The Binding Capacity of the Lead Phytochemical Molecule to Cancer Cell Target Proteins and its Potential Anticancer Properties with Respect to Standard Drugs

P. Kiranmayee

Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, India. *Corresponding Author E-mail: kiranmayee@sduaher.ac.in

https://dx.doi.org/10.13005/bpj/2916

(Received: 05 September 2022; accepted: 10 April 2023)

Molecular docking is an important tool for connecting molecular biological structure to computer-aided drug design. The purpose of this blind docking experiment is to compare the binding energies of these three drugs and to predict the most likely binding poses of a ligand with a known three dimensional structure of a protein. To substantiate our previous in vitro study findings, an *in silico* model was chosen to compare the binding properties of the three drugs. The work is entirely bioinformatics in nature. Blind docking was accomplished with the help of free software/(s). A comparison was made among the three drgus, used primarily in cancer treatment, namely, anastrazole, capecitabine and quercetin. In our in vitro study, these three drugs were extremely effective. CB-Dock2 to blind dock, SwissTargetPrediction to choose the targets, PubChem and Protein Data Base to obtain 3D structures of ligand and target respectively were used. Absorption, Distribution, Metabolism, and Excretion (ADME) from SwissADME, drug likeness from MolSoft L.L.C. software, and Liponski's rule was used to check the "Rule of five (RO5)". The crystallographic structures have resolution values ranging from 1 Å to 3 Å. Lipinski's rule of five, Swiss ADME and drug likeness were used to compare the three drugs. For all of the targets studied, quecetin appeared to have the highest AutoDock vina scores. To summarize the current findings and publicly available data, quercetin is chemoprotective and radioprotective to healthy/ normal cells and it can be used during cancer treatment.

Keywords: Blind docking, Anastrozole, Capecitabine, Querecetin, breast cancer, protein data bank, CB-Dock2, Pubchem.

The most commonly discussed cancer is breast cancer (BC). The current treatment has a short-term effect of slowing tumor development. Patients frequently experience relapses the disease¹. Cell proliferation and apoptotic pathways fail during this process and cancer takes over. BC is slowed by eating nutritious foods and staying physically fit. Foods high in saturated fat, processed meat and so on raise circulating levels of endogenous estrogens, pro-inflammatory cytokines, and growth factors. These in turn contribute to the development of breast cancer². Natural fruits and vegetables are high in antioxidants and thus protect against the development of BC. Regular consumption of fresh fruits and vegetable, triglycerides, soy products and limited consumption of red wine and carbohydrates raises polyphenol and fibre levels and provides tumorigenesis resistance³.

This is an d Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Published by Oriental Scientific Publishing Company © 2024

In silico/docking approach has been shown to improve the drug discovery process by using free online software (s) in less time as well as understanding and estimating the toxicity and efficiency of the small molecules or drugs⁴. The two of the qualities directly linked to the primary structure are selectivity and affinity. Protein (target) and ligand (drug) interaction will have to overcome difficulties such as toxicity because of non-specific protein binding and insufficient efficacy because of low affinity⁵.

Quercetin: The human diet is high in flavonoids which have promising therapeutic properties for a variety of illnesses, including cancer. The flavonoid quercetin has been extensively researched and is found in major amounts in commonly used plants such as *Allium cepa, Brassica, Allium sativum,* spinach and others. According to research, quercetin works well on malaria, inflammations, Alzheimer's, obesity, and breast cancer on par with standard drugs⁶. Based on research findings, quercetin inhibits BC by preventing signal transduction, encouraging cancer cell apoptosis and suppressing cancer cell proliferation and metastasis⁷.

Anastrozole: Aromatase inhibitors of type II are non-steroids and anastrozole is a type II potent aromatase inhibitor. Anastrozole binds to the heme ion of aromatase in a reversible manner, lowers the levels of estrone (E1), 17-beta-estradiol (E2) and estrone sulphate (E1S). Aromatase inhibitors are the endocrine therapy of choice for treating breast cancer, particularly in postmenopausal women. Anastrozole is the first-line treatment choice for metastatic situations and postmenopausal women with oestrogen receptor-positive BC⁸.

Capecitabine: Synonym Xeloda, is a fluoropyrimidine deoxynucleoside carbamate antimetabolic drug. In *in-vivo* conditions, thymidine phosphorylase (dThdPase) converts this drug to 5-fluorouracil (5-FU). It is far more effective as an adjuvant treatment in metastasis and in advanced BC, also referred to as a rescue drug. It can be effective when combined with other medications⁹.

The benefits of combination therapy include improved or maintained efficiency, dose and toxicity reduction; and a delay in the development of drug resistance. In our previous study¹⁰, we established that a very low dose of quercetin (16 g/ml) inhibited cell growth, while increasing cell death, arresting cell cycle, inducing mitochondrial depolarization, and expressing caspase in combination with anastrozole and capecitabine. The current study backs up these findings by docking various BC proteins with the three drugs and comparing their efficacy in binding to the targets. Anti-apoptotic proteins, hydrolases, isomerases, oxidoreductases, transcription factors, binding proteins, signaling proteins, and transferases are all included in this category.

MATERIAL AND METHODS

CB-Dock2 was used to dock the drugs (anastrozole, capecitabine, and quercetin) with the target proteins. Each target protein was docked separately on each of the three ligands. A total 117 proteins were docked. The selected target molecules majorly belong to oxidoreductases/ oxidoreductase inhibitors, hydrolases/hydrolase inhibitors, isomerases, kinase/kinase inhibitors, transferase/transferase inhibitors, hormone, and cell cycle transcription factors, growth factor receptors, apoptosis regulators, and signaling proteins. Small molecules' interaction with targets enables biological functions, interpretation, prediction and drug development process. Blind docking aids in determining the precise binding sides of proteins and predicts the bind poses of any given molecule.

SwissADME

In silico methods predict Absorption, Distribution, Metabolism, and Excretion (ADME) parameters based on available molecular structure. The SwissADME web tool, which is simple to use, assisted in predicting the physicochemical functions, medicinal chemistry, water solubility, drug-likeness, lipophilicity, and pharmacokinetics. To obtain all these mentioned parameters, the smiles from PubChem for anastrozole, capecitabine, and quercetin were copied and submitted on the SwissADME page. Following completion, the "BOILED-Egg" button was pressed to record the key parameters of gastrointestinal absorption and blood-brain barrier (BBB)¹¹.

Drug likeness

Drug likeness provides a balance between molecule properties and structure, determines the likelihood of a small molecule becoming an oral drug, and identifies the similarities to known drugs. This tool provides molecular formula, number of (hydrogen) bond donors and acceptors (HBA and HBD), logP, logS, pKA value, molecular weight, BBB, and likeness score after entering the smiles. The higher the probability, the higher the score value of an active drug. The water partition coefficient predicts an oral drug's water solubility. High potency at the biological target is a required quality in drug candidate potency. It summarizes the ligand and lipophilic efficiencies. The number of (hydrogen) bonds versus side chains (alkyl) of a molecule is used to calculate solubility factor. Slower absorption and action result from lower solubility. Too many hydrogen bonds result in low-fat solubility and a failure to penetrate the cell membrane and act inside the cell. The LogP value should be between 0.4 and 5.6, the molecular weight should be from 160 to 480/ mol, and the molar refractivity should be from 40 to 130 with 20 to 70 atoms. The drug molecules' molecular properties and drug likeness were provided by MolSoft L.L.C. software12.

Lipinski's rule

The "Rule of five (RO5)" or "Lipinski's rule" determines whether a predicted molecule adheres to five rules: molecular weight (<500 g/mol),

hydrophobicity (Log P < 5), HBA (no. <10), HBD (no. <5), Polar Surface Area (PSA) (d"140 AÚ) and rotatable bonds (< 10Rot B). It determines the chemical's oral bioavailability as well as its chemical and physical properties. A molecule is predicted to be a drug if it meets at least three of the five rules, and a non-oral drug if it violates more than two rules¹³.

SwissTargetPrediction (STP)

This tool predicts innate small protein molecule targets. Humans provide the default prediction. STP works by providing smile input or by drawing the 2D structure protein probe molecules from PubChem (both synchronise automatically)^{14, 15}.

Ligand and protein selection

PubChem provided the 3 dimensional (3D) drug structures and isomeric smiles for anastrozole, capecitabine, and quercetin¹⁶⁻¹⁹ and the RCSB protein databank (RCSB PDB) provided the protein targets²⁰.

Docking study

CB-Dock2 was used in this study to detect protein surface curvature (CurPocket) and guide molecular docking by Auto Dock Vina (1.1.2 version). CB-Dock2 has many

Name PubChem MW Chemical Structure Smiles (g/mol)formula id C17H19N5 CC(C)(C#N)C1=CC Anastrozole 2187 293.37 (=CC(=C1)CN2C= NC=N2)C(C)(C)C#N Anastrozole Capecitabine 60953 359.35 C15H22FN3O6 CCCCCOC(=O) Nc1nc(=O)n(cc1F) [C@@H]10[C@@H] ([C@H]([C@H]1O)O)C Capecitabine Quercetin 5280343 302.24 C15H10O7 OC1CC(O)C2C(C1)OC(C(C2=O)O)C1C CC(C(C1)O)O Quercetin

Table 1. The 3 dimensional structure, molecular weight, formula and canonical smiles of the selected drug

MW: Molecular Weight, g: gram, 3D: 3 dimensional

benefits over other docking methods²¹ available. The four steps involved in quick protein-ligand blind docking are data input and processing; cavity detection, visualization and data analysis. CB-Dock2 examines the ligand for hydrogens, adds hydrogens and partial charges, generates the initial 3D confirmation, adds missing side chain atoms, adds hydrogen atoms, examines the missing residues, and removes the co-crystallized water and hetero groups.

RESULTS AND DISCUSSION

A library of targets has been collected from the literature search and structures were retrieved from RCSB. The blind docking method is a model that can be preferred for understanding the relation between drug and target at atom level. It describes the ability of a drug or small molecule to bind to a target protein. It is a two-step process that aids in predicting ligand confirmation, position, orientation (pose), and affinity assessment.

The current study focuses on drug molecule interactions with target proteins in BCs. *in vitro* compared the efficiency of purified quercetin from radish leaves and dill weed leaves with anastrozole and capecitabine. Our findings indicated that quercetin, in conjuction with anastrozole and capecitabine, could reduce the toxic burden at a low concentration $(16 \ \mu g/ml)^{10}$.

Property	operty Anastrozole Capecitabine		Quercetin	
Molecular weight (g/mol)	293.37	359.35 g/mol	302.24 g/mol	
Fraction Csp3	0.41	0.67	0.00	
Number of rotatable bonds	4	8	1	
Number of HBA	4	8	7	
Number of HBD	0	3	5	
TPSA	78.29 Å	122.91 Å	131.36 Å	
XLogP3 (lipophilicity)	2.03	0.56	1.54	
Log S (ESOL)	-3.04	-2.07	-3.16	
GI absorption	High	High	High	
BBB permeant	Yes	No	No	
Lipinski	0 violation	0 violation	0 violation	
Synthetic accessibility	2.21	4.67	3.23	
Lead-likeness	Yes	No	Yes	
Bioavailability	0.55	0.55	0.55	

Table 2. Physicochemical properties of anastrozole, capecitabine and quercetin from SwissADME

Fig. 1. The bioavailability radar from Swiss ADME is presented. A: Anastrozole, B: Capecitabine, C: Quercetin Docking experiments were conducted to determine which of the three drugs (anastrozole, capecitabine and quercetin) had the highest binding efficiency (Table 1). The protein targets were classified and docked against the three drug molecules using SwissTarget predictions and published literature.

Molecular weight <5 denotes the light weight of the molecules, that can pass through the target cell's membrane. Lower MW favours oral absorption, and higher molecules choose an alternate route namely through the membranes. The table shows the molecular weight of the selected compounds according to Lipinski's rule. The test compound's bioavailability radar revealed an immediate consideration of drug-likeness (Table 2 and Fig. 1). XlogP (between -0.7 and +5.0), MW (between 150 and 500 g/mol), polarity (TPSA: between 20 and 130 Å; a little higher for quercetin), solubility (Logs: <6), flexibility (rotatable bonds: <9) are the six major properties considered²².

The "BOILED-Egg" graphical output predicts two important ADME parameters at the same time: passive gastrointestinal absorption and BBB¹⁵. While the area in the figure represents passive absorption by GI track (Capecitabine and

Fig. 2. Boiled egg graphical prediction of ADME parameters at the same time

Fig. 3. Plotted drug likeness scores of Anastrazole, Capecitabine

Quercetin), the yolk region (Anastrozole) has higher probability of penetrating the brain (Fig. 2).

The molecular properties of Ana, Cap, and Que were predicted using MolSoft. The outcomes are predicted in (Fig. 3). Green and blue lines represent non-drug and drug-like behavior. Nondrug peaks are those with values between zero and negative. Based on their drug-likeness scores, among the three, Capecitabine (positive value of (0.40) and Quercetin (positive value of (0.52)) were considered drug molecules, whereas Anastrozole appears to be a non-drug (-0.95).

To modify the action of macromolecule targets, drugs or bioactive molecules shall bind to them. The mapping of targeted bioactive small molecules is an important step in understanding the molecular actions behind their activity and forecasting cross reactivity or potential side effects.

Fig. 4. Swiss Target Prediction of the three drugs and their classes in percentages

 No. Protein molecule 1. CASP8 and FADD-h apoptosis regulator 2. Apoptosis regulator 3. Apoptosis regulator 4. Apoptosis regulator Bcl-2-like protein 5. Apoptosis inhibitor s 6. Apoptosis regulator 7. Apoptosis regulator 	RCSB id ike 3H13	Length 272	Resolution 2.20 Å	Vina score of the drugs used A:-6: C:-6.8: O:-6.9	-
 CASP8 and FADD-1 apoptosis regulator Apoptosis regulator Apoptosis regulator Apoptosis regulator Apoptosis regulator Bcl-2-like protein Apoptosis inhibitor s Apoptosis regulator Apoptosis regulator 	ike 3H13	272	2.20 Å	A:-6: C:-6.8: O:-6.9	
 Apoptosis regulator I Apoptosis regulator I Apoptosis regulator I Bcl-2-like protein 1 c Apoptosis inhibitor s Apoptosis regulator I Apoptosis regulator I 					
 Apoptosis regulator 1 Apoptosis regulator 1 Bel-2-like protein 1 of Apoptosis inhibitor s Apoptosis regulator 1 Apoptosis regulator 1 	Bcl-X 2YXJ	181	2.20 Å	A:-7.4; C:-6.9; Q:-7.2	
 Apoptosis regulator l Bcl-2-like protein 1 c Apoptosis inhibitor s Apoptosis regulator l Apoptosis regulator l 	Bcl-2 2O2F	138		A:-7.2; C:-6.9; Q:-7.1	
Bel-2-like protein 1 of 5. Apoptosis inhibitor s 6. Apoptosis regulator 1 7. Apoptosis regulator 1	Bcl-2, 4IEH	169	2.10 Å	A:-7.7; C:-6.8; Q:-7.2	
 Apoptosis inhibitor s Apoptosis regulator 1 Apoptosis regulator 1 	chimera				
 Apoptosis regulator 1 Apoptosis regulator 1 	urvivin 1E31	142	2.71 Å	A:-7.1; C:-7.5; Q:-7.5	
7. Apoptosis regulator 1	Bcl-2 2W3L	144	2.10 Å	A:-7.5; C:-7.7; Q:-7.4	
	Bcl-X 2YXJ	181	2.20 Å	A:-7.5; C:-6.9; Q:-7.1	
8. Mcl-1	3KZ0	158	2.35 Å	A:-7.1; C:-6.2; Q:-6.6	
9. Bcl-2-like protein 1	3ZLN	181	2.29 Å	A:-9.1; C:-7.9; Q:-7.9	
10. Induced myeloid leul differentiation protei	kemia cell 5IEZ n Mcl-1	159	2.60 Å	A:-7.9; C:-7.7; Q:-8.5	
11. Apoptosis regulator l	Bcl-2 1GJH	166		A:-6.2; C:-6.2; Q:-6.9	

Table 3. Apoptosis target classes used in the present study

Å: Angstrom; CASP: Caspase; FADD: Fas-associated death domain; Bcl-X: B-cell lymphoma extra; Bcl 2: B-cell lymphoma 2; Mcl-1: Induced myeloid leukemia cell differentiation protein; A: Anatrozole, C: Capecitabine; Q; Quercetin

 Table 4. Contact amino acids and varieties of bonds between the target and the ligand molecules belong to apoptotic proteins involved in breast cancer

