water, diffusion can be represented as
a sphere and characterized by a single scalar ADC
that is equivalent in each direction43. In some
biological tissues, especially in the white matter of
nervous tissue, the ADC depends on the direction
in which it was measured. The ADC is higher in
parallel with nerve fiber bundles than in the
perpendicular direction, indicating anisotropic
diffusion39. This asymmetrical diffusion pattern, with
different diffusion properties in different directions,
can be modeled by a three-dimensional ellipsoid
in which the orientation of the longest axis, which
has the highest ADC, represents the local fiber
orientation . Moreover, the concept of diffusion
tensor could provide a simplified mathematical
model to estimate microscopic diffusion properties,
such as the magnitude, the degree of anisotropy
and the principal orientation, by performing six or
more diffusion-weighted measurements in
independent directions44.

Diffusion tensor imaging (DTI) is a
relatively new MRI modality with the advantageous
feature of using diffusing water molecules to probe
the tissue architecture45. It can either non-invasively
produce quantitative information about the direction
and integrity of cerebral and spinal white matter
tracts or reveal pathological changes in areas that
may appear normal using conventional MRI. DTI
has been developed from a technique known as
diffusion-weighted imaging, which measures the
attenuation of MR signals caused by diffusion, and
was initially used for brain imaging. This method
can give us unique quantitative information on the
microstructural features of white matter in the CNS45.
Moreover, diffusion properties can be assessed
using quantitative indices such as ADC, mean
diffusivity (MD) and fractional anisotropy (FA) 46. The
ADC could reflect the average diffusivity of water
molecules in all directions; in fact, the stronger water
molecules diffuse within a tissue, the larger the ADC
is. However, the weaker water molecules diffuse
within a tissue, the lower the ADC could be47. Thus,
tissues with high water mobility and few boundaries
to water motion could have high ADC values, such
as cerebrospinal fluid and vasogenic edema,
whereas tissues with a high degree of complexity
and boundaries to diffusion may have a relatively
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lower ADC, such as white matter fiber bundles and
MD, representing the degree of diffusional motion
of water molecules (regardless of direction), is
measured in mm2/s. Furthermore, FA represents a
rotationally invariant parameter, where 0 represents
completely isotropic diffusion and 1 represents
extremely limited diffusion in only one direction48

(Figure 3).

Since diffusion barriers within the tissue
could change after injury, DTI could act as an
invaluable tool to monitor histological changes to
the spinal cord after a SCI. Although most
researches have focused on diffusion
measurements at or within a few segments adjacent
to site of injury, DTI parameters of the spinal cord
could be sensitive to histological changes occurring
after a traumatic injury40. However, in addition to
the primary injury site, there might be a secondary
damage to the spinal cord in regions distant from
the (primary) injury site that may result in histological
changes which could affect water diffusion,
including degeneration of fiber tracts, ischemia,
edema, and oxidative damage to the tissue
membranes which may act as barriers to diffusion.
This inflammatory response could result in impaired
medullary circulation as well as changes into spinal
cord structure, which may consequently develop
necrosis that has been documented throughout the
entire length of the spinal cord, up to the brainstem.
These physical changes to the cellular
microstructure, including axon number and volume
changes, and alterations in intracellular and
extracellular water balance, may be associated with
changes in apparent diffusion, including both
longitudinal diffusion (along the tracts) and
transverse diffusion (across the spinal tracts)49.

Moreover, axon morphometric parameters
in various white matter tracts appear to underlie
some differences in overall diffusion, which could
be useful in the detection of injury to spinal white
matter tracts. Thus, as a biomarker for injury severity,
DTI measurements of diffusion throughout the
spinal cord after an injury might be taken into
account. In addition, mean diffusivity could
significantly be decreased in regions away from
the lesion site consistent with the secondary injury
processes such as cytotoxic edema, chronic atrophy
and axonal loss. Changes in mean diffusivity have

also been reported in the high cervical spinal cord
(rostral to an injury) in patients with chronic SCI50.
These observations could raise the question of
whether changes in diffusivity in regions distant from
the injury are correlated to injury severity.
Furthermore, it is expected that severity of injury
would change the secondary injury processes, as
the extent of demyelination and remyelination could
depend on the number of axons that are disrupted
by the injury. One of the important applications of
DTI could be the evaluation of SCI in animal models.
In fact, DTI could demonstrate a significant decrease
in anisotropy and increase in radial diffusivity at
the level of injury and in the areas of the cord that
are apparently normal on conventional T2-weighted
images51.