PDB	Anastrazole	Contact residues, bond pattern and number Capecitabine	er of bonds Quercetin
ЗН13	SER318GLN319PRO332LEU3 33HIS334ARG337TRP403LEU 405TRP466 Weak (2), hydrophobic (5)	GLY317SER318GLN319 LEU405 CYS406THR407ASN447MET450 TYR451ASN454TYR463TYR464V AL465TRP466 Weak (3), Hydrogen (8),	ASN262 TYR360SER411 LEU412 LEU413GLN415SER416SER419P RO420SER421LEU42GLN425TYR 449TRP453TYR463 Weak (3), Hydrogen (9),
2YXJ	THR344LYS345ASN346ASP3 48GLN351ASP354GLN307TH R308TYR311ASP312GLU356 ASP357TRP358PHE368LYS37 4LYS376 LYS379 Weak (1), hydrogen (1),	Hydrophobic (5) SER164 ARG165ALA168 ALA171 THR172TYR120PHE123 GLU124 VAL127ASN128 PHE131 ARG132 ASP133GLY134VAL135TRP169T HR172TYR173ASP176HIS177	hydrophobic (9) TYR 120PHE123GLU124GLN125V AL127ASN128TRP169THR172TY R173ASP176HIS177PRO116GLY 117TYR 120ARG165TRP169 Hydrogen (3), hydrophobic (10), pi-pi (1)
202F	nydropnobic, (13)pi-pi (1) PHE101TYR105ASP108PHE1 09MET112VAL130GLU133LE U134GLY142ARG143ALA146 PHE147 PHE150 Hydrophobic (9)	Weak (3), nydrogen (5), hydrophobic (14), ionic (2) PHE101ASP108PHE109MET112 VAL130GLU133LEU134PHE135A RG136ASP137ARG143ALA146P HE147 PHE150 Hydrophobic (15), hydrogen (2),	GLN96ALA97GLY98ASP100PHE1 01ARG104TYR105ASP108TRP14 1GLY142ARG143VAL145 Hydrophobic (7), pi-pi (1),weak (1), Hydrogen (2)
4IEH	PHE63TYR67ASP70PHE71ME T74VAL92GLU95LEU96GLY1 04ARG105ALA108PHE109GL U111PHE112VAL115 Pi-pi (1), weak (1),	weak (1), ionic (1) ALA59ASP62 PHE63ARG66 TYR67LEU96ASN102TRP103GLY 104ARG105VAL107ALA108PHE1 57TYR161 Pi-pi (1), weak (1), hydrophobic	PHE63ASP70PHE71MET74VAL9 2GLU95LEU96PHE97ARG105AL A108PHE109GLU111PHE112 VAL115 Pi-pi (1), weak (3), Hydrophobic
1E31	Hydrophobic (14) PHE13 LEU14LYS15 ARG18 GLU40PHE58PHE86VAL89LY S91GLN92PHE93GLU94LEU9 6LEU104 Hydrogen (3),hydrophobic	(15), tonic (2) Hydrogen (2) PHE13LEU14LYS15ASP16ARG18 GLU40ILE74LYS78PHE86LEU87S ER88VAL89LYS90LYS91GLN92P HE93 Hydrogen (7), hydrophobic (5),	(9),Hydrogen (2) PRO12PHE13LEU14LYS15ARG18 GLU40ILE74LYS78PHE86LEU87S ER88VAL89LYS90LYS91GLN92P HE93LEU96 Hydrogen (7), hydrophobic (4),
2W3L	(5), pi-pi (2), ionic (1) LYS22ARG26SER64ARG65AR G68PHE71SER75GLU111GLY 114VAL115VAL18GLU119A SN122ASP62ARG66TYR67 Hydrogen (2), hydrophobic	weak (1) LYS22ARG26SER64PHE71SER75 GLU111VAL115VAL118ALA59AS P62PHE63ARG66TYR67GLY10 4 VAL107TYR161 Hydrogen (7), hydrophobic (13),	weak (3), ionic (1), pi-pi (1) LYS22ARG26ASP61SER64ARG65 ARG68PHE71ALA72SER75VAL11 5VAL118GLU119ASN122ARG66 Hydrogen (7), hydrophobic (3), weak (3)
3KZ0	(b), weak (1), ionic (1), cation pi (1) GLN189ALA190GLN221ARG 222GLU225GLN229LEU232P HE273LYS276HIS277LYS279T HR280 Hydrogen (5), hydrophobic (7), weak (1), ionic (1)	GLN189ALA190THR191LEU232P HE273LYS276HIS277LYS279THR 280ASN282GLN283 Hydrogen (3), hydrophobic (8) weak (4)	ARG187THR191LYS279GLN283G LU284SER285CYS286ILE287GLU 288ARG187ALA190THR191GLU 240LYS279GLN283GLU284SER2 85CYS286ILE287 Hydrophobic (4) weak (7)
3ZLN	PHE97ARG102PHE105SER10 6ASP107LEU108THR109GLU 129LEU130ARG132GLY138A RG139ALA142SER145 PHE146 Hydrogen (2), ionic (3), hydrophobic (11) pi-ni (1) weak (1)	LYS16LYS20PHE97GLU98ARG10 2ARG103PHE105SER106ASP107 LEU108THR109LEU130ALA142S ER145PHE146GLY148ALA149 Ionic (3), weak (4), hydrogen (6),hydrophobic (13),cation pi (1)	LYS20PHE97GLU98LEU99ARG10 2ARG103ASP107LEU108THR109 LEU130ALA142PHE143SER145P HE146 ALA149 Ionic (2), cation (1),Hydrogen (8),hydrophobic (11), weak (1)
5IEZ	HIS224ALA227PHE228MET2 31LEU235LEU246VAL249ME T250VAL253PHE254ARG263 THR266LEU267PHE270 Hydrogen (20, weak (1), hydrophobic (13)	ASN239GLU240ASN282GLN283 GLU284SER285CYS286ChainB:G LU173ARG176GLN177LEU179GL U180SER183ARG184GLY200AR G201SER202GLU288 Hydrogen (7),hydrophobic (4), weak (5)	ASN239GLU240LYS279ASN282G LN283GLU284SER285ChainB:AS P172GLU173TYR175ARG176GL N177LEU179GLU180SER183ARG 184GLY200ARG201SER202 GLU288 Hydrophobic (3), weak (4), Hydropen (7)
1GJH	HIS3ALA4GLY5ARG6THR7GL Y8TYR9HIS186GLN190GLY19 3GLY194TRP195ASP196 ALA197 Hydrogen (2), cation pi (1), hydrophobic (7)	HIS3ALA4GLY5TYR9ASP10ASN1 1ASN182HIS186ILE189GLN190G LY193 GLY194TRP195 Pi-pi (1), hydrogen (6) hydrophobic (5)	HISJAGEN(7) HISJALA4GLY5GLY8TYR9ASP10A SN11HIS186ILE189GLN190GLY1 93GLY194TRP195ASP196 ALA197 Hydrogen (3), pi-pi (1), hydrophobic (2)

The targeted classes for the three drugs tested were provided by SwissTargetPrediction (Fig. 4). The choice of a protein for docking research is critical, particularly its resolution. A crystal structure contains either protein or nucleic acid. The obtained data from these crystals is the measure of resolution. Majorly, the crystallographic structures have resolution values between 1 Å and 3 Å.

Apoptotic proteins as targets

A few anit-apoptotic proteins will be targeted to gain insight into the drug's mode of action. With a few exceptions, anastrozole had higher vina scores than the other two with apoptotic proteins studied in the present work (Tables 3 and 4, Fig. 5).

Tumor cells escape, protect and develop drug resistance by avoiding receptor mediated apoptosis. C-FLIP (Cellular FLICE like inhibitory protein) is a key regulator protein in the extrinsic cell death pathway (FADD-like IL-1beta-converting enzyme inhibitory protein). Overexpression of c-FLIP protects the tumor cells. This is a capable caspase activation initiator and cell death inhibitor as well as an enhancer of procaspase-8 activation. Bcl-2 and Bcl-xL overexpression in cancer cells confers a survival benefit over standard chemotherapy (anti-apoptotic or pro-survival proteins). Survivin, a mitotic spindle fiberassociated protein, acts as an apoptosis activator. Myeloid cell Leukemia-1 is a Bcl-2 anti-apoptotic member. Anti-apoptotic protein over-expression promotes cell survival and proliferation. Targeting these proteins will aid in the development of new drugs and drug combinations²⁰.

Hydrolases as targets

The vina scores of quercetin seem to be the highest among the three drugs tested by docking for hydrolases (Tables 5, 6) (Fig. 6)²⁰. DPP-4 is a cell surface protein that either suppresses or activates tumors. MMP-9 is essential in inflammatory and oncological disorders. ADAMTSs are members of extracellular zinc metalloproteinase family. Chemokine receptors are cell migration receptors linked to cancer metastasis. VEGF is a type of angiogenesis factor. Chemokine receptors regulate cell migration, cancer, immune responses, inflammation, and so on. Butyrylcholinesterase (BChE) and its genes are found in a variety of human cancers. Tumorigenesis, cell proliferation, and cell differentiation have all linked to it. DHS36 interacts with RNA and DNA G-quadruples to control transcription and post-transcriptional regulation. Cysteine protease relates to the mammalian interleukin-1 beta converting enzyme (ICE). Caspases, the cysteine proteases, are key role players in apoptosis and inflammation. MMP-

Fig. 5. Docking profile of protein and ligand binding of the apoptotic proteins studied. Ana: Anastrazole, Cap: Capecitabine and Que: Quercetin

9 is a protein that is participates in inflammation, wound healing, tumour growth and metastasis²⁰. **Isomerases as targets**

The vina scores of quercetin were the highest of the three drugs tested (Tables 7, 8) (Fig. 7)²⁰. Type IIA DNA topoisomerases are required for the maintenance of higher order DNA structure. The double standard DNA is covalently joined by human topoisomerase I. Type II topoisomerases (TOP2s) cleaves both the DNA duplex and cause cancer cell death. Kinase complexed mTOR is an important growth and proliferation regulator. DNA topoisomerases, particularly type IIA topoisomerases, have been identified as anti-bacterial and anti-cancer drug targets. Topoisomerase-targeting anticancer drugs work by poisoning topoisomerase, causing replication fork arrest and double-strand break formation²⁰.

Oxidoreductases as targets

The vina score of quercetin is the highest among the tested drugs against the goals of oxidoreductases (Tables 9, 10) (Fig. 8)²⁰. Myeloperoxidase (MPO), a neutrophilic enzyme, promotes oxidative stress in a number of inflammatory pathologies. Catalysis of human cytochrome P450 aromatase enzyme results to form estrogens from androgens. Human Aldehyde dehydrogenase 1A3's expression is more in cancers. COX takes charge of the increased production of prostaglandins during inflammation. P450 1A2 is accountable for the activation of carcinogenic compounds. Increased GSH levels in tumor cells are linked to tumor progression and resistance to chemotherapeutic drugs. Cancer cells show elevated levels of FTO expression. eNOS is involved in promotion or inhibition of cancer

F able 5. H	Ivdrolases	target	classes	used	in the	e present	t study
		···· 0···					

No.	Protein molecule	RCSB id	Length	Resolution	Vina score of the drugs used
1.	Dipeptidyl peptidase 4 soluble form	4A5S	740	1.62 Å	A:-8;C:-7.2;Q:-9
2.	Matrix metalloproteinase-9,	5TH6	231	1.70 Å	A:-7.3;C:-7.0;Q:-8.6
3.	A disintegrin and metalloproteinase with thrombospondin motifs 4	4WKE	235	1.62 Å	A:-7.4;C:-7.5;Q:-8.6
4.	C-X-C chemokine receptor type 4, Lysozyme Chimera	3OE0	499	2.90 Å	A:-7.9;C:-8.1;Q:-8.2
5.	protein (vascular endothelial growth factor)	1VPP	102	1.90 Å	A:-6.5;C:-6.6;Q:-6.7
6.	NHE-RF1	4JL7	91	1.16 Å	A:-6.7;C:-6.2;Q:-6.7
7.	Apopain	1PAU	147	2.50 Å	A:-5.8;C:-6;Q:-6
8.	Caspase-8	1QTN	164	1.20 Å	A:-6.7;C:-7.2;Q:-7.2
9.	Matrix metalloproteinase-9 (EC 3.4.24.35) (MMP-9) (92 kDa type IV collagenase) (92 kDa gelatinase) (Gelatinase B) (GELB)	20VX	159	2.00 Å	A:-8.1;C:-8.6;Q:-10.4
10.	DEAH (Asp-Glu-Ala-His) box polypeptide 36	5VHE	933	3.79 Å	A:-8.5;C:-8.4;Q:-8.9
11.	Cholinesterase	4BDS	529	2.10 Å	A:-8.9;C:-8.2;Q:-9.3
12.	C-X-C chemokine receptor type 4, Lysozyme Chimera	30DU	502	2.50 Å	A:-8.3;C:-7.9;Q:-8.3
13.	C-X-C chemokine receptor type 4, Lysozyme Chimera	30E9	499	3.10 Å	A:-8.2;C:-7.2;Q:-8.1
14.	C-X-C chemokine receptor type 4, Lysozyme Chimera	30E8	502	3.10 Å	A:-8.6;C:-7.6;Q:-8.2
15.	C-X-C chemokine receptor type 4/Endolysin chimeric protein	4RWS	498	3.10 Å	A:-7.5;C:-7.1;Q:-8.2
16.	Beta-secretase 1	4IVT	433	1.60 Å	A:-7.4;C:-7.1;Q:-7.8

NHE-RF1: Sodium (+)/Hydrogen (+) exchange regulatory cofactor 1; A: Anatrozole, C: Capecitabine; Q; Quercetin

Table 6. Contact amino acids and varieties of bonds between the target and the ligand molecules belong to hydrolases involved in breast cancer.

PDB	Anastrazole	Contact residues, bond pattern and number Capecitabine	of bonds Quercetin
4A5S	PRO475GLY476MET509PRO 510SER511LYS512GLN527ILE 529ASP556VAL558PHE559A RG5601 EU561ASN562A1 A56	GLN314MET325HIS345ILE346G LU347ET348SER349THR350THR 351GLY52LYS373ILE375SER376 ASN377GLU378GLY380PHE387	PRO475GLY476MET509PRO510 SER511LYS512GLN527ILE529AS P556VAL558PHE559ARG560LEU 561ASN562AL 4 5647HB 565
	4THR565 Ionic (2), hydrogen (5), weak	LYS392CS394PHE396ASP588HIS 592 Cation pi (1), ionic (2), hydrogen (8), weak (3)	Ionic (2), hydrogen (17), Hydrophobic (11), weak (6)
	(3), hydrophobic (4)	Hydrophobic (9)	
STH6	ARG143LEU147LEU212SER3 94PHE396LEU397PHE425TH R426GLU427GLY428PRO429 PRO430ARG143LEU212PHE3 96PHE425THR426GLU427GL Y428PRO429PRO430 Cation pi (2), hydrophobic (12), weak (2), hydrogen (4)	ARG143LEU147LEU212GLY213S ER394PHE396LEU397PHE425T HR426GLU427GLY428PRO429P RO430LEU431ARG143ALA146L EU147ALA150PHE396GLU427G LY428PRO429PRO430LEU431 Cation pi (2), hydrophobic (20), weak (2), hydropen (3)	LEU397VAL398HIS401PRO415GL U416ALA417LEU418MET419TYR 420PRO421MET422TYR423ARG 424THR426GLY428PRO429PRO4 30HIS432 Hydrophobic (7), hydrogen (9) weak (6)
WKE	THR326ASP328THR329LEU3 30GLY331THR358HIS361VAL 390ALA392PRO393VAL394M ET395 Cation pi (3), hydrogen (4), weak hydrogen (1), hydrophobic (5)	GLY 323ASP328THR329LEU330 GLY 323ASP328THR329LEU330 GLY 33MET332PHE357THR358H IS361GLU362HIS365HIS371HIS 389VAL390ALA392PRO393VAL 394MET395ALA396VAL398 Hydrogen (9),weak hydrogen (3) hydrophobic (8)	ASP328THR329LEU330GLY331M ET332PHE357THR358HIS361GL U362HIS365HIS371HIS389VAL39 0MET391ALA392PRO393VAL394 MET395ALA396VAL398 hydrogen (8), weak hydrogen (6). hydrophobic (4). pi-pi (1)
OE0	ALA137ILE138ALA141LYS225 LEU226ASN1002GLU1005VA L1094THR1157TRP1158ASP 1159TYR1161LYS234 LYS236 Hydrogen (4), hydrophobic (6) weak hydrogen (2)	ARG30GLU32ASN33PHE36ASN 37LEU41ASP97ALA98ARG183IL E185CYS186ASP187LYS282SE R285 ILE286ARG1 Hydrogen (7), hydrophobic (13), ionic interaction (4), weak hydrogen (1)	ALA1371LE138ALA141LEU226AL A1093VAL1094GLY1156THR115 7TRP1158ASP1159GLY231HIS232I YS234ARG235LYS236ALA237L EU238 Hydrogen (9), pi-pi sticking (1), hydrogen (9), weak hydrogen (5)
VPP	ASP34ILE35PHE36TYR39PRO 40GLU42ILE43TYR45PHE47S ER50GLU64LYS107 Hydrogen (1), pi-pi sticking (1), hydrophobic (9), ionic interaction (2), weak hydrogen (1)	GLU64ChainW:ASP34ILE35PHE 36ILE43GLU44TYR45ILE46PHE4 7SER50CYS51 Hydrogen (10), pi-pi sticking (1), hydrophobic (5), weak hydrogen (1)	ILE35PHE36TYR39PRO40ASP41G LU2ILE43TYR45ILE46PHE47SER 0 PRO85GLU64 Hydrogen (2), hydrophobic (9),weak hydrogen (2)
OE8	LEU41TYR45PHE93TRP94AS P97ALA98TRP102VAL112HIS 113TYR116CYS186ASP187AR G188 SER285 GLU288 Hydrogen bond (1), pi-pi sticking (1), hydrophobic (4), ionic interaction (1),Weak hydrogen (1)	HIS113TYR116THR117LEU120T YR121LEU167ASP171ARG188TY R190PHE199GLN200HIS203TYR 255GLY258ILE259ASP262SER26 3HIS281ILE284GLU288 Weak hydrogen (2), ionic interaction (1), hydrophobic (15). Hydrogen (8), cation_pi (1)	TYR45PHE93TRP94ASP97TRP10 2CYS109VAL112HIS113TYR116A RG188HIS281ILE284SER285 GLU288 Hydrogen (6), pi-pi sticking (3), hydrophobic (6),weak (2)
JL7	LYS19ASN22GLY23TYR24GLY 25PHE26LEU28HIS72VAL75V AL76ILE79 ARG80 Weak hydrogen (1), hydrophobic (7), cation-pi interaction (1) hydrogen bond (1)	ASN22GLY23TYR24GLY25PHE26 HIS27LEU28LEU41GLU43VAL76 ILE79 Weak hydrogen (2), hydrophobic (6), hydrogen (3)	LYS19GLY23TYR24PHE26HIS27L EU28HIS72VAL76ILE79ARG80AL A81ALA82LEU83 ASN84 Weak hydrogen (3), hydrophobic (9), hydrogen (6), cation-pi interaction (2), pi-pi (1)
OE9	LEU41TYR45PHE93TRP94AS P97TRP102VAL112HIS113TY R116CYS186ASP187ARG188 SER285GLU288 Ionic (2), hydrophobic (6), hydrogen (4), pi-pi (2)	TRP94ASP97HIS113TYR116THR 117LEU120TYR121ASP171ARG1 83CYS186ASP187ARG188GLN2 00HIS203TYR255GLU288 Weak hydrogen (6), ionic interaction (1), hydrophobic (15), hydrogen (7)	VEUAITYR45TRP94ASP97ALA98 YS109VAL112HIS113TYR116ARG 183CYS186ARG188ILE284SER28 5ILE286GLU288 Weak hydrogen (3), ionic interaction (1), hydrophobic (4), Hydrogen (9), pi-pi (2)
RWS	HIS113TYR116THR117LEU12 0TYR121ASP171ARG188TYR 190VAL196PHE199GLN200HI S203LEU1GLY2CYS5 Weak hydrogen (2), ionic (3), hydrophobic (7), hydrogen (7), cation-ni (1)	ALA137ILE138ALA141THR142LY S225LEU226ASN1002ILE1003AL A1093VAL1094ALA1097TRP115 8ASP1159SER1162SER1164GLY 231LYS234 LYS236Weak hydrogen (2) hydronhobic (12) hydrogen (3)	HISTI3TYR116THR117LEU120TY R121ASP171CYS186CYS187ARG 188TYR190PHE199GLN200GLN2 02HIS203LEU1GLY2CYS5 Weak hydrogen (2) hydrophobic (7) , hydrogen (6)
ODU	LEU41TYR45PHE93TRP94AS	GLU31GLU32ASN33ASN37LYS3	GLU32LEU41TYR45PHE93TRP94

	P97ALA98TRP102CYS109VAL	8LEU41TYR45TRP94ASP97ALA9	ASP97ALA98TRP102VAL112HIS1
	112HIS113TYR116CYS186AS	8VAL112HIS113TYR116CYS186	13TYR116ARG188SER285
	P187ARG188SER285GLU288	HIS281LYS282SER285GLU288	GLU288
	Weak hydrogen (1), ionic (5),	Ionic (1), hydrogen (3),	Hydrogen (4), hydrophobic (7),
	hydrophobic (8), Hydrogen	hydrophobic (8), weak	weak hydrogen (1), pi-pi (1)
	(2), pi-pi (1)	hydrogen (5)	
4BDS	ASP70GLY78SER79TRP82AS	TRP82GLY115GLY116GLY117GL	GLN67ASN68ILE69ASP70TRP82A
	N83GLY115GLY116GLY117T	N119THR120GLU197SER198AL	SN83PRO84TYR114GLY115GLY1
	HR120TYR128GLU197SER19	A199THR284PRO285LEU286SE	16THR120GLY121TYR128GLU19
	8ALA199ALA328PHE329TYR	R287VAL288ASN289PHE329HIS	7SER198TYR332HIS438GLY439IL
	332TRP430MET437HIS438GL	438GLY439	E442
	Y439TYR440ILE442	Hydrophobic (14), weak	Ionic (1), hydrophobic (4), weak
	Ionic (3), pi-pi (1)	hydrogen (3), hydrogen (11)	hydrogen (5), hydrogen (10), pi-
	hydrophobic(7), weak		pi (2)
51 H / F	hydrogen (5), hydrogen (10)		
5HVE	LYS/8GLU/9GLU81ARG82AR	PHE5/9ASN584ILE585SER5861	LEU343PRO637LEU638GLU639G
	G85LY 584/1KP88/GLN9221	HK050PKU057LEU058GLU059G	LU040LEU04IGLU/0IPKO/02HI
	HK9291KP935ILE936ILE957P	LU040GLU/01PKU/02PHE/29L	S/03PHE/29L1 S844HIS891
	InE750(JEN757	MET204	Leuosz Jonie (1) estion ni (1)
	weak hydrogen (3)	Ionic (3) hydrophobic (4) weak	hydrophobic (7) weak
	hydrogen (4)	hydrogen (1) hydrogen (6)	hydrogen (2) hydrogen (10)
1PAL	THR177HIS237ChainB·TRP34	MET176THR177HIS237GLY238P	Chain A: GLU191THR192ASN195L
	0ARG341PHE381SER381PHE	HE244CYS285GLY287THR288Ch	EU196ChainB:LYS358ALA361ASP
	381ASP381PHE381ASP502G	ainB:TYR338TRP340SER381ASP	362LYS363PHE400TYR401
	LU503VAL504	381PHE381ASP502GLU503VAL	Hydrogen (6), hydrophobic (9),
	Hydrogen (6), ionic (1),	504	ionic (1), weak hydrogen (2)
	cation pi (1), hydrophobic	Hydrogen (5), hydrophobic	
	(6), weak hydrogen (4)	(16), weak hydrogen (2)	
1QTN	LYS253 LEU254 HIS255	LYS320GLY321PRO332ILE333TY	LYS253LEU254SER256ILE257AR
	SER256ILE257ARG258HIS317	R334THR337SER338THR341GL	G258HIS317GLY318ASP319TYR3
	GLY318ASP319TYR324CYS36	N361GLU396PHE399LEU401ME	24CYS360GLY362ARG413GLU50
	0GLY362ASP363THR503	T403ASN407GLN465THR467	2THR503
	Ionic (1), cation pi (2), weak	THR469Hydrogen (10), hydrophobic	Cation-pi (1), ionic (1), hydrogen
	hydrogen (3), hydrophobic		(11), weak hydrogen (3),
	(11), hydrogen (3)	(7), weak hydrogen (5)	hydrophobic (6)
20VX	GLN126VAL16/GLN169HIS1	GLY186LEU187LEU188ALA189L	LEU188LEU39/VAL398HIS401GL
	75GLY176ASP177GLY197ILE	EU39/VAL398HIS401GLN402HI	N402PRO415GLU416ALA417LEU
	198ASP201HIS2031RP1241Y	S405HIS4IIGLU416ALA417LEU	4181 Y R420PRO421ME14221 Y R4
	KIOUSEKIOIAKGIOZASPIO3	4181 Y K420PKO421ME14221 Y K	23AKG4241HK426GLU42/GLY42 200000000000000000000000000000000000
	nyulogen (0), 10nic (4), hydrophobia (5), week	423AKU4241HK420PKU43U Hydrophobia (8) bydrogon (2)	or KU429rKU43U
	hydrogon (2)	week bydrogen (2)	(2) hydrophobia (7)
	nyurogen (2)	weak nyulogen (2)	(5), nyurophobic (7)

etiology. Cyclooxygenase 1 is an anti-inflammatory responsive enzyme. Aromatase inhibitors are thus first-line therapy for estrogen-dependent breast cancer.

Proteins as targets

Table 11 provides the vina score comparison; wherein, quercetin showed the highest vina score for protein binding targets and table 12 shows the contact residues and bonds (Tables 11, 12) (Fig. 9)²⁰. Overexpressed HSP90 aids transformation by stabilizing the mutated and overexpressed onco-proteins identifed in BC cells. Carcinoma-associated antigen is the epithelial cell adhesion molecule (EpCAM). HER 2, a member of an oncogenic protein family, involves in development and progression of breast cancers that are aggressive. Methenyltetrahydrofolate Synthetase regulates carbon flow by one-carbon metabolic network, which provides vital constituents for cell growth and proliferation; reserve has been shown to arrest the cell growth. ALDH1A3 is overexpressed and important for tumor cell's vitality. HER 2 stimulates cell propagation in tissues. ER binds to either of structurally and functionally distinct ERs (ERá and ERâ). PKC delta's C2 domain is activated by diacylglycerol, and functions as a tumor suppressor, a regulator of cell cycle progression (positive) and a regulator of apoptosis (positive or negative). Estrogen Receptor alpha LBD, (a novel isoform of ERá), promotes endocrine resistance and cancer proliferation (breast). Ephrin type-A receptor 2 (EphA2) (a receptor tyrosine kinase), overexpresses in breast cancers (human) and involves in a variety of serious progressions related to malignant breast progressions, including proliferation, migration, survival, invasion, metastasis, drug resistance, and angiogenesis²⁰.

Signal proteins as targets

With a minor difference, among the three drugs, quercetin's vina score is the highest (Tables 13, 14) (Fig. 10) for signaling proteins²⁰. EGFR

Fig. 6. Docking poses of hydrolases with the ligannds

First lane from left to right: (1-3) Ana: 4A5S, Cap: 4A5S, Que:4A5S; (4-6) Ana:3OE8, Cap:3OE8, Que: 3OE8; (7-9) Ana:5TH6, Cap:5TH6, Que:5TH6

Second lane from left to right: (1-3) Ana: 30E9, Cap: 30E9, Que:30E9; (4-6) Ana:4WKE, Cap:4WKE, Que: 4WKE; (7-9) Ana:4RWS, Cap:4RWS, Que:4RWS

Third lane: from left to right: (1-3) Ana: 3OE0, Cap: 3OE0, Que:3OE0; (4-6) Ana:3ODU, Cap:3ODU, Que: 3ODU; (7-9) Ana1:VPP, Cap:1VPP. Que:1VPP

Fourth lane from left to right: (1-3) Ana:4BDS, Cap:4BDS, Que:4BDS; (4-6) Ana:5VHE, Cap:5VHE, Que: 5VHE; (7-9) Ana:1PAU, Cap:1PAU, Que:1PAU

Fifth lane from left to right: (1-3) Ana: 1QTN, Cap: 1QTN, Que:1QTN; (4-6) Ana:2OVX, Cap:2OVX, Que: 2OVX; (7-9) Ana:4IVT, Cap:4IVT, Que:4IVT

Last lane Ana:4JL7, Cap:4JL7, Que:4JL7

.

Table 7. Isomerases tag	rget classes used	in the present study
-------------------------	-------------------	----------------------

No.	Protein molecule	RCSB id	Length	Resolution	Vina score of the drugs used
1.	Peptidyl-prolyl cis-trans isomerase FKBP5	4DRH	144	2.30 Å	A:-8.4; C:-8.5;Q:-8.4
2.	DNA topoisomerase 2-beta	3QX3	803	2.16 Å	A:-8.5;C:-7.8;Q:-9
3.	DNA topoisomerase I	1K4T	592	2.10 Å	A:-8.5;C:-8.4;Q:-9.1
4.	DNA topoisomerase II, alpha isozyme	1ZXM	400	1.87 Å	A:-8.9;C:-8.5;Q:-10.1
5.	DNA topoisomerase I	1T8I	592	3.00 Å	A:-8.3;C:-8.2;Q:-8.9

FKBP5: FK506-binding protein 5; A: Anatrozole, C: Capecitabine; Q; Quercetin

promotes tumorigenesis by regulating epithelial tissue development and homeostasis. â-arrestin regulates cell proliferation, migration, promotes cell invasion, sends anti-apoptotic survival signals, influences tumor growth rate, metastatic potential, angiogenesis, and drug resistance. CXCL12, secreted by carcinoma-associated fibroblasts (CAFs), directly stimulates tumor growth by acting through CXCR4, which is articulated by BC cells and promotes invasiveness. During tumor development, CXCL12 also acts as a chemoattractant. In malignant tumors, its expression promotes and contributes for tumor growth and metastasis. CCR5 may indirectly affect cancer development by regulating the antitumor immune response20.

Transcription factors as targets

Vina score of quercetin seemed to be the highest when compared to the three drugs (Tables 15, 16 and Fig. 11) for transcription factors²⁰. Drug activation of ER beta significantly inhibits cancer cell growth. HIF-1 activates cancer cell survival genes and allows them to grow in the hostile hypoxic tumor environment. Increased tumor HIF-1alpha has been linked to aggressive tumor growth, angiogenesis, and poor prognosis. Rb C-terminal domain (RbC) is required for growth inhibition. Above 66% of breast carcinomas express Erá, and majority ER+ tumors also express progesterone receptors (PRs). Chemotherapy is rendered less effective due to ER mutations. Patients with advanced disease condition will

 Table 8. Contact amino acids and varieties of bonds between the target and the ligand molecules belong to isomerases involved in breast cancer

PDB	Anastrazole	Contact residues and bond pattern Capecitabine	Quercetin
IZXM	ASN91ALA92ASP94ASN95AR G98ASN120ILE125ILE141PH E142THR147SER148SER149A SN150THR159GLY161ALA16 7LYS168THR215ILE217 TYR34 Hydrogen (8), weak hydrogen(2), Hydrophobic (12)	TYR34GLU87ASN91ASP94ASN9 5ARG98ILE125ILE141PHE142TH R147SER148SER149ASN150TH R159GLY161ARG162ASN163GL Y164TYR165GLY166ALA167LYS 168GLN376LYS378 Hydrogen (13), weak hydrogen (5), ionic (1) hydrophobic (8)	ASN91ALA92ASP94ASN95ARG9 8ASN120LYS123GLY124ILE125IL E141PHE142THR147SER148SER 149ASN150GLY164ALA167LYS16 8THR181TYR214THR215 Hydrogen (19), weak hydrogen (6), hydrophobic (6)
1K4T	LYS354ILE355GLU356PRO35 7PRO358PHE361LYS374ARG 375ARG376ILE377TRP416GL U418ASN419ILE420SER423 LYS425TYR426 Hydrogen (3), hydrophobic (8), weak hydrogen (3), ionic (2), pi pi (3)	LYS202TRP203LYS204TRP205T RP206LYS347GLU348ARG349A SN430SER432SER433ARG434A RG749GLU750ALA7531LE756 ASP757 Hydrogen (27), hydrophobic (9), weak hydrogen (10), ionic (1) (1), ni ni (16)	ASN352LYS354ILE355 GLU356 PHE361LYS374ARG375ILE377TR P416GLU418ASN419ILE420LYS4 25TYR426ILE427 Hydrogen (24), hydrophobic (5), weak hydrogen (11), ionic (2), pi-pi (11)
3QX3	ARG503GLY76GLU777GLN7 78ALA779MET782 Weak hydrogen (2), hydrgoen (9), hydrophobic (3), pi-pi (4)	GLU477GLY478ASP479LEU502 ARG503GLY504MET782 Weak hydrogen (7), hydrogen (19), hydrophobic (3), pi-pi (4)	LYS456GLY478ASP479SER480LE U502ARG503GLY504GLN778ME T782 Weak hydrogen (11), hydrogen (16), Hydrophobic (1), pi-pi (4), ionic (1)
4DRH	TYR57PHE67ASP68HIS71PHE 77TYR113PRO120PHE130Ch ainE:SER2035TYR2038PHE20 39LEU2097THR2098TRP210 1ASP2102TYR2105 Ionic (2), hydrogen (1), weak hydrogen (3), hydrophobic (10)	TYR57ASP68SER70HIS71PHE77 PRO120ChainE:LEU2031GLU20 32SER2035PHE2039LEU2097TH R2098TRP2101ASP2102TYR210 4TYR2105PHE2108 Ionic (1), hydrogen (5), weak hydrogen (4), Hydrophobic (15), pi-pi (1)	ASP68HIS71PHE77VAL78GLN85 ChainB:LEU2031GLU2032SER20 35PHE2039LEU2097THR2098GL N2099TRP2101ASP2102TYR210 4TYR2105PHE2108 Ionic (2), hydrogen (4), weak hydrogen (5), Hydrophobic (8), pi-pi (1)
1T81	ASN352LYS354ILE355GLU35 6PRO357PRO358PHE361LYS 374ARG375ILE377TRP416GL U418ASN419LYS425TYR426 Weak hydrogen (4), hydrogen (16), ionic (2), pi- pi (9), hydrophobic (8)	ILE355GLU356PRO357PRO358P HE361GLY363ARG364HIS367LY S374ARG375ILE377TRP416GLU 418ASN419ILE420GLN421SER4 23LYS425 Weak hydrogen(6), hydrogen (21), ionic (2), pi-pi (11), hydrophoic (12)	ASN352GLU356PRO357LEU373L YS374ARG375ARG376ILE377TRP 416GLU418ASN419ILE420LYS42 5TYR426ILE427 Weak hydrogen (6), hydrogen (18), ionic (1), pi-pi (13), hydrophobic (4)

Fig. 7. Interaction between the isomerase targets and ligands Top panel from left to right: Ana: IZXM, Cap: IZXM, Que: IZXM; Ana:1K4T, Cap:1K4T, Que: 1K4T Middle panel from left to right: Ana:3QX3, Cap:3QX3, Que:3QX3; Ana: 4DRH, Cap:4DRH, Que:4DRH Last panel from left to right: Ana:1T81, Cap:1T81, Que:1T81

Table 9. Oxidoreductases target classes used in the	present study; A: Anatrozole, C: Ca	pecitabine; Q; Quercetin

No.	Protein molecule	RCSB id	Length	Resolution	Vina score of the drugs used
1.	Prostaglandin G/H synthase 2	3LN1	587	2.40 Å	A:-8.5;C:-8.3;Q:-9.8
2.	prostaglandin h2 synthase-1	1EQH	580	2.70 Å	A:-8.0;C:-8.0;Q:-9.2
3.	Corticosteroid 11-beta-	2ILT	275	2.30 Å	A:-8.1;C:-8.6;Q:-8.8
	dehydrogenase isozyme 1				
4.	Prostaglandin G/H synthase 2	5KIR	551	2.70 Å	A:-8.7;C:-8.4;Q:-9.5
5.	myeloperoxidase light chain	4C1M	108	2.00 Å	A:-8.1;C:-8.1;Q:-9.6
6.	Cytochrome P450 19A1	3S7S	503	3.21 Å	A:-8.4;C:-7.6;Q:-8
7.	Aldehyde dehydrogenase family 1 member A3	6TRY	512	2.90 Å	A:-8.3;C:-8.3;Q:-8.9
8.	endothelial Nitric-oxide synthase	1M9K	415	2.01 Å	A:-7.5;C:-7.8;Q:-9.5
9.	Cytochrome P450 2C9	1R9O	477	2.00 Å	A:-8.3;C:-7.8;Q:-8.2
10.	Inducible nitric oxide synthase	4NOS	427	2.25 Å	A:-8.5;C:-7.6;Q:-9.3
11.	Cyclooxygenase-2	4COX	587	2.90 Å	A:-8.4;C:-8.6;Q:-9.5
12.	Cytochrome P450 1A1	6DWN	491	3.00 Å	A:-8.3;C:-8.6;Q:-10.5
13.	Cytochrome P450 1A2	2HI4	495	1.95 Å	A:-8.6;C:-9;Q:-9.8
14.	Polyphenol oxidase	2Y9X	391	2.78 Å	A:-8.2;C:-7.6;Q:-9
15.	Glutathione reductase	3DK8	478	1.10 Å	A:-6.9:C:-7.9;Q:-8.9
16.	Protein fto	3LFM	494	2.50 Å	A:-7.8;C:-7;Q:-7.7
17.	Prostaglandin G/H synthase 1	20YE	600	2.85 Å	A:-8;C:-8.1;Q:-9.1
18.	Cytochrome P450 19A1	3EQM	503	2.90 Å	A:-8.2;C:-7.7;Q:-8
19.	Cytochrome P450 21-hydroxylase	4Y8W	482	2.64 Å	A:-8;C:-7.9;Q:-8.7
20.	Aldehyde dehydrogenase family 1 member A3	6TE5	512	3.25 Å	A:-8.2;C:-8.3;Q:-8.9
21.	Aldehyde dehydrogenase family 1 member A3	7A6Q	512	2.95 Å	A:-8.3;C:-8.1;Q:-9
22.	Prostaglandin h2 synthase-1	1EQG	580	2.61 Å	A:-7.6;C:-8;Q:-9.2
23.	Aldehyde dehydrogenase family 1 member A3	5FHZ	529	2.90 Å	A:-8.2;C:-8.4;Q:-9.1

Table 10. Contact amino acids and varieties of bonds between the target and the ligand molecules belong to oxidoreductases involved in breast cancer