It should be noted that in hyperacute SCI
(0-6 hours), diffusion measurements are able to
distinguish SCI on the basis of severity. However,
the unique feature of DTI may be its ability to detect
changes in diffusion metrics at regions rostral and
caudal to the lesion. In addition, a decrease in
diffusivity remote from the lesion could be observed
during recovery from SCI50. These findings are
possibly related to cytotoxic edema, axonal loss, or
chronic atrophy. Interestingly, changes in DTI
indexes away from the lesion could be correlated
with injury severity, indicating that they may be used
as surrogate markers of neural injury. Moreover,
DTI of the spinal cord in human was initially
inadequate due to the small area of the cord,
susceptibility artifacts, and cardiac and respiratory
motion artifacts52.

However, adequate spatial resolution
could still remain an important problem. It is difficult
to visualize the individual funiculi on diffusion-
weighted images, particularly in the lower thoracic
cord. Moreover, the chronic phase of SCI shows
wallerian degeneration, astroglial scar formation,
and progressive cavitation of the cord with rostral-
caudal spreading. Identifying specific changes in
DTI metrics to characterize particular histological
events during recovery from SCI remains a
challenge too. Thus, the use of faster imaging
techniques such as parallel imaging and single-
shot echoplanar imaging and the use of cardiac
pulse gating could help to reduce the artifacts.
However, scan acquisition time is still a limitation
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Fig. 1: CT scan of the cervical spine revealing
posteriorly displaced C7 vertebral body

impressing spinal cord

Fig. 2: Conventional MR T2-weighted images of the human spinal cord with trauma show
characteristic stages of morphological changes during the transition from acute to chronic stages

of injury. Images show relatively lower signals at the injured spinal cord at A) acute phase which
gradually increased in the time post-injury include B) 2 weeks after SCI, C) 5 months after SCI,

and D) 18 months after SCI

for patients with acute SCI because these patients
often cannot withstand additional scanning time in
the MRI suite53

In general, the most important advantage
of tensor imaging could be its ability to show
changes in white matter tracts even in cases with
normal routine imaging results In diffuse axonal
injury, with normal routine CT scan and conventional
MRI, there would be reduction in diffusion
anisotropy after 24 h, suggesting axonal injury54. It
has also been well understood that signal changes
seen on routine MRI may not be associated with
neurological deficits and clinical findings, whereas
DTI has been shown to be correlated with motor
deficits. Moreover, in experimental studies, changes
in axial diffusivity on DTI in the spinal cord injury as

early as three hours after trauma were reported to
be a potential predictor of long-term motor recovery,
as DTI can detect early subclinical physiological
changes in the cord 55.

Moreover, Wallerian degeneration above
or below the injury level has also been presented
on pathological examination. Buss and colleagues
have found that there could be a sequential loss of
myelin proteins during Wallerian degeneration after
spinal cord injury which can be observed (several)
years after injury. Similarly, tensor imaging in a rat
model with spinal cord contusion has been shown
to be evolve with changes in the ADC with recovery
in ADC values with time, suggesting that recovery
from spinal cord injury can be considered as a
dynamic process coming after for years. In fact, stem
cell therapy for spinal cord injury patients is being
tried with the hope of achieving axonal regeneration
and recovery. In the future, the use of stem cells in
patients with spinal cord injury could probably prove
to be a promising therapy. Thus, tensor imaging
has the potential to noninvasively identify axonal
regeneration after stem cell therapy55, 56.