PDB	Anastrazole	Contact residues, bond pattern and numb Capecitabine	Quercetin
1EQ H	PHE142SER143VAL145ARG37 4ASN375ARG376PHE142SER1 43VAL145LEU224GLY225HIS2 26ARG374ASN375ARG376	PHE142SER143VAL145GLY22 5HIS226GLY227VAL228TYR37 3ARG374ASN375ARG376GLY 533GLY536ASN537PRO538TR	ALA199ALA202GLN203THR20 6HIS207PHE210THR212LEU29 5ASN382TYR385HIS386TRP38 7HIS388LEU390MET391ILE444
	Hydrogen (3), hydrophobic (5)	P139PHE142VAL145LEU224G LY225HIS226ARG374 Hydrogen (7) weak hydrogen	Hydrogen (7), weak hydrogen (3) hydrophobic (10) cation
		(2), hydrophobic (7)	pi (1) pi-pi (2)
2ILT	THR40GLY41ALA42LYS44GLY 45II F46GI Y47ARG48ASN119	GLY41ALA42LYS44GLY45ILE4 6GLY47ARG48ASN119HIS120I	THR40GLY41ALA42LYS44GLY4 5II F46GI Y47ARG48ASN119HIS
	HIS120ILE121VAL168SER169S	LE121VAL168SER169SER170L	120ILE121VAL168SER169SER1
	ER170TYR183LYS187LEU215	EU171ALA172TYR177TYR183	70TYR183LYS187LEU215GLY2
	GLY216LEU21/ILE2181HR220 ALA223	THR220THR222ALA223	ALA223
	Hydrogen (6), Hydrophobic	Hydrogen(11), Hydrophobic	Hydrogen (12), Hydrophobic
21N1	(8), weak hydrogen (2)	(10), weak hydrogen (4)	(4), weak hydrogen (5)
51111	VAL335LEU338SER339TYR34	25CYS26ARG29GLY30GLU31C	6GLN27ARG29GLY30GLU31CY
	1LEU345LEU370TYR371TRP3	YS32TYR120GLY121TYR122LE	S32MET33TYR116GLY121LEU1
	73ARG499ALA502ILE503PHE 504MET508VAL509GLU510G	U138PRO139PRO140VAL141	38PRO139PRO140VAL141ALA 142GLN447GLU451LVS454AR
	LY512ALA513SER516LEU517	1LYS454ARG455GLN313	G455
	Hydrophobic (8), weak	Hydrophobic (11), weak	Ionic (4), Hydrophobic (6),
	hydrogen (1), hydrogen (6)	nydrogen (4), nydrogen (9)	(19) (19)
4C1M	ALA28PHE29VAL30ARG31PR	MET87GLY90GLN91ASP94HIS	PHE86MET87GLY90GLN91ASP
	O34ALA35ARG31ALA152THR	95GLU102PHE146PHE147AR	94HIS95ASP98PHE99THR100
	G323THR159ILE160ARG323	YR334GLY335HIS336LEU406P	9ASN330PHE332ARG333TYR3
	Hydrophobic (8), hydrogen	HE407LEU415LEU417LEU420	34GLY335HIS336LEU338
	bonds (3)	ARG424 Hydrophobic (7), weak	Cation-pi (1), weak hydrogen
		hydrogen (2), ionic	hydrogen (8), ionic (1), pi-p
SWID		(2)hydrogen (6), cation pi (2)	i (1)
SKIR	GLN42ASN43ARG44GLY45VA	IRP323GLN327ASN34CYS36H IS39PRO40CYS41GLN42ARG4	ASN34CYS36HIS39CYS41ARG4 4GLY45VAL46CYS47MET48TYR
	L46CYS47TYR130LYS137ALA1	4GLY45VAL46CYS47MET48SE	130GLY135TYR136LEU152PRO
	51LEU152PRO153GLN461GL	R49TYR130GLY135TYR136LE	153PRO154VAL155PRO156GL
	Hydrophobi (10), hydrogen	PRO156GLN461GLU465	Hydrophobic (5), hydrogen
	(5), weak hydrogen (2), ionic	Hydrophobic (9), hydrogen	(10), weak hydrogen (1), ionic
1EOG	(2) PHE142SER143VAI 145I EU22	(8), weak hydrogen (4), ionic (1) PHF142SFR143VAL145GLY22	(1) ALA 199PHE 200ALA 202GLN 20
iLQU	4GLY225HIS226ARG374ASN3	5HIS226GLY227VAL228TYR37	3THR206HIS207PHE210THR21
	75ARG376ChainB:PHE142SER	3ARG374ASN375ARG376GLY	2LEU295ASN382TYR385HIS38
	RG376	P139PHE142SER143VAL145L	11LE444VAL447
	Hydrogen (4), hydrophobic	EU224GLY225HIS226ARG374	Hydrogen (11), hydrophobic
	(4)	ASN375ARG376 Hydrogen (9) hydrophobic	(6) pi-pi (1), weak hydrogen
		(9), cation pi (1), weak	
2979	ADC11511 E122 II E122TDD	hydrogen (2)	ADC115H E122H E122TDD141A
33/3	141ARG145PHE148LEU152TR	PHE148LEU152TRP224GLU30	RG145LEU152PHE203MET303
	P224GLU302MET303ILE305A	2MET303ALA306VAL370LEU3	ALA306ALA307THR310MET31
	LA306ASP309THR310ARG435	72VAL373MET374PHE430AR	1VAL370ARG435GLY436CYS43
	GLY439	LY439LEU477	MET446
	Cation pi (1), hydrophobic (18), hydrogen (8)	Hydrophobic (18), weak hydrogen (2) hydrogen (11)	Cation pi (1), hydrophobic (6), weak hydrogen (3)hydrogen bonds (13)
1R9O	ARG97ILE112VAL113PHE114	ARG97ILE112VAL113ARG124I	ARG97VAL113ALA297GLY298T
	TRP120ALA297THR301LEU36	LE205GLY296ALA297GLU300 THR 301THR 3041 FU3611 FU36	HR301THR302THR305GLN356
	8SER429ARG433ILE434CYS43	2LEU366PHE428ARG433ILE4	HIS368LEU391PRO427PHE428
	5VAL436	34CYS435VAL436GLY437	SER429ARG433CYS435ALA441

Pi-pi stacking (1) Hydrophobic (18)

- 6TE5 ARG276ASN485GLY486ARG4 87TYR492ALA495GLU496HIS 168ILE171ARG276THR278AS N485GLY486LEU494ALA495G LU496TYR497THR498GLU499 VAL500 Hydrogen (9), ionic (6), hydrophobic (4), weak hydrogen (4) PHE97TYR101ALA104PHE105 2Y9X LEU108VAL126GLU129LEU13 0GLY138ARG139ALA142PHE1 43SER145 PHE146 Hydrophobic (8), weak hydrogen (3), hydrogen (6), ionic (3) 6TRY PRO179TRP180ASN181GLN2 08PHE255GLY257SER258VAL 261GLY282GLN312CYS313CY S314ILE357ASP358LYS360GL
- Hydrophobic (7), ionic (4), hydrogen (1) 3EQM ARG115ILE132ILE133TRP141 ARG145PHE148LEU152TRP2 24GLU302MET303ILE305ALA3 06ASP309THR310ARG435GLY 436CYS437ALA438GLY439

hydrophobic (16)

Cation pi (1), hydrogen (9),

N361LYS364GLU411PHE413

- 3lFM ILE85THR92PRO93VAL94ARG 96TYR106TYR108LEU109LEU 203ALA227VAL228SER229TR P230HIS231HIS232ASP233 GLU234ARG322 Pi-pi stacking (2), hydrophobic (9), weak hydrogen (3), hydrogen (2), ionic (5) 4CO CYS36ASN39PRO40CYS41GLN 42ASN43ARG44GLY45GLU46 Х CYS47ASP125TYR130ALA151L EU152PRO153GLN461GLU46 5LYS468ARG469 Ionic (3), hydrophobic (5), weak hydrogen (2), hydrogen
- 1M9 GLN90GLY92PRO93ALA181PR K 0182ARG183CYS184MET339 ASP444TRP47ASN466TYR46 7PHE468ALA472PHE473ARG4 74TYR475 Hydrophobic (8), ionic (2), cation pi (1), hydrogen (2)

(4)

2HI4 ARG108LEU123THR124PHE12 5TRP133ARG137ALA317THR3 21LEU382PHE384THR385ILE3 86HIS388GLN411LEU450PHE 451GLY452ARG456ARG457 ALA477 Hydrophobic (12), weak hydrogen (3), hydrogen (9) LYS266ARG276VAL277THR27 8ASN485GLY486ALA495GLU4 96THR498GLU499VAL500LYS 266LYS275ARG276VAL277TH R278ASN485GLY486ARG487T YR492ALA495GLU496 Weak hydrogen (7), hydrogen (14), ionic (3), hydrophobic (10)GLN307THR308TYR311ASP31 2VAL313SER352ASP353ASP3 54GLU356ASP357TRP358SER 375LYS376LYS379SER380ASP 336GLN351ASP353 ASP354GLU356 Hydrophobic (8), weak hydrogen (1), hydrogen (7), ionic (2) LYS266ARG276VAL277ASN48 5GLY486ARG487TYR492ALA4 95GLU496ChainB:LYS25LYS26 6LYS275ARG276VAL277THR2 78ASN485GLY486ALA495GLU 496THR498GLU499 VAL500 Hydrophobic (8), weak hydrogen (4), ionic (2), hydrogen (8) ARG115ILE132ILE133PHE134 ARG145PHE148LEU152TRP22 4GLU302MET303ALA306VAL 370LEU372VAL373MET374P HE430GLY436CYS437ALA438 GLY439LEU477 Hydrogen (15),weak hydrogen (2), hydrophobic (18) ILE85THR92PRO93VAL94ARG 96TYR106TYR108LEU109LEU 203ALA227VAL228SER229HIS 231HIS232ASP233GLU234 ARG322 Pi-pi stacking (2), hydrogen (2), hydrogen (8), ionic (3) ASN34CYS36CYS37SER38ASN 39CYS47MET48SER49TYR130 GLY135TYR136LYS137SER138 PRO153PRO154VAL155ALA15 6CYS159GLY164GLN461TRP3 23GLN327THR331LEU334SER 548THR549 GLY551 Hydrophobic(6), weak hydrogen (2), ionic (1) hydrogen (7) TRP74TRP445PHE460HIS461 GLN462ChainB:SER102VAL10 4GLN247ARG250ALA266ARG 365ASN366ASP369HIS371AR G372ALA446TRP447 Hydrophobic (9), ionic (1), hydrogen (4), weak hydrogen (3)

ARG108THR124PHE125THR2 23PHE226VAL227PHE256PHE 260GLY316ALA317ASP320TH R321LEU382PHE384THR385IL E386HIS388GLN411LEU450P Hydrophobic (8), weak hydrogen (4), hydrogen (14) LYS266VAL277THR278GLY479 ASN485GLY486ARG487GLU49 6LYS266LYS275ARG276VAL27 7THR278ASN485LEU494ALA4 95GLU496THR498GLU499 VAL500 Hydrophobic (6), ionic (2), weak hydrogen (5), hydrogen (17)SER2ASP3LYS5ASP336SER337P RO338TYR343ASN346GLN347 ASP348PRO349GLN351TYR31 1ASP312SER375LYS376GLU37 7GLU378ASN57LEU59ASP60G LY61TYR62 Hydrophobic (2), weak hydrogen (7), ionic (1)hydrogen (13) HIS168ARG276LEU494ALA495 GLU496THR498GLU499VAL50 0ChainB:GLY479ASN485GLY48 6ARG487GLU491TYR492ALA4 93LEU494 ALA495GLU496 Pi-pi stacking (1), hydrophobic (3), weak hydrogen (3), hydrogen (15), ionic (2) ARG192GLN218PHE221ASP22 2GLN225PRO308ASP309THR3 10VAL313ILE474SER478HIS48 0ASP482GLU483THR484 Pi-pi (2), cation pi (1), hydrogen (7,weak hydrogen (3), hydrophobic (6), ionic (1) ILE85ARG96TYR106TYR108LE U109LEU203ASN205VAL228SE R229TRP230HIS231HIS232ASP

LEU445

233GLU234THR320ARG322 Cation-pi (1), pi-pi stacking (2), hydrophobic (5),weak hydrogen (4), hydrogen (9), ionic (2)

ASN34CYS36CYS37SER38ASN3 9CYS41GLN42ARG44GLY45GL U46CYS47MET48TYR130GLY1 35PR0153PR0154VAL155ALA 156CYS159 GLY164GLN461 Hydrophobic (9), weak hydrogen (5), pi-pi (2), cation pi (1), hydrogen (11)

VAL71LYS72ASN73VAL76SER7 8ILE79THR80ASP82MET428LY 8429LEU431GLU432GLU434GL N435GY439GLY440CYS441PR O442GLN62GLU463MET464V AL465 Hydrophobic (11), ionic (1), hydrogen (14), weak hydrogen (5) ARG108ILE117THR118SER122 THR124PHE125THR213PHE22 6VAL227PHE256PHE260ASN31 2ASP313GLY316ALA317ASP3 20THR321LEU382ILE386LEU49

	CYS4581LE459LEU497 Cation-pi (1), hydrophobic (13),weak hydrogen (1), hydrogen (9)	HE451GLY452ARG456ARG45 7CYS458ILE459LEU497THR49 8 Hydrophobic (19), weak	7THR498 Hydrophobic (18), weak hydrogen (1), hydrogen (8), pi-pi (1)
4NOS	TRP90TRP461PHE476HIS477C hainD:SER118ILE119MET120 ARG199ARG381ASP385ARG3 88ILE462TRP463VAL465 PRO467	hydrogen (4), hydrogen (9) LEU125ALA197PRO198ARG1 99CYS200ILE201GLY202MET3 55PHE369TRP372TYR373MET 374GLU377TRP463PHE488TY R480TYR490TYR491	GLY117SER118MET120ARG38 1ILE462TRP463VAL465ChainB: LYS88TRP90TRP461VAL475PH E476HIS477GLN478GLU479 MFT480
	Pi-pi stacking (1), cation-pi (2), hydrophobic (9),weak hydrogen (3), ionic (2), hydrogen (5)	Pi-pi (2), cation pi(1), hydrophobic (7), weak hydrogen (1), hydrogen (5)	Pi-pi stacking (3), cation-pi (1), hydrophobic (6), weak hydrogen (5), hydrogen (8)
3DK8	CY558CYS63VAL64LYS66LYS6 7TYR197LEU337LEU338THR3 39PRO340PRO368THR369VA L370PHE372ASP441LEU444 GLN445 Hydrophobic (1), hydrogen (7), ionie (3)	GLY27GLY28GLY29SER30GLY 31GLU50SER51HIS52LYS53GL Y55GLY56THR57CYS58CYS63 ALA155THR156GLY157GLY15 8TYR197ARG291ASN294ASP3 31LEU337LEU338THR339 ALA342 Hydrophobic (5),weak hydrogen (4), hydrogen (8) ionic (2)	GLY27GLY28GLY29SER30GLY3 1GLY32GLU50SER51HIS52GLY 55GLY56THR57CYS58VAL61CY S63ALA155THR156GLY157GLY 158GLY330ASP331LEU337LEU 338THR339ALA342 Hydrophobic (2), weak hydrogen (4), hydrogen (13), ionic (1)
20YE	CYS36TYR39PRO40CYS41GLN 44GLY451LE46CYS47THR129T YR130ASP1351LE151LEU152P RO153GLN461GLU465 ARG469 Ionic (1), weak hydrogen (1), hydrogen (2),Hydrophobic (9)	Ionic (2) ASN34CYS36TYR39PRO40CYS 41GLN42HIS43GLN44GLY45IL E46CYS47VAL48TYR130ASP1 35TYR136LEU152PRO153SER 154PRO156GLN461GLU465LY S468ARG469 Ionic (1), weak hydrogen (5), hydrogen (7),Hydrophobic (7)	ALA 199PHE200ALA202GLN20 3THR206HIS207PHE210LYS21 1THR212ASN382TYR385HIS38 6TRP387HIS388LEU390MET39 1VAL447 Weak hydrogen (3), hydrogen (9),Hydrophobic (8), pi-pi (1), cation-pi (1)

have a high mutation rate. NFêB encourages the development of an autonomous (hormoneindependent), aggressive, high-grade, and latestage tumor phenotype. The ERá's anti-cancer properties are based on the sealing of its ligand binding domain²⁰.

Transferases as targets

981

Quercetin's vina score is highest, with the proteins belonging to transferases (Table 17, 18) (Fig. 12a and 12b). Somatic genetic alterations most frequently activate CDK4 and cyclin D1 in a variety of tumor types. CDK4 is a genetically validated therapeutic target, since CDK4/ cyclin D1 pathway is important in oncogenesis. The estrogen receptor (ER) is overexpressed in breast cancer. In ER alpha-positive human breast cancer cells, stromal cell-derived factor 1 (SDF-1), (cytokine stimulator for growth) is a genuine goal of estrogen's action. Cyclin-Dependent Kinases (CDKs) have been proposed as novel and promising target for cancer therapy. These, in conjugation with cyclins, show an important role in cell cycle advancement. CDK dysregulation results in increased cell propagation, has been established in a number of cancers, no exception to BC. CDK1 selective inhibition is linked to potent anti-cancer outcomes either combined with other therapeutics or alone. VEGF promotes vessel proliferation, invasion and survival and endothelial cell proliferation. Tumor cell shape, proliferation, motility, progression and metastasis depend on overexpressed Rho-associated protein kinase 1. Cyclin-dependent kinases (CDKs) regulate cell cycle, apoptosis, transcription and neuronal functions. EphA2 Receptor Protein Kinase regulates cytoskeleton dynamics, cell adhesion, proliferation, differentiation, and metastasis. JAK2 regulates gene expression in the G1 cell cycle, proliferation, oncogenesis, anti-apoptosis, angiogenesis and metastasis. EphA2 tyrosine kinase is involved in angiogenesis, cancer, and inflammation²⁰.

The EphA4 receptor, (Eph receptor tyrosine kinases family member), is a wellknown cell functions (cell adhesion, invasion and migration) regulator. These events occur due to modification of actin cytoskeleton organization. In a variety of cell types, FKBP1 is identified as NFêB signaling regulator (nuclear factor binding near the ê light-chain in B-cells). As a result, FKBP51 is proposed as a target to treat NF-êB-mediated inflammation and cancer. Cancer relies heavily on p38 activity. p38 mitogen-activated protein kinases (MAPKs) are important in cancer cellular responses, proliferation, survival, cell cycle and migration. The growth factor-activated Ser/Thr kinase p90 ribosomal protein kinase 2 (RSK2) is involved in cell multiplication and tumor promoterinduced cell transformation. Cell growth, motility, survival, metabolism, and angiogenesis are all regulated by human PI3K gamma. CDKs (Cyclindependent kinases) play critical role in cell cycle progress and RNA transcription. GSTP-silencing effectively suppressed cell proliferation while not

Fig. 8. Docking poses of oxidoreductases with Anastrazole, Capecitabine and Quercetin ligands First lane: 1EQH, 2ILT, 3LN1, 4C1M; Second lane: 5KIR, 1EQG, 3S7S, 1R9O; Third lane: 6TE5, 2Y9X, 6TRY, 3EQM; Fourth lane: 3LFM, 4COX, 1M9K, 2HI4; Fifth lane: 4NOS, 2OYE, 3DK8, 6DWN; Last lane: 4Y8W, 7A6Q, 5FHZ

Fable 11. Protein binding target classes used in the	present study; A: Anatrozole, C: Ca	pecitabine; Q; Quercetin
--	-------------------------------------	--------------------------

	EphA2: ephrin type-A receptor 2					
No.	Protein Molecule	RCSB id	Length	Resolution	Vina score of the drugs used	
1.	Estrogen receptor	4PPS	244	1.93 Å	A:-7.2;C:-7.5;Q:-7.7	
2.	Estrogen receptor	4PP6	244	2.20 Å	A:-7.3;C:-7.2;Q:-8.4	
3.	Protein kinase C, delta type	1YRK	126	1.70 Å	A:-6.3;C:-6.4;Q:-7.1	
4.	Estrogen receptor beta	4J26	240	2.30 Å	A:-6.9;C:-7.4;Q:-7.7	
5.	estrogen receptor alpha (hER alpha) (protein (estrogen receptor alpha)	3ERT	261	1.90 Å	A:-8.1;C:-7.5;Q:-7.8	
6.	EphA2 ectodomain	2X10	545	3.00 Å	A:-6.5;C:-5.8;O:-6.5	
7.	Stress-70 protein, mitochondrial	3N8E	182	2.80 Å	A:-7.4;C:-7.6;Q:-7.7	
8.	Aldehyde dehydrogenase family 1 member A3	6S6W	489	3.25 Å	A:-8.1;C: -8.5; Q:-9.0	
9.	5,10-Methenyltetrahydrofolate cyclo-ligase	3HY3	203	1.80 Å	A:-8.4; C:-7.4; Que:-8.2	
10.	Met and epithelial cell adhesion molecule	6107	262	2.35 Å	A:-6.8; C:-6.9;Q:-7.2	

Table 12. Contact amino acids and varieties of bonds between the target and the ligand molecules belong to binding proteins involved in breast cancer.

PDB	Anastrazole	Contact residues, bond pattern and r Capecitabine	Contact residues, bond pattern and number of bonds Capecitabine Quercetin			
6S6 W	PRO179TRP180ASN181GLY 257SER258THR259GLU260L EU281GLY282GLY283CYS31 3CYS314ALA316GLN361GL U411PHE413 Ionic (2), pi-pi, (1) hydrogen (5), hydrophobic (4), cation-pi (1)	LYS266ARG276VAL277ASN 485GLY486ARG487TYR492 ALA495GLU496ChainB:LYS 266LYS275ARG276VAL277 THR278ASN485ALA495GLU 496THR498GLU499VAL500 Ionic (4), hydrogen (12), hydrophobic (7) cation-ni	LYS266LYS275ARG276VAL2 77ASN485ALA495GLU496T HR498GLU499VAL500Chain B:LYS266LYS275ARG276VA L277ASN485GLY486ARG48 71YR492ALA495GLU496 Ionic (4), hydrogen (14), hydrophobic (3) weak			
4PPS	MET343LEU346THR347LEU 349ALA350GLU353TRP383L EU384LEU387MET388LEU3 91ARG394PHE404MET4211 LE424PHE425LEU428GLY52 1HIS524LEU525 Ionic (2), weak hydrogen (2), hydrogen (3), hydrophobic (23), pi-pi (1)	 (1), weak hydrogen (6) GLU323PRO324PRO325ILE 326GLU353HIS356MET357 TRP360ILE386LEU387GLY3 90TRP393ARG394GLY442P HE445VAL446LYS449 Hydrogen (2), hydrophobic (18), weak hydrogen (1), cation-pi (1), ioninc (2), pipi (1) 	hydrogen (4) MET343LEU346THR347LEU 349ALA350ASP351GLU353L EU384LEU387MET388GLY3 90LEU391ARG394PHE404V AL418MET421ILE424LEU42 8GLY521MET522HIS524LEU 525TYR526MET528 Hydrophobic (13), hydrogen 2 (4), pi-pi (1),			
4PP6	MET343LEU346THR347LEU 349ALA350GLU353TRP383L EU384LEU387MET388LEU3 91ARG394PHE404MET4211 LE424PHE425LEU428GLY52 1MET522LEU525LEU540 Hydrophobic (26), hydrogen (1), ionic (3), weak hydrogen (2)	GLU323PRO324PRO325ILE 326GLU353HIS356MET357 TRP360ILE386LEU387GLY3 90TRP393ARG394GLY442P HE445VAL446 LYS449 Hydrophobic (16), pi-pi (1), ionic (2), cation-pi (2), hydrogen (1)	ionic (1) MET343LEU346THR347LEU 349ALA350GLU353LEU384L EU387MET388ILE389LEU39 1ARG394PHE404VAL418ME T421ILE424LEU428LYS520G LY521MET522HIS524LEU52 5MET528 Hydrogen (7), ionic (1), pi-pi (2), hydrophobic (11),			
1YRK	MET32GLU34LYS47LYS48PR O49ASP60HIS62TYR64 ARG67GLN8PRO9TYR10 PHE12 Hydrogen (2), hydrophobic (6), pi-pi (2)	THR50MET51TYR52PRO53 GLU54LYS56SER57THR58P HE59ChainB:GLN8PRO9TY R10VAL11PHE12ALA13 Hydrogen (8), hydrophobic (5), ionic (1), cation-pi (1)	 Weak Hydrogen (1) PHE4LYS48PRO49ASP60 ALA61HIS62TYR64ARG67GL U123ChainB:ILE6GLN8PRO9 TYR10PHE12 Hydrogen (7), hydrophobic (5), ionic (1) pi-pi (2),cation-pi (1) weak hydrogen (1) 			
3ERT	MET343LEU346THR347ALA 350ASP351LEU354TRP383L EU384LEU387MET522LEU5 25MET528LEU536LEU539 Hdrogen (3), hydrophobic (12)	LEU320GLU323PRO324PR O325ILE326LEU327GLU353 LEU354HIS356MET357TRP 360ILE386LEU387GLY390T RP393ARG394GLY442PHE4 45VAL446LYS449 Hydrogen (4), hydrophobic (16) ioria (1)	MET343LEU346THR347LEU 349ALA350ASP351GLU353 TRP383LEU384LEU387MET 388LEU391ARG394PHE404I LE424LEU428GLY521 LEU525MET528 Hydrogen (5), ionic (1),			
2X10	GLN56 ASN57ILE64TYR 65TYR67SER68VAL69 THR101ARG103CYS188VAL 189ALA190LEU191LEU192 Hydrophobic (5), hydrogen (2), waethydrogen (2)	(16), Ione (1), VAL364THR365CYS366 GLU367PRO378CYS379GLU 380ALA381VAL383ARG384 TYR385 PRO389HIS390 Weak hydrogen (3), Hydrogholio (12)	THR365CYS366PRO378 CYS379GLU380ALA381SER3 82VAL383TYR385PRO389 HIS390 Hydrophobic (7), hydrogen (2) wede hydrogen (4)			
3N8E	LE447GLU448THR449LEU4 50PHE472SER473THR474AL A475GLN479GLN481VAL48 2GLU483ILE484ARG513 ILE518VAL520 Hydrophobic (14), hydrogen (2)	ILE447GLU448THR449LEU4 50PHE472SER473THR474A LA475VAL482GLU483ILE48 4ARG513ILE518VAL520AS N583MET584GLU586 GLY587 Hydrophobic (14), hydrogen (5), weak bydrogen (5), weak	(J), weak hydrogen (4) ILE447GLU448THR449LEU4 50PHE472SER473THR474AL A475GLN479VAL482GLU48 3ILE484ARG513ILE518 VAL520 Hydrophobic (13), hydrogen (7), weak hydrogen (1)			
ЗНҮЗ	ILE54PHE55LEU56MET58GL U611LE80PRO81ARG82TYR8 3PHE85THR107TRP109ILE1 11PRO112GLN113PRO135A RG148TYR152TYR153	nydrogen (1), ionic (1) LEU56MET58PRO81ARG82 TYR83PHE85THR107TRP10 9ILE111PRO112GLN113GL Y147ARG148GLY149 LYS150GLY151TYR152	PHE55 LEU56 SER57 MET58GLU611LE80PRO81A RG82TYR83PHE85THR107T RP1091LE111PRO112GLN11			

	Pi-pi (2), weak hydrogen (1), hydrogen (2), hydrophobic (6)	Pi-pi (2), hydrogen (4), weak hydrogen (1), hydrophobic (9)	3PRO135ARG148LYS150 TYR152TYR153 Hydrogen (10), weak hydrogen (2), ionic
4J26	ARG466HIS467ASN470LYS4 71ChainB:ARG466HIS467AS N470LYS471MET473GLU47 4LEU477 HIS498 Hydrogen (4), cation-pi (1), weak hydrogen (1), hydrophobic (9)	GLU276PRO277PRO278HIS 279VAL280LYS304GLU305L EU306HIS308MET309TRP3 12VAL338LEU339GLY342T RP345ARG346ILE355TYR39 7LYS401 Hydrogen (2), cation-pi, (1) weak hydrogen (3), hydrophobic (14), pi-pi (1), icoia (2)	MET295LEU298LEU301ALA 302GLU305TRP335MET336 LEU339MET340LEU343ARG 346PHE356ILE373ILE376PH E377LEU380GLY472MET47 3HIS475LEU476 Hydrogen (7), weak hydrogen (2), hydrophobic (20), pi-pi (1), ionic (1)
6107	ARG125PRO257PHE259Cha inD:ARG81LEU88GLN89ASN 91GLN111MET115TRP117L YS129 Hydrophobic (4), hydrogen (3), weak hydrogen (2), pi- pi (1)	GLU217LYS221GLU223PRO 244GLY245GLN246THR247 LEU248ILE249TYR250TYR2 51ChainD:LEU88GLN89ASN 90LYS221GLU223PRO244G LY245 Hydrophobic, hydrogen (10), weak hydrogen (4), pi-pi (1)	ASP1ILE2VAL3MET4THR5PR O100ARG101THR102PHE10 3GLY104CYS105CYS171LEU 172LYS173TRP174MET175 ALA188ASP189ASP190 Hydrophobic (3), hydrogen (9), weak hydrogen (4)

Fig. 9. Docking poses of binding proteins with the three ligands

Table 13.	Signaling	protein target	classes used in the	present study: A:	Anatrozole. C: (Capecitabine: (D: Ouercetin
	- 0 - 0	F 0		r			() () · · · · · · · · · · · · · · · · · · ·

No.	Protein molecule	RCSB id	Length	Resolution	Vina score of the drugs used
1.	Chimera protein of C-C chemokine receptor type 5 and Rubredoxin	4MBS	414	2.71 Å	A:-8.6;C:-7.3;Q:-7.9
2.	epidermal growth factor	1JL9	51	3.00 Å	A:-6.2;C:-6.4;Q:-6.4
3.	Beta-arrestin-2	6K3F	377	2.30 Å	A:-8.9;C:-8.2Q:-9
4.	Stromal cell-derived factor 1	2NWG	68	2.07 Å	A:-6.6;C:-5.9;Q:-6.9
5.	Receptor tyrosine-protein kinase erbB-2 (HER 2)	504G	606	3.00 Å	A:7.4;C:-8; Q-8.4

984

PDB	Anastrazole	Contact residues and bond pattern Capecitabine	Quercetin
4MBS	TYR37TRP86TYR89LEU10 4THR105TYR108PHE109T HR167CYS178SER179SER 180GLN280GLU283 THR284 MET287 Hydrogen (4), hydrophobic (7), ionic (2), weak hydrogen (2), ni-ni (2)	TYR108PHE109PHE112PHE1 82TYR187LYS191GLN194TH R195ILE198TRP248TYR251LE U255ASN258THR259MET27 9GLU283 Hydrogen (3), hydrophobic (9), weak hydrogen (1)	LEU33TYR37TRP86TYR89TH R105TYR108PHE109ASN163 THR167ARG168CYS178SER1 79SER180GLU283THR284M ET287 Hydrogen (4), hydrophobic (13), pi-pi (2) weak hydrogen (2)
2NWG	LEU29ASN30THR31PRO32 GLN37ARG20GLU60TYR6 1LYS64ALA65ASN67 Weak hydrogen (3), ionic (2), hydrogen (2), hydrophobic (4)	LYS24HIS25LYS43ChainB:TYR 7PRO10CYS11LYS27LEU29AS N30THR31VAL39GLN48 CYS50 Weak hydrogen (1), hydrogen (5), hydrophobic (9). cation-pi (1)	LYS1VAL3SER6TYR7ARG8CY S9PRO10ARG12LYS27LEU29 ASN30THR31LYS24HIS25 ARG41 Weak (1), hydrogen (8), hydrophobic (6), cation-pi (1)
6K3F	ASP27ARG170PHE174HIS 212GLU298ASP299THR30 0ASN301LEU302HIS212G LY213PRO278LEU279LEU 280SER281ASP299 THR300ASN301 Ionic (2), cation-pi (1), hydrogen (3), hydrophobic (7), weak hydrogen (1)	ASP27ARG170HIS212PRO27 8LEU279LEU280GLU298ASP 299THR300ASN301LEU302H IS212PRO278LEU279LEU280 SER281ASP299 THR300ASN301 Ionic (1), hydrogen (10), hydrophobic (9)	ASN225SER226PRO266SER2 67ASP30HIS31LEU32ASP33L YS34VAL35ILE120PRO121GL N122ASN123LEU124LYS171 GLN173ILE307 VAL308LYS309GLU310 Ionic (2), cation-pi (1), hydrogen (6), hydrophobic (5), weak (5)
1JL9	TYR44ILE38GLY39GLU40T YR44ARG45ASP46 Pi-pi (1), ionic (1), weak hydrogen (1), hydrogen (1), hydrophobie (5)	ARG45CYS6PRO7LEU8SER9H IS10ASP11GLY12TYR13CYS1 4LEU15HIS16ASP17GLY18VA L19CYS20 Hydrogen (6), hydrophobic (5), weak hydrogen (5)	CYS6PRO7LEU8SER9HIS10A SP11GLY12TYR13CYS14LEU 15ASP17GLY18 VAL19CYS20 Weak hydrogen (1),hydrophobic (3), hydrogen (7)
504G	THR5GLY6THR7ASP8GLN3 5GLY36GLN59GLN84ASN 280TYR281LEU291GLY41 1ARG4121LE413LEU414GL Y417SER441GLY442Hydrogen (6), hydrophobic (8), ionic (2), weak hydrogen (2)	ASP163THR164ASN165ARG1 66ARG168ALA169TYR32SER 91TYR92SER93THR94TRP47 ARG50SER59ASP104SER105 ALA106 TRP107Hydrogen (7), hydrophobic (4), ionic (1), weak hydrogen (3)	THRIVAL3CYS4THR5GLN35 PRO278TYR279ASN280TYR2 81LEU291GY411ARG412ILE 413LEU414GLY417GLY440S ER441ASN466HIS468 Hydrogen (11), hydrophobic (8), weak hydrogen (8)

 Table 14. Contact amino acids and varieties of bonds between the target and the ligand molecules belong signaling involved in breast cancer

Fig. 10. Poses of singling proteins and targets

completely killing the cells. GSTP performs a non-enzyme function in signal transduction via a protein-protein interaction with JNK that guards cancer cells from apoptosis. AKT1 kinase (AKT kinase - a serine/threonine-protein kinase) regulates many signaling downstream pathways participate in cell proliferation, metabolism, survival, growth, and angiogenesis. It belongs to the most commonly triggered multiplying and surviving pathways in cancer. Autophagy and metabolism are both regulated by EGFR. Non-canonical functions are commonly brought by cellular and environmental stresses. These 'stress pathways' are activated in cancer cells and benefit them to survive and resist to therapy. Human IkB kinase beta (IkappaB kinase or IKK) is involved cell proliferation regulation, apoptosis control, angiogenesis promotion and invasion/metastasis stimulation. EGFR regulates EMT (epithelial-mesenchymal transition), cell migration and invasion. Its high expression is a sole predictor of poor diagnosis in Inflammatory Breast Cancer (IBC) and by rewiring apoptotic signaling networks in Triple Negative Breast Cancer (TNBC), its inhibition improves chemosensitivity²⁰.

Upregulation of intra-cellular signaling paths, PI3K/Akt/mTOR pathway, considering an example, promotes cancer growth and development by driving cellular proliferation, resulting in un-checked cell growth. VEGFR-2 regulates tumor angiogenesis directly. The VEGF/ VEGFR-2 system is essential for cancer cell division and survival as an autocrine/paracrine process. Breast cancers overexpress the HER2 receptor, and HER2 overexpression is linked to aggressive tumor growth and metastasis. Cyclindependent kinase 6 (CDK6) is vital in cell cycle progression regulation. Recently, it was shown that CDK6 plays a transcriptional lead in tumor angiogenesis. NMPRTases are important in the salvage pathway of NAD+ biosynthesis. FK866 (a potent NMPRTase inhibitor) reduces cellular NAD+ levels and induces apoptosis in tumors. The MAPK signaling pathway connects extracellular signals to the intracellular process that regulates growth, proliferation, migration, and apoptosis²⁰.

Docking simplified the analysis of proteinligand interactions. Hydrogen, weak hydrogen, hydrophobic, ionic, pi-pi sticking, covalent, and van der Waals interactions are examples of interactions²³. The study highlights the main bond pattern *viz.*, hydrogen, hydrophobic, in addition to weak hydrogen bonds and limited cation-pi, pi-pi sticking, and ionic interactions. These bonds have a significant correlation with the vina score of the respective drug and its counterpart ligand. Furthermore, the energies were high due to the increased hydrogen and hydrophobic interactions.