Magnetic resonance spectroscopy (MRS)
MR spectroscopy (synonymous terms for

MRS, including Chemical Shift Imaging (CSI),
Spectroscopic Imaging (SI) and Multivoxel
Spectroscopy), enables the determination of
metabolite concentrations in a predefined region
of interest in neurological, psychiatric and metabolic
disease, both noninvasively and in vivo. In contrast
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Fig. 3: Top row: Sagittal and axial T2W images (A,
B, and C) and axial fractional anisotropy color
maps (D) of patient with cervical SCI in above
the injury epicenter (D top), injury epicenter (D
middle), and below the injury epicenter (D
bottom). Note which maps show loss of
anisotropy at the injury site. Bottom row: Sagittal
and axial T2W images (E, F, and G) and axial
fractional anisotropy color maps (H) of cervical
spinal cord region from normal volunteer. Control
spinal cords showed intact cord structure with
normal central gray matter morphology in each
three part including above the injury epicenter
(H top), injury epicenter (H middle), and below
the injury epicenter (H bottom).

to other MR imaging techniques, such as diffusion-
weighted imaging, blood oxygen level– dependent
contrast imaging, or structural MR imaging methods,
MR spectroscopy could provide information about
the chemical microenvironment from atomic nuclei
in a variety of functional groups. This allows
detection of changes in the concentration of various
metabolites for investigating healthy tissue and
pathologic processes and exercise- or drug-induced
changes. The most widely available MRS method,
proton (1H; hydrogen) spectroscopy is an FDA-
approved procedure in the US that can be ordered
by clinicians for their patients if indicated. Other
methods, such as phosphorous-31 (31P), carbon-
13 (13C), or fluorine-19 (19F) MRS, have been
successfully applied in humans. But with the ever-
increasing importance of clinical MR imaging, these
exotic and time-consuming applications have been

push to the side and are only available at a few
academic centers. In addition, 1H MRS does not
require any additional hardware beyond what is
already being used for MRI. Compared to DTI, the
application of MRS to SCI may have more
advantages. For instance, MRS can provide
metabolic information about the cellular
biochemistry and function of the neural structures
within the cervical spinal cord. MRS also can be
used to assay a series of pertinent biochemical
markers, such as N-acetyl aspartate (NAA), lactate,
choline (Cho), myo-inositol (Myo-I), glutamine-
glutamate complex (Glx) and creatinine (Cr), with
particular sensitivity to NAA and lactate57.

Metabolites mentioned are including
N-acetyl -aspartate (NAA) produces a

large resonance in a H2O suppressed 1H spectrum.
The peak may contain up to 20% contributions from
Aspartyl-glutamate (NAAG). NAA is generally
associated with neurons and axons in the adult
brain. It has received considerable interest in
several disorders where there is neuron loss.
However, its function is largely unknown58.

The Choline (Cho) peak arises from a
mixture of glycero-phosphoethanolamine and
glycerophosphocholine. Both phospholipids are
present in cellular membranes. This resonance can
provide information about cell density and
membrane integrity (or peroxidation)59.

Myo-Inositol (MI) provides a relatively large
resonance and is involved in osmotic regulation
across the cellular membrane and could be specific
for glial cells. The amino acid glycine may also
contribute to the myo-inositol resonance. Scyllo-
inositol, an isomer of inositol appears also as a
singlet peak more downfield. Taurine resonates
close to the scyllo-inositol region59.

A glutamate and glutamine (Glu, Gln) peak
can be detected in the human brain. Glutamine is a
precursor of glutamate. Glutamate is involved in
neurotransmission. Gamma-aminobutyric acid
(GABA), also present but in lower concentrations
during normal physiological conditions may overlap
with the Glu, Gln resonance at 1.5T field strength60.

The creatine (Cr), resonance originates
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Fig. 4: 1H-MR spectrum images of the upper cervical spinal cord in healthy volunteer (A) and

patient with cervical tSCI (B). The spectrum shows NAA/Cr ratio in patients with tSCI was
decreased

from intracellular Cr and PCr. These are involved in
the Creatine kinase reaction and consequently in
energy metabolism61.