Among the transferase target classes investigated in this study, cyclin-dependent kinase had the highest vina score with quercetin when compared to the other two drugs. The first higher class is (1XO2), which is followed by (1DI8), which has more hydrogen and hydrophobic bonds, considered as predominant in this class. Chronic inflammation is distinguished by the production of reactive nitrogen and oxygen species. These

No.	Protein molecule	RCSB id	Length	Resolution	Vina score of the drugs used
1.	Estrogen receptor	7JHD	251	2.40 Å	A:-7.3;C:-7.7;Q:-8.3
2.	Estrogen receptor	6SBO	260	1.48 Å	A:-7.9;C:-7.1;Q:-8.4
3.	Transcription factor Dp-1	2AZE	155	2.55 Å	A:-7.1;C:-7.2;Q:-7.7
4.	Protein (nuclear factor	1NFK	325	2.30 Å	A:-8.3;C:-8.4;Q:-9.6
5.	Progesterone receptor	40AR	258	2.41 Å	A:-7.9;C:-7.8;Q:-8.1
6.	Estrogen receptor beta	2I0G	257	2.50 Å	A:-8.6;C:-7.8;Q:-8.8
7.	Estrogen receptor beta	5TOA	249	2.50 Å	A:-7.4;C:-7.3;Q:-8.9
8.	Hypoxia-inducible factor 1 alpha inhibitor	1YCI	349	2.70 Å	A:-8.1;C:-6.7;Q:-7.4
9.	Stromal cell-derived factor 1 alpha	2J7Z	68	1.95 Å	A:-6.2;C:-5.9;Q:-6.7

Table 15. Transcription factor target classes used in the present study; A: Anatrozole, C: Capecitabine; Q; Quercetin

 Table 16. Poses, contact amino acids and varieties of bonds between the target and the ligand molecules belong to transcription factors involved in breast cancer

PDB	Anastrazole	Contact residues and bond pattern Capecitabine	Quercetin
5TOA	GLU276 PRO277PRO278 HIS279VAL280LEU301GLU30 5HIS308MET309TRP312VAL3 38LEU339GLY342TRP345ARG 346PHE356ALA357PRO358 TYR397LYS401 Hydrophobic (7), weak hydrogen (4), hydrophobic (6), ionic (1)	GLU276PRO277PRO278 HIS279VAL280LYS304GLU30 5LEU306HIS308MET309TRP 312VAL338LEU339GLY342T RP345ARG346HIS394 TYR397LYS401 Pi-pi (2) Hydrogen (4), weak hydrogen (2), hydrophobic (12), ionic (1)	MET295LEU298THR 299LEU301ALA302GLU3 05MET336LEU339MET34 0LEU343ARG346PHE356I LE3731LE376LEU380GLY4 72MET473HIS475LEU476 MET479VAL485 Hydrogen (8), weak hydrogen (2), hydrophobic (13), ionic
1YCI	TYR93PHE100LEU101TYR102 TYR145GLN147LEU186LEU18 8VAL195THR196PRO197HIS1 99ASP201PHE207ARG238ILE 281ASN294 TRP296 Ionic (4), hydrophobic (10), hydrogen (2), pi-pi (1), weak hydrogen (5)	TYR102TYR145GLN147 LEU186LEU188THR196HIS1 99ASP201GLU202GLN203P HE207ARG238ILE281ASN29 4TRP296 Pi-pi (1), cation-pi (1), hydrogen (3), hydrophobic (7)	TYR93SER94PHE100 LEU101TYR102TYR103SE R118TYR145GLN147LEU1 88THR196HIS199ASP201 ASN205PHE207LYS214HI S279ILE281ASN294 TRP296 Ionic (1), hydrophobic (13), weak hydrogen(4),
210G	MET295LEU298THR299LEU3 01ALA302GLU305TRP335ME T336LEU339MET340LEU343 ARG346PHE356ILE373ILE376 PHE377LEU380GLY472HIS47 5LEU476VAL487 Ionic (2), hydrophobic (19), hydrogen (1), pi-pi (1), weak hydrogen (2)	GLU276 PRO277PRO278 HIS279GLU305LEU306HIS30 8MET309VAL338LEU339GLY 342TRP345ARG346HIS394T YR397LYS401 Ionic (1), hydrophobic (17), hydrogen (6), weak hydrogen (1), pi-pi (1)	nydrogen (6), cation-pi (1) MET295LEU298THR 299LEU301ALA302GLU3 05MET336LEU339MET34 0LEU343ARG346PHE356I LE3731LE376LEU380GLY4 72MET473HIS475LEU476 MET479 Ionic (1), hydrophobic (14), hydrogen (8), pi-pi (1), weak hydrogen (1),
1NFK	BLYS249VAL251ARG252LEU 269ASP271LYS275PRO300 THR301ASP302VAL303HIS30 4ARG305GLN306VAL310 Pi-pi (6), cation-pi (2) hydrogen (11) weak hydrogen(4), hydrophobic (4), ionic (2)	ARG161GLY162ASN164 PRO165GLY166LEU167SER1 71LEU173ALA174TYR175LE U176GLN177PHE217THR22 6ARG228 Pi-pi (13), ionic (3), hydrogen (23) weak hydrogen(13) hydrophobic (11)	(1), weak hydrogen (1) GLY162ASN164PRO 165GLY166LEU167SER171LE U173ALA174TYR175L EU176GLN177PHE217PH E225THR226ARG227ARG 228GLU230 Pi-pi (9), ionic (3), hydrogen (10), kydrogen (10),
2AZE	PHE233LEU259PRO260PHE 261ILE262ASP295ASP296ILE 297SER235GLN241ALA267PR O268PRO269ChainC:SER834I LE835GLY836GLU837SER838 THR841 Weak hydrogen (2), hydrophobic (7) ionic (2), hydrophobic (6)	PHE233VAL237LEU259 PRO260PHE2611LE262ASP2 95ASP2961LE297LEU234SER 235SER240GLN241ALA244C hainC:SER834ILE835GLY836 GLU837SER838THR841 Hydrogen (6), weak hydrogen (2), hydrophobic (14)	PHE233VAL237LEU259 PRO260ASP295ASP296IL E297LEU231LEU234SER2 35GLU236SER240GLN24 1ALA244ILE835GLY836G LU837SER838THR841 Hydrogen (6), hydrophobic (5), weak hydrogen (1), pi.pi (1)
6SBO	MET343LEU346THR347LEU3 49ALA350TRP383LEU384LEU 387MET388LEU391PHE404V AL418MET4211LE424PHE425 GLY521LEU525MET528ASN5 32 VAL533 Hydrophobic (18), hydrogen (1)	MET343LEU346THR347 LEU349ALA350ASP351GLU3 53LEU354TRP383LEU384LE U387PHE404LEU525ASN532 VAL533VAL534PRO535 Hydrogen (4), weak hydrogen (2), hydrophobic (17)	MET343LEU346THR 347LEU349ALA350GLU3 53TRP383LEU384LEU387 MET3881LE389LEU391AR G394PHE404LEU428LEU 525MET528 VAL533 Hydrogen (4), hydrophobic (17), pi-pi (1), weak hydrogen (1), ionio (1)
40AR	GLU695 PRO696ASP697 VAL6981LE699GLN725SER72 8VAL729TRP732LEU758MET 759GLY762TRP765ARG766P HE778ALA779PRO780PHE81 8LYS822	GLU276 PRO277PRO278 HIS279GLU305LEU306HIS30 8MET309VAL338LEU339GLY 342TRP345ARG346HIS394T YR397LYS401 Pi-pi (2), weak hydrogen (1),	PRO696ASP697VAL 698ILE699TYR700LEU721 GLN725SER728VAL729TR P732SER757LEU758MET 759PHE761GLY762LEU76 3ARG766PHE778ALA779

Hydrophobic (12), pi-pi (2), weak hydrogen (2), ionic (1), hydrogen (4), cation-pi (1)

- 7JHD MET343LEU345LEU346 THR347LEU349ALA350GLU3 53TRP383LEU384LEU387ME T388LEU391ARG394PHE404 ILE424PHE425LEU428GLY521 LEU525LEU540 Ionic (1), hydrogen (1), hydrophobic (23)
- 2J7Z VAL3 PRO10ARG12LYS27 LEU29ASN30THR31VAL39GL N48LYS24 HIS25LYS27ARG41 ASN46 Hydrophobic (11)

hydrogen (3), ionic (1), cation-pi (2), hydrophobic (15)

LEU320 GLU323PRO324 PRO325ILE326LEU327GLU3 53LEU354HIS356MET357TR P360ILE386LEU387GLY390T RP393ARG394GLY442PHE44 5VAL446LYS449 Cation-ion(2), pi-pi (1), hydrogen (2), weak hydrogen (3), ionic (1), hydrogen (3), ionic (1),

ARG20ALA21VAL23 LYS 43GLU60TYR61LYS64ALA65 Chain B: SER6TYR7ASN30THR31 PRO32 GLN37 Hydrophobic (11), hydrogen (5), weak hydrogen (1) PRO780PHE818 LYS822 Weak hydrogen (2), hydrogen (9) cation-pi (3), hydrophobic (16) MET343LEU345LEU 346THR347LEU345LEU 346THR347LEU349ALA35 0GLU353LEU384LEU387 MET388LEU391ARG394PHE 404VAL418GLY420ME T421ILE424PHE425LEU4 28GLY521HIS524 LEU525

Pi-pi (2), ionic (1), hydrogen (3), weak hydrogen (2), hydrophobic (11) VAL3 SER6TYR7ARG8 CYS9PR010LEU29ASN30 THR31ASN33CYS34VAL 23LYS24HIS25ARG41 LYS43 Hydrogen (9), hydrophobic (5), weak hydrogen (1)

Fig. 11. Binding poses of transcription factors in breast cancer cell lines with the ligands

species initiate tumorigenesis, inhibit apoptosis, promote hyper cellular proliferation, and promote angiogenesis. These conditions cause the NFkB pathways to be activated. Although NFkB is required for normal mammary cell morphogenesis, irregular expression has been observed in BC cells²⁴. A good idea is to target NFkB to control cell proliferation. The molecules studied were (1NFK), but with a vina score of -9.6, quercetin came out on top. The mitogen-activated protein kinase (MAPK) pathway regulates several processes including tumor development. In conjugation with the MAPK cascade, beta-arrestin proteins target G proteincouple receptors and promote tumor progression²⁵. Targeting beta-arrestin is a good choice, and in this study, quercetin effectively targeted (6K3F) betaarrestins. Estrogen receptors aid in the binding of estrogen, which is required for cell proliferation, and blocking these receptors aids in the supervision of cancer disease. Again quercetin has a strong affinity for the estrogen receptor (4PP6).

In cancer prevention, redox maintenance in cell is critical. In aerobic conditions, ROS (reactive oxygen species) influence lipid, protein and DNA metabolism and function. Changes in DNA and proteins are important in cancer pathophysiology. Oxidoreductases are the enzymes that maintain ROS and neutralize oxidative stress²⁶.

No.	Protein molecule	RCSB id	Length	Resolution	Vina score of the drugs used
1.	Cell division protein kinase 2	2BHH	298	2.60 Å	A:-8.8;C: 7.9;Q:-8.9
2.	Vascular endothelial growth factor A	4KZN	104	1.71 Å	A:-5.5;C:-5.8;Q:-6.0
3.	Rho-associated protein kinase 1	3TWJ	410	2.90 Å	A:-8.8;C:-7.5;Q:-8.9
4.	Epidermal growth factor receptor	2ITX	327	2.98 Å	A:-7.6;C:-7.1;Q:-8
5.	Peptidyl-prolyl cis-trans isomerase FKBP5	4DRH	144	2.30 Å	A:-8.4;C:-8.5;Q:-8.4
6.	Dual specificity mitogen-activated protein kinase kinase 1	1S9J	341	2.40 Å	A:-6.7;C:-7.5;Q:-8.6
7.	Nicotinamidephosphoribosyltransferase	2GVG	491	2.20 Å	A:-8.4;C:-8.8;Q:-10.1
8.	Phosphatidylinositol-4,5-bisphosphate	2A5U	966	2.70 Å	A:-9.6;C:-7.8;Q:-9.3
	3-kinase catalytic subunit, gamma isoform				
9.	Mitogen-activated protein kinase 14	4FA2	383	2.00 Å	A:-8.7;C:-7.8;Q:-9.2
10.	Ephrin type-A receptor 2	1MQB	333	2.30 Å	A:-7.6;C:-7.2;Q:-7.5
11.	epidermal growth factor receptor	1M17	333	2.60 Å	A:-7.7;C:-6.7;Q:-8.4
12.	Vascular endothelial growth factor receptor 2	1YWN	316	1.71 Å	A:-7.2;C:-6.9;Q:-7.9
13.	v-akt murine thymoma viral oncogene homolog 1 (AKT1)	3MV5	342	2.47 Å	A:-8.4;C:-8;Q:-8.2
14.	Phosphatidylinositol-4,5-bisphosphate 3-kinase	30AW	966	2.75 Å	A:-9.6;C:-7.6;Q:-8.3
15.	Inhibitor of nuclear factor kappa-B kinase subunit beta	4KIK	677	2.83 Å	A:-7.9;C:-7.4;Q:-8.5
16.	v-akt murine thymoma viral oncogene homolog 1 (AKT1)	30CB	341	2.70 Å	A:-8.2;C:-8.1;Q:-8.4
17.	Epidermal growth factor receptor	4WKQ	330	1.85 Å	A:-7.2;C:-6.6;Q:-8.3
18.	Ephrin type-A receptor 4	4M4P	518	2.08 Å	A:-6;C:-6.4;Q:-6.7
19.	RAC-alpha serine/threonine-protein kinase	3CQW	342	2.00 Å	A:-8.5;C:-7.9;Q:-8.5
20.	Cell division protein kinase 6	3NUP	307	2.60 Å	A:-8.3;C:-6.8;Q:-8.6
21.	Cyclin-dependent kinase 2	1DI8	298	2.20 Å	A:-9.3;C:-7.9;Q:-10
22.	cyclin D1-cyclin-dependent kinase 4 (CDK4) (G1/S-Specific cyclin-D1)	2W96	271	2.30 Å	A:-7.9,C:-7.4,Q:-9.2
23.	Cyclin-dependent kinase 6	1XO2	254	2.90 Å	A:-9.2;C:-8;Q:-10.6
24.	Epidermal growth factor receptor	2J6M	327	3.10 Å	A:-7.9;C:-7.2;Q:-8.4
25.	Protein (CDK2 human)	1BUH	298	2.60 Å	A:-7.7;C:-7.8;Q:-8.3
26.	Receptor tyrosine-protein kinase erbB-2	3PP0	338	2.25 Å	A:-8.7;C:-9.2;Q:-9.4
27.	Vascular endothelial growth factor receptor 2	20H4	316	2.05 Å	A:-7.5;C:-7.4;Q:-9.6
28.	RAC-alpha serine/threonine-protein kinase	3096	446	2.70 Å	A:-9.9;C:-8.1;Q:-9.7
29.	RAC-alpha serine/threonine-protein kinase	3CQU	342	2.20 Å	A:-8;C:-7.9;Q:-9.2
30.	RAC-alpha serine/threonine-protein kinase	30W4	341	2.60 Å	A:-7.8;C:-7.3;Q:-8.1
31.	Epidermal growth factor receptor	5FED	328	2.65 Å	A:-8.2;C:-7;Q:-7.9
32.	Ephrin a2 (epha2) receptor protein kinase	5NKA	306	1.38 Å	A:-7;C:-6.6;Q:-7.9
33.	Glutathione S-transferase P	2A2R	210	1.40 Å	A:-7.3;C:-7.1;Q:-7.9
34.	Ribosomal protein S6 kinase alpha-3	3G51	325	1.80 Å	A:-7.8; C:-7.5;Q:-8.3
35.	Tyrosine-protein kinase JAK2	3KRR	295	1.80 Å	A:-7.9;C:-7.5;Q:-9.1
36.	Cyclin-dependent kinase 1	4YC3	302	2.7 Å	A:-7.6;C:-7.1;Q:-9.5
37.	EphA2 ligand-binding domain (LBD)	6NJZ	187	1.90 Å	A:-7.4; C:-7.8; Q:-8.4

Table 17. Transferase target classes used in the present study; A: Anatrozole, C: Capecitabine; Q; Quercetin

Table 18. Contact amino acids and varieties of bonds between the target and the ligand molecules belong to transferases involved in breast cancer

PDB		Contact residues and bond pattern	
	Anastrazole	Capecitabine	Quercetin
2W96 3TWJ	LEU6CYS8ILE13ARG26VAL27A	ILE12GLY13VAL14GLY15ALA	ILE12GLY15ALA16TYR17VA
	RG29ALA30LYS33PHE66	16TYR17VAL20ALA33LYS35	L20ALA33LYS35HIS95VAL9
	HIS68 ASP129 PHE130ALA133	VAL/2PHE93GLU94HIS95VA	6ASP9/GLN98ASP99ARG10
	ASN154 Hydrophobic (11) wesk	L96ASP99AKG101ASP140LY S142GLU144ASN145LEU147	11HK102ASP140LY5142GL 11144ASN1451 F11147
	hydrogen (1) jonic (1)	ALA157ASP158	ASP158
	nyarogen (r), tome (r)	Hydrophobic (7), ionic (1),	Weak hydrogen (7),
		weak hydrogen (3),	hydrogen (12),
		hydrogen (6)	hydrophobic (7), ionic (3)
	ILE82 GLY83VAL90 ALA	ILE82 GLY83ARG84GLY	ILE82 VAL90 LEU92TYR
	103MET128VAL137MET153G	85VAL90LEU92ALA103LYS1	102ALA103LYS105VAL137
	LUI541YKI55ME1156ASP160	05ME1128VAL13/ME1153G	ME1153GLU1541YK155ME
	ASP202ASN205LE0205ALA21 54 SP216PHE368	604SP2021 EU20541 42154S	I FU205AL A 215A SP216
	Hydrophobic (14), weak	P216PHE368	PHE368
	hydrogen (2), hydrogen (1),	Hydrophobic (20), weak	Hydrophobic (18), weak
	ionic (2)	hydrogen (1), hydrogen (1),	hydrogen (2), hydrogen (3),
		ionic (1)	ionic (1)
1BUH	ILE10GLY11GLU12GLY13VAL1	ILE10 GLU12GLY13 THR	ILE10GLY11GLU12GLY
	8TYR19ALAILYS33PHE80GLU	14VAL18TYR19ALA31LYS33	13THR14VAL18ALA31LYS33
	81PHE82LEU85HI584ASP80GL N131ASN132LEU133LEU134A	SP86LVS120GLN131ASN132	PHE80GLU81PHE2LEU83HI S84GI N85ASD86ASD127I VS
	LA144ASP145	I FUI34ALA144ASP145THR1	129GL N131ASN132L FU134
	Ionic (3), hydrophobic (15).	58TYR159GLU162VAL163	ASP145
	weak hydrogen (2), hydrogen	Ionic (2), hydrophobic (9),	Ionic (1), hydrophobic (10),
	(1)	weak hydrogen (4),	weak hydrogen (3),
		hydrogen (6)	hydrogen (6)
4YC3	GLN184ALA185VAL186 TY	GLU181GLU182GLN184	LEU180GLU181GLU182
	R223ME1224VAL226SER22/A	ALA185 VAL1861 Y R223ME1	GLN184ALA185ARG2011YR
	91 EU300PP 0301MET326THP	224 VAL2203EK22 / AK0298P RO2001 EU300PRO301MET3	
	329MET330MET335VAL336P	35VAL 336HIS337PHE338PR	300PRO301THR329MET33
	HE338PRO340 ILE343	O339PRO340	0ASP332TYR333ASP334ME
	Hydrogen (7), weak hydrogen	Hydrogen (2), weak	T335VAL336PHE338
	(3), hydrophobic (13)	hydrogen (6), hydrophobic	PRO340ILE343
		(8), cation-pi (1)	Hydrogen (10), weak hydrogen (3),
4KZN	CLU29 TVD20ADC5/CLU	CV957CLV59CLV50CV9(ACV	hydrophobic (14), ionic (1)
	GLU38 I YK39AKG50GLU 73ASN75SER05DHE06I EU07	C I S5/GLI 58GLI 59C I S00C I S61 A SN62 A SP63 GLU64 GLV	C Y S200L Y S9C Y S00C Y S 61 A SN62 A SP63 CI U64
	Ionic (1) hydrogen	65LEU66GLU67 CY868	LEU66GLU67CYS68CYS104
	hydrophobic (5), weak	VAL69LYS107	LYS107
	hydrogen (2)	Hydrogen (7), hydrophobic	Hydrogen (6), hydrophobic
		(3), weak hydrogen (1)	(3), weak hydrogen (2)
1XO2	ILE19GLY20GLU21GLY22	ILE19 GLY20VAL27ALA	ILE19 GLY20VAL27ALA
	GLY25VAL27ALA41LEU42LYS4	41LYS43GLU61VAL77PHE98	41LYS43GLU61VAL77PHE9
	3GLU6IVAL7/PHE98GLU99H	GLU99HIS100VAL101ASP102	8GLU99HIS100VAL101ASP10
	VS147GLN1494 SN150LFU152	N1494 SN150L FU1524L 416	1 N1494 SN150L FU1524L 41
	ALA162ASP163	2ASP163PHE164	62ASP163PHE164
	Hydrophobic (13), weak	Hydrophobic (13), weak	Hydrophobic (12), weak
	hydrogen (1), hydrogen,	hydrogen (2), hydrogen (6),	hydrogen (1), hydrogen
	ionic (2)	ionic (2)	(11), ionic (2)
4DHR	TYR57 PHE67 ASP68 HIS71	TYR57ASP68SER70HIS71	ASP68HIS71PHE77VAL
	PHE// IYRII3 PRO120 DUE120SED2025TVD2028DUE	PHE//PRO120LEU2031 CLU2022SEP2025DUE20201	78GLN85LEU2031GLU
	20301 FU2007 THP2008	GLU2052SER2055PHE2059L FU2007THP2008TPP2101AS	2052SEK2055PHE2059 LEU2007THP2008GLN2000
	TRP2101ASP2102TYR2105	P2102TYR2104TYR2105	TRP2101 ASP 2102TYR2104
	Ionic (1), hydrophobic	PHE2108	
	(11), weak hydrogen (2),	Hydrophobic (17), weak	TYR2105PHE2108
	hydrogen (2), ionic (3)	hydrogen (4), hydrogen (5),	Ionic (2), hydrophobic (8),
		pi-pi (1), ionic (1)	weak hydrogen (5),
			hydrogen (4), pi-pi (1)
2ITX	LEU/18VAL/26ALA743GLU76	ALA/02LEU/03LEU704MET	LEU/18GLY/19VAL726ALA
	20121/00C15//JLEU/881HK/ 90GLN7911EU792MET793GI	/00ALA/0/SEK/08VAL/09A SP770ASN771PR0772ARG7	/43L15/43GLU/02ME1/00 LEU788THR790GLN791LEU
	Y796CYS797ARG841 ASN842	76LYS852ALA1013ASP1014	792MET793PRO794PHE79
	LEU844THR854ASP855	TYR1016LEU1017ILE1018	5GLY796LEU844THR854

990

Ionic (3), hydrophobic (10), weak hydrogen (4), hydrogen (7)

- 2BHH ILE10 GLY11GLU12VAL18 ALA31LYS33VAL64PHE80GLU 81PHE82LEU83HIS84GLN85A SP86GLN131ASN132LEU134A LA144 ASP145 Ionic (2), hydrophobic (17),weak hydrogen (2), pi-pi (1), ionic (2)
- 1S9J LEU74GLY75ALA76GLY77VAL 82ALA95LYS97MET143GLU14 4HIS145MET146GLY149SER1 50ASP152GLN153SER194ASN 195LEU197CYS207ASP208 Ionic (1), hydrophobic (11), weak hydrogen (3), hydrogen (7)
- 2GVG ASP192PHE193GLY194ARG19 6GLY197ASP219HIS247ARG3 11ASP313GLY353ASP354GLY 355GLY381SER382GLY383GL Y384ASP16TYR18GLU149ARG 392SER398LYS415LYS423 Ionic (12), cation-pi (1) hydrophobic (5), weak hydrogen (4), hydrogen (7)
- 3MV5 GLY157LYS158GLY159THR160 PHE161GLY162LYS163VAL164 LYS179LEU181GLU191HIS194 GLU198ASP274LYS276ASP29 2PHE293GLY294LEU295THR5 THR6SER7 Pi-pi (1), ionic (5), hydrophobic (6), weak hydrogen (2), hydrogen (4)
- 1MQB ILE619GLY620ALA621GLY622 VAL627ALA644LYS646GLU66 MET667ILE676THR692GLU69 3TYR694MET695GLY698ALA6 99ARG743ASN744LEU746SER 756ASP757Ionic (3), hydrophobic (11), hydrogen (5), weak hydrogen (4)
- 3NUP ILE19GLY20VAL27ALA41LYS4 3VAL77PHE98GLU99HIS100V AL101GLN103ASP104GLN149 ASN150LEU152ALA162 ASP163 PHE164 Ionic (4) hydrophobic (12), weak hydrogen (2)
- 1M17 LEU694PHE699VAL702ALA71 9LYS721GLU738MET742CYS7 51LEU764THR766LEU768MET 769GLY772CYS773ARG817LE U820THR830 ASP831 Ionic (4), hydrogen (5), hydrophobic (8), weak hydrogen (3)
- 1YWN LYS866GLU883ILE886LEU887I LE890VAL896VAL897LEU1017 CYS1022ILE1023HIS1024ARG 1025ILE1042CYS1043 ASP1044

PRO1019 Ionic (1), hydrophobic (5), weak hydrogen (1), hydrogen (6), cation-pi (1) ILE10GLY11VAL18ALA31LYS 33VAL64PHE80GLU81PHE8 2LEU83HIS84GLN85ASP86L YS89GLN131ASN132LEU134 ALA144ASP145 Ionic (1), hydrophobic (20), weak hydrogen (5), hydrogen (5), pi-pi (1)

LEU74GLY75ALA76GLY77AS N78GLY79GLY80VAL82ALA9 5LYS97LEU98ILE99MET143 MET146GLY149SER150ASP 152GLN153SER194ASN195L EU197CYS207ASP208 Ionic (1), hydrophobic (9), weak hydrogen (4), hydrogen (10) ASP16TYR18ARG392ASP393 ASP192PHE193GLY194ARG 196ASP219ARG311ASP313 GLY353ASP354GLY355VAL3 56ASP357SER382GLY383GL Y384GLY385 LYS389 Ionic (4), hydrophobic (6), weak hydrogen (3), hydrogen bonds (9), cation-pi (2) LYS158GLY159PHE161LYS1 79LEU181ILE186GLU191HIS 194THR195GLU198GLU234 ASP274LYS276GLU278ASN2 79ASP292PHE293GLY294LE U295ARG4THR5THR6SER7 Ionic (3), hydrogen (10), hydrophobic (9), weak hydrogen (4) ILE619GLY622GLU623VAL6 27ALA644LYS646GLU663TY R694MET695GLU696GLY69 8ASN744LEU746SER756ASP 757PHE758 Hydrophobic (6), hydrogen (5) weak hydrogen (1)

ILE19GLY20VAL27LYS29ALA 41LYS43VAL77PHE98GLU99 HIS100VAL101ASP102GLN1 03ASP104THR107GLN149LE U152ALA162 ASP163 Ionic (2), hydrophobic (14), hydrogen (3), weak hydrogen (2) LEU694VAL702LYS704ALA7 19LYS721GLU738THR766GL N767LEU768MET769PRO77 0PHE771GLY772CYS773ARG 817LEU820THR830 ASP831 Hydrophobic (7), ionic (2) weak hydrogen (5), hydrogen (5)

TRP1094TYR1104PR01105V AL1107PHE1113ARG1116LE U1117THR1121ARG112MET 1123ARG1124ALA1125PRO 1126 ASP1127

ASP855 Ionic (1), hydrophobic (8), weak hydrogen (1), hydrogen (6) ILE10GLY11GLU12GLY13TH R14TYR15GLY16VAL18ALA 31LYS33VAL64PHE80GLU8 1ASP127LYS129GLN131AS N132LEU134ALA144 ASP145 Ionic (2), hydrophobic (13), weak hydrogen (1), hydrogen (10) LEU74GLY75ALA76GLY77V AL82ALA95LYS97VAL127M ET143GLU144HIS145MET1 46ASP147GLY149SER150GL N153SER194ASN195LEU19 7ASP208 Ionic (1), hydrophobic (7), weak hydrogen (2), hydrogen (8) ASP16TYR18ARG392SER39 8LYS400LYS415HIS191ASP1 92PHE193ARG196ASP219A LA244HIS247ARG311 ASP313 Ionic (4), hydrophobic (3), weak hydrogen bond (4), hydrogen (12),), pi-pi (2) cation-pi (2) GLY157LYS158GLY159PHE1 61VAL164GLU191HIS194GL U234ASP274LYS276GLU27 8ASN279THR291ASP292PH E293GLY294LEU295 PHE442ARG4THR5SER7 Ionic (4), hydrophobic (3), hydrogen (12) ILE619GLY622GLU623VAL6 27VAL643ALA644LYS646ILE 676THR692GLU693TYR694 MET695GLU696ASN697GL Y698ALA699ARG743ASN74 4LEU746SER756ASP757Ionic (1), hydrophobic (14), weak hydrogen (3), hydrogen (5), cation-pi (1) ILE19VAL27ALA41LYS43VA L77PHE98GLU99HIS100VAL 101ASP102GLN103ASP104 THR107LEU152ALA162ASP 163 Ionic (2), hydrophobic (8), weak hydrogen (1), hydrogen (7) LEU694VAL702ALA719ILE7 20LYS721GLU738MET742L EU764ILE765THR766LEU76 8MET769PRO770GLY772CY S773LEU820THR830 ASP831 Ionic (2), hydrophobic (6), weak hydrogen (5), hydrogen (6) LEU838GLY839VAL846ALA 864LYS866GLU883LEU887 VAL897VAL914GLU915PHE

916CYS917LYS918GLY920L

EU1033CYS1043ASP1044

Hydrophobic (7), hydrogen

(11), weak hydrogen (4),

Ionic (8), hydrogen (1), hydrophobic (8)

- 4WKQ LEU718GLY719VAL726ALA74 3ILE744LYS745GLU762MET76 6CYS775THR790LEU79 2MET793GLY796LEU844 THR854 Hydrophobic (11), hydrogen (2), ionic (1), weak hydrogen (3)
- 2J6M LEU718PHE723VAL726ALA74 3LYS745GLU762MET766LEU7 88THR790GLN791LEU792ME T793GLY796 CYS797ARG841 ASN842LEU844THR854 ASP855 Ionic (5), hydrophobic (7), weak hydrogen (1), hydrogen
- 1DI8 ILE10GLY11GLU12GLY13VAL1 8ALA31LYS33VAL64PHE80GL U81PHE82LEU83HIS84GLN85 ASP86GLN131ASN132LEU134 ALA144ASP145 Ionic (2), hydrogen (2), hydrophobic (19), weak hydrogen (1)
- 3KRR LÉU855GLÝ856LY8857GLY858 ASN859GLY861SER862VAL86 3LYS882GLY935SER936ASP93 9ARG980ASN981ILE982LEU9 83GLY993ASP994 Hydrogen (3), hydrophobic (10), weak hydrogen bond (2)
- 4FA2 VAL30VAL38ALA51VAL52 LYS53ILE84LEU104THR106HIS 107LEU108MET109GLY110AL A111ASP112SER154ASN155A LA157LEU167PHE169GLY170 LEU171 Hydrophobic (14), weak hydrogen (3)
- ILE619VAL627ALA644LYS646 5NKA GLU663MET667ILE676ILE690 THR692GLU693TYR694MET6 95GLU696GLY698ALA699ARG 743 ASN744 ILE745LEU746 SER756ASP757 Hydrophobic (8), ionic (1) weak hydrogen (2), hydrogen (1) 3G51 LEU74GLY75GLN76GLY77SER 78GLY80VAL82ALA98LYS100 ASP148PHE149LEU150ASP15 4GLU197ASN198LEU200THR2 10ASP211LYS216 Hydrophobic (11), ionic (2) weak hydrogen bond (1)
- 4KIK ARG105CYS114GLU214GLY21 8PHE219ARG220PRO224ASN 225PHE424GLN425ARG427LY S428TYR571 ARG575 Ionic (2), cation-pi (1) hydrophobic (6), hydrogen (3), weak hydrogen (3)

cation-pi (1) LEU718GLY719VAL726ALA7 43ILE744LYS745GLU762MET7 66LEU788ILE789THR790 MET793GLY796ARG841LEU 844THR854ASP855 Ionic (1), hydrophobic (11), weak hydrogen (5), hydrogen (2) LEU718VAL726LYS728ALA7 43LYS745GLU762MET766T HR790GLN791LEU792MET7 93PRO794PHE795GLY796C YS797ASN842LEU844 THR854ASP855 Ionic (2), hydrogen (5), hydrophobic (10), weak hydrogen (2) ILE10VAL18ALA31LYS33VAL 64PHE80GLU81PHE82LEU8 3HIS84GLN85ASP86LYS89G LN131ASN132LEU134ALA14 4ASP145 Ionic (1) hydrophobic (15), weak hydrogen (1), hydrogen (3) LEU855GLY856LYS857GLY8 58ASN859GLY861SER862VA L863ALA880LYS882GLU930 TYR931LEU932GLY935SER9 36ARG980ASN981LEU983A SP994 Hydrophobic (11), ionic (1)weak hydrogen (8), hydrogen (3) VAL30VAL38ALA51VAL52LY S53GLU71LEU75ILE84LEU1 04THR106HIS107LEU108ME T109GLY110ALA111ASP112 ASN115SER154ALA157LEU1 67ASP168PHE169 LEU171 Ionic (1), hydrogen(4), hydrophobic (16), weak hydrogen (3) ILE619VAL627ALA644ILE64 5LYS646GLU663ALA664ME T667ILE676ILE690ILE691TH R692GLU693TYR694MET69 5GLY698ALA699LEU746SER 756ASP757PHE758 Hydrophobic (13), hydrogen (6) weak hydrogen bond (1) LEU74GLY75GLN76GLY77SE R78PHE79GLY80VAL82LYS1 00TYR191ASP193LYS195GL U197ASN198LEU200THR21 0ASP211PHE212GLY213LEU 214LYS216 Hydrophobic (9), hydrogen (7), ionic (2), weak hydrogen (5) PHE219VAL244SER246GLU2 47ASP248LEU249LYS254PH E255SER256SER258LEU259 PRO260TYR261GLU408SER 409PHE424GLN425LYS428 GLN432 Ionic (1), hydrophobic (5), weak hydrogen (3),

Ionic (1), hydrophobic (13), weak hydrogen (1), hydrogen (3) LEU718GLY719VAL726ALA 743LYS745GLU762MET766LEU 788THR790GLN791LEU 792MET793PRO794PHE79 5GLY796LEU844THR854 ASP855 Hydrophobic (6), weak hydrogen (3), hydrogen (6), ionic (2) LEU718GLY719VAL726ALA 743LYS745GLU762MET766 LEU788THR790GLN791LEU 792MET793PRO794PHE79 5GLY796CYS797LEU844 THR854ASP855 Ionic (2), hydrophobic (8), weak hydrogen (1), hydrogen (7) ILE10VAL18ALA31LYS33VA L6PHE80GLU81PHE82LEU8 3HIS84GLN85ASP86GLN13 1LEU134ALA144ASP145PH E146LEU148 Hydrophobic (15), ionic (1), weak hydrogen (2), hydrogen (8) LEU855VAL863ALA880LYS8 82VAL911MET929GLU930T YR931LEU932PRO933TYR9 34GLY935SER936ASP939LE U983GLY993ASP994 Hydrophobic (8), ionic (1) Weak hydrogen (3), hydrogen (8) VAL30VAL38ALA51VAL52LY S53GLU71LEU75ILE84GLY8 5LEU86ASP88LEU104VAL1 05THR106GLY110ALA111S ER154ASN155LEU167PHE1 69GLY170LEU171 Hydrophobic (14), ionic (1) weak hydrogen (3), hydrogen (6) ASP708LEU716TRP808MET 811THR812TYR813GLU815 TRP819PRO837THR838PRO 839MET840PHE887 ASP888 Hydrophobic (10), hydrogen (8), weak

nydrogen (8), weak hydrogen (1), pi-pi (1) LEU74GLY75GLN76GLY77S ER78VAL82ALA98LYS100VA L131LEU147ASP148PHE149 LEU150ARG151LYS195GLU 197ASN198LEU200 THR210

Hydrophobic (15), hydrogen(2), weak hydrogen (1) ARG105LEU108ASN109CYS 114CYS115GLU214THR217 GLY218PHE219ARG220PRO 224ASN225ARG427LYS428 VAL429TRP430GLY431 GLN432TYR571 Ionic (2), hydrophobic (3), weak hydrogen (6), LEU156GLY157VAL164ALA1

hydrogen (4)

30W4	LEU156GLY157LYS158VAL164 ALA177 LYS179GLU198THR21 MET227GLU228TYR229ALA2 30GLU234ASN279MET281TH R291ASP292 PHE438ARG4Ionic (7), pi-pi (1) hydrophobic (7), weak hydrogen (4), hydrogen(3), cation pi (1)
4M4P	ILE336SER337ASN338ASN345 LEU346GLU347LYS397VAL39 8GLU475ARG514ALA519GLY5 20TYR521 Hydrophobic (3), weak hydrogen (1), Ionic (5), pi-pi
6NJZ	sticking (1), cation-pi (1) TRP43LEU44THR45TYR48TRP 52ASP53LEU54TYR67THR132 LEU44THR45HIS46TYR48THR 132PHE134 Pi-pi (1), hydrophobic (6),weak hydrogen (4),
2A5U	hydrogen (3), ionic (2) LEU657HIS658LEU661ARG69 0PHE694PHE698TYR787ASP7 88MET842LEU843LEU845GL N846ARG849PRO866TYR867 GLY868CYS869 ILE870GLU880
	Hydrophobic (12), cation-pi (2) weak hydrogen (2), hydrogen (3)
2J6M	LEU718PHE723VAL726ALA74 3LYS745GLU762MET766LEU7 88THR790GLN791LEU792ME T793GLY796CYS797ARG841A SN842LEU844THR854ASP855 Ionic (5), hydrophobic (7), weak hydrogen (1), hydrogen(1)
20H4	ASP1026ARG1030ASN1031AS P1044PHE1045GLY1046LEU1 047ALA1048ARG1049ASP105 0ILE1051ASP1062ALA1063 ARG1064PRO1066 Ionic (4), hydrophobic (3), weak hydrogen (4), hydrogen (5), cation-pi (1)
3CQU	LEU156GLY157LYS158PHE161 VAL164ALA177LYS179GLU19 8THR211MET227GLU228TYR 229ALA230GLY233GLU234GL U278MET281THR291ASP292 PHE438 Ionic (3), hydrophobic (14), weak hydrogen (3), hydrogen (5)
5FED	LEU718GLY719VAL726ALA74 3LYS745GLU762MET766CYS7 75LEU788THR790GLN791ME T793GLY796CYS797ARG841A SN842LEU844THR854ASP855 Ionic (1), hydrophobic (9),

weak hydrogen (1), hydrogen

(3)