Some studies have demonstrated that NAA
can only be found in axons and neurons and may
be considered an indicator of axonal integrity.
Although little is known about specific mechanism,
lactate is considered to play a central role in
metabolic dysfunction after CNS injury and may be
correlated to ischemia and mitochondrial
dysfunction. In the early changes, the observation
of a cervical stenosis patient without spinal cord
signal changes showing slightly higher Myo-I and
Glx compared to that of the control group suggested
Myo-I as a potential early marker for spinal cord
inflammation and early stage demyelination in
cervical stenosis before neurological impairment62.
(Figure 4).

In the late changes, while the patient with
spinal cord signal changes had a significantly
higher Cho/Cr ratio than the control, the patient
without spinal cord signal changes had no
significant difference compared to the control. These
results show that increased Cho levels appear later
than the aforementioned cellular metabolic
changes in SCI. MR Spectroscopy of the spinal cord
is a promising tool for research and diagnosis

because it can provide additional information
complementary to other noninvasive imaging
methods. Moreover, in neuroresearch MRS is
definitely a revolutionary tool that will help
understand the biochemistry of brain diseases.
Metabolic information obtained from MR spectra is
an emerging component in modern neurochemistry
and standardized reproducible measurements63.

However, the application of this promising
technique to the spinal cord requires
comprehensive expertise. The following
methodological challenges, related specifically to
the application of MR spectroscopy in the human
spinal cord, have hindered its application in the
clinical settings for many years:
1) Strong susceptibility changes, related to the

anatomic tissue heterogeneity (vertebral
bodies, CSF, muscle tissue, and so forth)
around the spinal cord, may lead to spatially
periodic distortions of the static magnetic
(B0) field along the spinal cord. This could
distort the line shape of the spectra and
reduces the signal to noise ratio (SNR).

2) The small diameter of the spinal cord
(approximately 1 cm in the cervical cord and
even lower in the thoracic and lumbar cord6)
limits the possible voxel size, resulting in a
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low SNR and potentially imprecise
quantification of metabolite concentrations.

3) The attainable SNR is also limited by the
relatively great distance from the region of
interest to the receive coils; for example, in
the cervical spinal cord, the distance is
approximately 5 cm in all directions and can
reach >15 cm in the lower cord regions.

4) The pulsatile flow of the CSF, caused by
waves of arterial pressure transmitted via
brain contractions due to the fixed total
volume inside the skull to the CSF, can
reduce the spectral quality (eg, impaired
water suppression, distorted line shape and
phase). The induced spinal cord motion does
not seem to be critical because the
maximum transversal displacement in the
cervical region is approximately 0.6 mm in
the anteroposterior direction.

5) Subject motion is another severe problem
because voxel dimensions are in the range
of millimeters and are maximized to include
as much spinal cord tissue as possible for
increasing the SNR. Hence, patient motion
in the range of millimeters (which is not
unlikely considering the relatively long
scanning times needed for spectroscopy)
would already move the position of the
voxels considerably out of the spinal cord.
The result might be the contamination of the
spectra with resonances of non-neural
tissues, such as lipids, from nearby bone
marrow or muscles and a further reduction
of the SNR for the metabolites of interest.

6) Anatomic variability, subject motion, or
pathophysiologic changes of the
electromagnetic tissue properties may affect
transmit (B

1) field and hence alter desired
flip angles, localization profiles, and SNR.

7) With conventional MR spectroscopy
localization techniques such as the point-
resolved spectroscopic sequence, the signal
of different metabolites could stem from
slightly different regions (chemical shift
displacement artifact1). If one considers the
small size of the spinal cord, the excitation
volumes for some metabolites might be
shifted partially out of the cord region. This
has to be considered to minimize

measurement errors with regards to relative
metabolite concentrations64.