77LYS179GLU198MET227AL A230GLY233GLU234PHE23 6PHE237ARG241MET281TH R291ASP292TYR437PHE438 ASP439PHE442ARG4 Ionic (2), hydrogen (7) hydrophobic (9), weak hydrogen (1) GLU451THR453TYR455SER4 56ALA458ASP499LYS501GL Y502PRO536SER537ARG53 8ILE539ILE540 Hydrophobic (7), weak hydrogen (5), hydrogen (7), ionic (2) GLY39GLU40LEU41GLY42TR P43LEU44THR45TYR48LEU5 4TYR67TYR48THR132 ASN133MET10 Hydrophobic (7), hydrogen (11) weak hydrogen(1) TRP201PRO208TYR210LEU2 11GLN291ARG294HIS295LY S298ASP654LEU657HIS658L EU660ARG690PHE694PHE6 98ARG849GLU852SER853G LU856 Hydrophobic (18), hydrogen (6), ionic (3), cation-pi (1) LEU718VAL726LYS728ALA7 43LYS745GLU762MET766T HR790GLN791LEU792MET7 93PRO794PHE795GLY796C YS797ASN842LEU844THR85 4ASP855 Ionic (2), hydrophobic (10), weak hydrogen (2), hydrogen (5) ASP1026ARG1030ASN1031 CYS1043ASP1044PHE1045G LY1046LEU1047ALA1048AR G1049ASP1050ILE1051ALA 1063ARG1064LEU1065 PRO1066 Ionic (2), hydrophobic (6), cation-pi (1) weak hydrogen (2), hydrogen (9) THR160LYS179LEU181ILE18 6LYS189GLU191HIS194THR 195GLU198ASP274ASP292 GLY294LEU295THR6SER7PH E8ALA9GLU10 Ionic (2), hydrophobic (16), weak hydrogen (11), hydrogen (16)

LEU718VAL726LYS728ALA7 43LYS745CYS775THR790GL N791LEU792MET793PR079 4PHE795GLY796CYS797ARG 841ASN842LEU844THR854 Ionic (1), hydrophobic (12), weak hydrogen (3), hydrogen (5) hydrogen (10), cation-pi (1) LEU156GLY157LYS158VAL1 64ALA177LYS179MET227G LU228ALA230GLU234PHE2 37MET281THR291TYR437P HE438ASP439PHE442ARG4 Ionic (1), hydrophobic (10),weak hydrogen (3), hydrogen (3)

ARG37SER38GLN40ASP61L YS63ASN64THR65PRO66ILE 67ASP158ILE159GLY160 ASP161 Ionic (2) hydrophobic (2),weak hydrogen (3), hydrogen (9) TRP43LEU44THR45HIS46TY R48TYR67THR132TRP43LE U44 THR45 TYR48THR132 Pi-pi (1), hydrophobic (8), weak hydrogen (3), hydrogen (5)

MET804PRO810TRP812ILE 831LYS833ASP836LEU838A SP841TYR867ILE879GLU88 0ILE881VAL882LYS883ALA8 85THR886THR887MET953P HE961ILE963ASP964 **PHE965** Hydrophobic (18), weak hydrogen (5), hydrogen (4), ionic (2), cation-pi (2) LEU718GLY719VAL726ALA 743LYS745GLU762MET766 LEU788THR 790GLN791LEU 792MET793PRO794PHE79 5GLY796CYS797LEU844 THR854ASP855 Ionic (2), hydrophobic (8), weak hydrogen (1), hydrogen (7) ASP1026ARG1030ASN1031 ASP1044PHE1045GLY1046 ALA1048ARG1049ASP1050I LE1051ARG1064LEU1065 PRO1066 Ionic (1), hydrophobic (15), weak hydrogen (2), hydrogen bonds (8), cation - pi (1) LEU156GLY157LYS158PHE1 61VAL164ALA177LYS179TH R211MET227GLU228TYR22 9ALA230ASN231GLU234GL U278ASN279MET281THR2 91ASP292PHE438PHE442 ARG4 Ionic (2), hydrophobic (13), weak hydrogen (6), hydrogen (9) LEU718GLY719VAL726ALA 743ILE744LYS745GLU762M ET766CYS775LEU788ILE789 THR790LEU792MET793PR O794PHE795GLY796CYS79 7ARG841LEU844THR854 ASP855 Hydrophobic (9), ionic (1) weak hydrogen (5), hydrogen (7)

LN64SER65ASN66ASP94GL

U97CYS101ILE104ChainB:A

LYS158GLY159PHE161LYS1

SN66ARG70ASP94GLU97

Ionic (2), hydrophobic (6),

weak hydrogen (4),

hydrogen (9)

ASP98

- 2A2R TYR7PHE8VAL10GLY12ARG13 GLN51ILE104TYR108ILE203AS N204GLY205ASN206 Hydrophobic (13), pi-pi (1) weak hydrogen (1), hydrogen (4)
- GLY159THR160PHE161GLY16 30CB 2LYS163VAL164LYS179LEU18 1ILE186GLU191HIS194THR19 5GLU198PHE225TYR272ASP2 74ASN279ASP292PHE293GLY 294LEU295SER7 Ionic (5), hydrophobic (8), weak hydrogen (3), hydrogen (11), cation-pi (1) 3096 ASN53GLN79TRP80THR81TH R82VAL201SER205LEU210TH R211LEU264LYS268VAL270V AL271TYR272ILE290ASP292 Ionic (1), pi-pi (1), hydrogen (2) hydrophobic (13), weak hydrogen (1),
- 3PP0 LEU726VAL734ALA7511LE752 LYS753SER783LEU796THR79 8GLN799LEU800MET801GLY8

04CYS805ARG849ASN850LEU 852THR862ASP863PHE1004 Ionic (1), hydrophobic (9), hydrogen (3), weak hydrogen (3)

30AW TRP201LEU657HIS658 LEU661ARG690PHE694PHE69 8TYR787ASP788ME842LEU84 5GLN846ARG849PRO86TYR8 67GLY868CYS869ILE870 GLU880 Ionic (1), cation-pi (3), hydrophobic (12), hydrogen (4), weak (3) LYS158GLY159THR160PHE16 3COW 1GLY162LYS163VAL164LYS17 9LEU181GLU191HIS194GLU1 98ASP274LYS276GLU278ASN 279ASP292PHE293GLY294LE U295ARG4THR5THR6SER7 Ionic (5), weak (3),

hydrophobic (6), hydrogen (7)

79LEU181ILE186GLU191HIS 194THR195GLU198ASP274L YS276GLU278ASN279ASP29 2GLY294ARG4THR5THR6SE **R**7 Ionic (4), hydrophobic (9), weak hydrogen (3), hydrogen (13) ASN54GLN79TRP80THR81 THR82VAL83ILE84ARG86LY S179VAL270VAL271TYR272 ARG273ASP274ASP292GLY2 94TYR326 Hydrophobic (11), hydrogen (9) weak hydrogen (3) LEU726GLY727SER728GLY7 29VAL734ALA751ILE752L YS753GLU770MET774SER783 LEU785LEU796THR798LEU8 00GLY804CYS805ASP808AR G849ASN850LEU852THR86 2ASP863PHE864 Ionic (1), hydrophobic (12), weak hydrogen (3), hydrogen (5) SER806LYS807LYS808 ILE831LYS833ASP836ASP84 1TYR867ILE879ASP950ASN 951MET953ILE963ASP964H IS967LEU1090 Pi-pi (2), hydrophobic (11) LYS158GLY159PHE161GLY1

62LYS179LEU1811LE186GLU 191HIS194THR195GLU198A SP274LYS276GLU278ASN27 9ASP292GLY294LEU295THR 312ARG4THR5THR6 SER7 Hydrophobic (12), hydrogen (18), ionic (5), weak (4) ARG74TYR79GLY80LYS81A SP82GLN83ALA86ChainB:G LY73ARG74GLY77LEU78TY R79GLY80LYS81ASP82GLN 83ALA86 Ionic (2), hydrophobic (7), weak hydrogen (2), hydrogen (7) LEU156GLY157LYS158GLY1 59VAL164ALA177LYS179TH R211MET227GLU228TYR22 9ALA230ASN231GLU234M ET281THR291ASP292PHE4 38PHE442ARG4 Ionic (2), hydrophobic (13), weak hydrogen (1), hydrogen (7) ASN54GLN79TRP80SER205 ARG206HIS207LEU210THR 211ALA212TYR263LEU264L YS268VAL270VAL271TYR27 2ARG273ILE290 THR291 ASP292 Hydrophobic (9), pi-pi (1) weak hydrogen (4), hydrogen (9) LEU726SER728GLY729ALA7 30VAL734ALA751ILE752LYS 753SER783LEU785LEU796V AL797THR798LEU800MET8 01GLY804CYS805ARG849A SN850LEU852THR862 ASP863 Ionic (1), hydrophobic (11), weak hydrogen (3), hydrogen (7) ALA889LYS890GLN892GLN 893ASN898THR899PHE902 HIS948ASN949ASP950GLN 1083PHE1084TRP1086PHE 1087LEU1090VAL1091 Pi-pi (3), hydrophobic (10),

LEU156GLY157LYS158GLY1 59VAL164ALA177LYS179TH R211MET227GLU228TYR22 9ALA230ASN231GLU234GL U278ASN279MET281THR2 91ASP292PHE438PHE442 ARG4 Weak (3), hydrophobic (11), ionic (2)

hydrogen (4)

Chemoresistance is linked to Prostaglandin G/H synthase 2 and is linked to injury, proliferation, and inflammation ²⁷, ²⁸. The Cytochrome P450 1A1/A2 (CYP1A1/A2) enzyme metabolizes both xenobiotics and endogenous substrates. These enzymes are involved in the activation of procarcinogens (estradiol and polycyclic aromatic hydrocarbons)²⁹.

The targeted proteins (3LN1, 6DWN and 2HI4) bound to quercetin with a highest vina

score than the other two drugs. The alpha enzyme, DNA topoisomerase II, changes the topology of DNA during transcription. The enzyme primarily catalyzes the temporary breaking (transient) and rejoining of the two duplex DNA strands, there by altering the topology³⁰. With the highest vina score of the three drug molecules, Quercetin targeted this enzyme. Matrix metalloproteinase-9 degrades extracellular matrix proteins, and surface plasma proteins, allowing them to be released to the cell

994

Fig. 12a. Binding patterns of breast cancer transferases with drugs

Fig. 12b. Binding patterns of breast cancer transferases with drugs

surface. It plays a wide range of roles in invasion, angiogenesis, and metastasis. Targeting MMP-9 is the best option, and present work highlighted that quercetin was the best at it. Myeloid cell leukemia-1, a close relative of B-cell lymphoma 2, promotes survival and invasion of cancer cells, making it an important chemotherapeutic target. The highest vina score of (-8.5) was achieved by quercetin.

The study concluded that cancer metabolism is largely reliant on amino acids, which are aided by the TCA cycle. Amino acid derivatives promote cancer cell progression and improve cells' ability to metastasize. Amino acid catabolism (metabolic intermediates) influences the survival and growth of cancer cells. Targeting the enzymes with the amino acids such as leucine, valine, and glutamine (TCA cycle fuel); asparagine, glycine, and glutamine (nucleotide biosynthesis); serine, methionine, glycine (methionine-folate cycle); glutathione, cysteine, and glycine (to maintain redox balance); methionine, serine, and glycine (DNA and histone methylation) reduces the cancer cell proliferation and tumor burden³¹. More vina score correlates with more hydrogen and hydrophobic interactions.

CONCLUSION

It confirms that, out of the three drugs tested, the natural compound quercetin establishes the most effective in targeting and controlling the BC cells, in line with our *in vitro* work¹⁰. When BC cell lines were fed with quercetin, anastrozole, and capecitabine, both independently and in combination, a decrease in cell viability and increase in apoptosis percentage at low doses of Quercetin¹⁰ was noted. Because quercetin is chemoprotective and radioprotective to healthy/ normal cells, it can be used during cancer treatment.

ACKNOWLEDGEMENT

Author is grateful to the Academy, Sri Devaraj Urs Acadmy of Higher Education and Research for providing the facility to carry out this docking study. Author is mentioning her gratitude to Dr. Prashanthi K., Assistant Professor, Department of Biotechnology, M.S. Ramaiah University of Applied Sciences, Bengaluru.

Conflict of Interest

None.

Funding Source

No funds are available.

REFERENCES

- Lafourcade A, His M, Baglietto L, Boutron-Ruault M. C, Dossus L and Rondeau V. Factors associated with breast cancer recurrences or mortality and dynamic prediction of death using history of cancer recurrences: the French E3N cohort. BMC Cancer., 2018; 9:18(1):171. http://doi: 10.1186/s12885-018-4076-4. PMID: 29426294; PMCID: PMC5807734.
- Cava E, Marzullo P, Farinelli D, Gennari A, Saggia C, Riso S, et al. Breast Cancer Diet "BCD": A Review of Healthy Dietary Patterns to Prevent Breast Cancer Recurrence and Reduce Mortality. Nutrients., 2022; 21:14(3):476. http:// doi: 10.3390/nu14030476. PMID: 35276833; PMCID: PMC8839871.
- Jia T, Liu Y, Fan Y, Wang L and Jiang E. Association of Healthy Diet and Physical Activity With Breast Cancer: Lifestyle Interventions and Oncology Education. Front. Public Health., 2022; 23:10:797794. http://doi: 10.3389/ fpubh.2022.797794. PMID: 35400043; PMCID: PMC8984028.
- 4. Abdullahi S. H, Uzairu A, Shallangwa G. A, Uba S and Umar B. *In-silico* activity prediction, structure-based drug design, molecular docking and pharmacokinetic studies of selected quinazoline derivatives for their antiproliferative activity against triple negative breast cancer

(MDA-MB231) cell line. Bull. Natl. Res. Cent., 2022; 46: 2. https://doi.org/10.1186/ s42269-021-00690-z

- David C. F and Lyubomir T.V. Targeting proteinprotein interactions for cancer therapy. J. Mol. Med., 2005; 83: 955-963.
- Md Mahmudul Hasan, Zidan Khan, Mohammed Salahuddin Chowdhury, Md Arif Khan, Mohammad Ali Moni, et al. *In silico* molecular docking and ADME/T analysis of Quercetin compound with its evaluation of broadspectrum therapeutic potential against particular diseases. Informatics in Medicine Unlocked., 2022; 29. 100894. https://doi.org/10.1016/j. imu.2022.100894
- Wang R, Yang L, Li S, Ye D, Yang L, Liu Q, et al. Quercetin Inhibits Breast Cancer Stem Cells via Down regulation of Aldehyde Dehydrogenase 1A1 (ALDH1A1), Chemokine Receptor Type 4 (CXCR4), Mucin 1 (MUC1), and Epithelial Cell Adhesion Molecule (EpCAM). Med. Sci. Monit., 2018; 24:412-420. http://doi: 10.12659/ msm.908022. PMID: 29353288; PMCID: PMC5788241.
- Barros-Oliveira M. D. C, Costa-Silva D. R, Andrade D. B, Borges U. S, Tavares C. B, et al. Use of anastrozole in the chemoprevention and treatment of breast cancer: A literature review. Rev. Assoc. Med. Bras. (1992). 2017; 63(4):371-378.http:// doi: 10.1590/1806-9282.63.04.371. PMID: 28614542.
- Varshavsky-Yanovsky A.N and Goldstein L.J. Role of Capecitabine in Early Breast Cancer. J. Clin. Oncol., 2020; 38(3):179-182. http:// doi: 10.1200/JCO.19.02946. Epub 2019 Dec 5. PMID: 31804861; PMCID: PMC6968794.
- Rani Inala M. S and Pamidimukkala K. Amalgamation of quercetin with anastrozole and capecitabine: A novel combination to treat breast and colon cancers-An *in vitro* study. J. Can. Res. Ther. [Epub ahead of print] http://www.cancer journal.net/preprintarticle.asp?id=322160
- Daina A, Michielin O and Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7:42717. https:// doi.org/10.1038/srep42717Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V.
- 12. https://www.molinspiration.com/docu/miscreen/ druglikeness.html
- 13. Lipinski C. A, Lombardo F, Dominy B.W and Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliver. Rev., 2001; 46: 3–26
- 14. SwissTargetPrediction: a web server for

target prediction of bioactive small molecules. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W32-8. doi: 10.1093/nar/gku293. Epub 2014 May 3. PMID: 24792161; PMCID: PMC4086140.

- 15. Antoine Daina, Olivier Michielin and Vincent Zoete. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules, *Nucleic Acids Research*. 2019; 47, W357–W364, https://doi.org/10.1093/nar/gkz382
- 16. https://pubchem.ncbi.nlm.nih.gov/
- 17. https://pubchem.ncbi.nlm.nih.gov/#query =Anastrozole
- 18. https://pubchem.ncbi.nlm.nih.gov/#query =Capecitabine
- 19. https://pubchem.ncbi.nlm.nih.gov/#query =Quercetin
- Berman H.M, Westbrook J, Feng Z, Gilliland G, Bhat T.N, Weissig H, etal. The Protein Data Bank Nucleic Acids Research. 2000; 28: 235-242.
- 21. Yang Liu, Xiaocong Yang, Jianhong Gan, Shuang Chen, Zhi-Xiong Xiao, Yang Cao, CB-Dock2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting, *Nucleic Acids Research.*, 2022; 50 W1: W159–W164, https:// doi.org/10.1093/nar/gkac394
- 22. Lipinski C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol., 2004;1(4):337-41. doi: 10.1016/j. ddtec.2004.11.007. PMID: 24981612.
- Pantsar Tand Poso A. Binding Affinity via Docking: Fact and Fiction. Molecules. 2018;23(8):1899. doi: 10.3390/molecules23081899. PMID: 30061498; PMCID: PMC6222344.

- Wang W, Nag S. A and Zhang R. Targeting the NFêB signaling pathways for breast cancer prevention and therapy. Curr. Med. Chem., 2015;22(2):264-89. doi: 10.2174/0929867321 666141106124315. PMID: 25386819; PMCID: PMC6690202.
- Song Q, Ji Q and Li Q. The role and mechanism of â arrestins in cancer invasion and metastasis (Review). Int. J. Mol. Med., 2018; 41(2):631-639. doi: 10.3892/ijmm.2017.3288. Epub 2017 Nov 27. PMID: 29207104; PMCID: PMC5752234.
- 26. Srijiwangsa P and Na-Bangchang K Roles of NAD (P) H-Quinone Oxidoreductase 1 (NQO1) On Cancer Progression and Chemoresistance. J. Clin. Exp. Oncol., 2017; 6:4. doi: 10.4172/2324-9110.1000192
- H1a T and Neilson K. Human cyclooxygenase-2 cDNA. Proc. Natl. Acad. Sci. U S A., 1992;89(16):7384-8. doi: 10.1073/ pnas.89.16.7384. PMID: 1380156; PMCID: PMC49714.
- Tazawa R, Xu X. M, Wu K. K and Wang L.H. Characterization of the genomic structure, chromosomal location and promoter of human prostaglandin H synthase-2 gene. Biochem. Biophys. Res. Commun., 1994;203(1):190-9. doi: 10.1006/bbrc.1994.2167. PMID: 8074655.
- Rodriguez M and Potter D.A. CYP1A1 regulates breast cancer proliferation and survival. *Mol Can Res. 2013; 11*(7): 780-792. https://doi. org/10.1158/1541-7786.MCR-12-0675
- 30. https://www.ncbi.nlm.nih.gov/gene/7153
- Lieu E.L, Nguyen T, Rhyne S. et al. Amino acids in cancer. Exp. Mol. Med., 2020; 52, 15–30. https://doi.org/10.1038/s12276-020-0375-3