Functional MRI (fMRI)
Functional MRI has quickly become the

preferred technique for imaging normal structure
activity, especially in the typically active tissues such
as brain and nerve. The need for a noninvasive
method of mapping neural function in the SC, such
as fMRI, is related to the fact that clinical decisions
about the best treatment course to take following
trauma to the SC, or after the effects of diseases
such as SCI, may require knowledge of how the
cord is functioning according to the ASIA
International Standards for Neurological
Classification, which involves pin-prick tests across
dermatomes and motor tests of various muscle
groups. This method is a functional neuroimaging
procedure using MRI technology which could
measure brain activity by detecting associated
changes in blood flow. This technique is based on
the coupling of cerebral blood flow and activation
of neurons. When an area of the brain is active, the
flow of blood in the region also increases65.

Two different approaches have been
emerged for fMRI of the SC, one based on the
established brain fMRI method employing blood
oxygenation level-dependent (BOLD) contrast, and
the other based on signal enhancement by
extravascular water protons (SEEP). The
physiological changes underlying the SEEP
contrast mechanism are discussed in detail in a
separate review in this issue and so are not
discussed here. The BOLD contrast mechanism is
well known from brain fMRI and also occurs in the
SC. Each method has been shown to have specific
benefits and drawbacks. SEEP contrast is based
on detection of changes in tissue water content and
can therefore be obtained with proton density-
weighted spin-echo parameters which could
provide high-quality images of the SC. Most spinal
fMRI studies employing BOLD contrast to date has
employed echo-planar spatial encoding to achieve
the highest imaging speed. Previous studies
indicated that there are some preserved white
matter pathways spanning the injury level, and
preserved sensory function below the injury, in
agreement with clinical assessments based on the
ASIA standard. Regardless of the stimulus or the
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health of the SC in question, spinal fMRI has been
shown to be able to detect neuronal activity in the
SC. Thus, without the need for invasive procedures
or any changes to existing clinical MRI facilities,
this method makes it possible to observe SC
function in both patients and healthy subjects.
Currently, fMRI is being developed to assess
neurological function after surgery66.

CONCLUSION

The extension and severity of the spinal
trauma injury depends on several factors secondary
not only to the features of the primary lesion but
also to the treatment strategies and the degree of
secondary lesions like demyelination and Wallerian
degeneration. DTI as a feasible technique can
detect Wallerian degeneration, which is not
detected on routine or conventional imaging. Also,
as documented in other studies, it may be correlated
well with motor deficits and is a predictor of long-
term motor recovery.

Currently, advanced MRI techniques could
provide unique insight into the pathophysiology and
microstructural alterations associated with spinal
cord disorders67. After SCI injury, the establishment
of fast and efficient treatment strategy would depend
on specific and detailed anatomical and
pathological information that can be precisely
provided by CT and MRI. Even in the more severe
injuries, some pathways may be preserved and

contribute to functional recovery, which can be
achieved by regeneration, remyelination or by
neural plasticity, sprouting undamaged pathways.
Moreover, although it is well established that cortical
reorganization occurs, it remains unclear whether
reorganization involves time-dependent
anatomical changes. Improving the understanding
of the neuronal mechanisms which may subtend
clinical recovery during the acute injury phase is
the key to develop evidence-based rehabilitation
therapy and the tracking of treatment-induced
changes. Quantitative neuroimaging of the spinal
cord is an advancing field that may increase the
understanding of disease progression and facilitate
the prediction and monitoring of individual patients
following SCI. These new neuroimaging techniques
exploit the physical water properties that could
define the MR contrasts, which would provide
multiple measures of underlying microstructural
changes in myelin, iron deposits, and water.
Ultimately, quantitative and qualitative advanced
MRI techniques in longitudinal multicenter
assessments in acute SCI are required to measure
central effects and their impact on cortical
reorganization as SCI patients recover. This should
allow the identification of the most sensitive imaging
biomarkers and their applicability in clinical trials.
The advent of new rehabilitation and treatment
strategies could demand more precise and
advanced techniques to approach the
pathophysiology and anatomy of the spinal cord,
offering more accurate and non-invasive support
to research and clinical follow up.
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