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 Since 2019, the SarS-Cov-2 infection has continued to cause significant human 
suffering. Numerous investigations into the viral pathogenesis have led to converging conclusions 
on how the virus enters and spreads within the host. The main protease (Mpro) of coronaviruses 
has been considered as an attractive therapeutic target because of its important role in processing 
polyproteins translated from viral rNa. Many studies discovered that phytoconstituents possess 
potent antiviral activities. Hence, in the present work, 439 co-crystal ligands of SarS-Cov-2 
Mpro were collected and docked with Mpro of SarS-Cov-2 (PDB ID:7aEH) to identify best 
crystal ligand. among all the crystal ligands collected, HF0 (7-O-methyl-dihydromyricetin) 
showed good XP G score -7.872 Kcal/Mol and it was selected as reference to compare the docking 
scores of phytoconstituents. Then, molecular docking study was performed for 274 antiviral 
phytoconstituents from various medicinal plants against Mpro of SarS-Cov-2. Molecular 
docking studies found that seven phytoconstituents exhibited better docking scores than best 
co-crystal ligand HF0. among the seven best docked phytoconstituents, 3,4-dicaffeoylquinic 
acid showed good interactions with key amino acid residues in substrate binding site of Mpro 
with XPG Score –9.721 Kcal/Mol. Qikprop results indicated that the most phytoconstituents 
have demonstrated favourable pharmacological characteristics. Interaction fingerprint analysis 
revealed that all the seven best docked phytoconstituents of the present study bound to Glu166, 
key residue situated in the centre of the substrate binding site of Mpro resulting in the reduction 
of the catalytic activity of main protease thus blocking the replication of SarS-Cov-2.

Keywords: Antiviral; Interaction fingerprint; Molecular docking; Main protease;
Phytoconstituents; SARS-CoV-2.

 The COVID-19 pandemic caused by 
SARS-CoV-2 (severe acute respiratory syndrome-
coronavirus-2) is a worldwide health emergency. 
Since last two decades, the two main members of 
the Coronaviridae family that periodically cause 

pneumonia and respiratory syndromes, SARS-
CoV and MERS-CoV, have drawn attention 
worldwide. SARS-CoV-2 belongs to Coronavirinae 
subfamily of Coronaviridae and is a very significant 
and dreadful virus 1-4. According to the World Health 
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Organization’s global situation update, as of 10 Jan 
2023, there have been 660,131,952 COVID-19 
confirmed cases, including 6,690,473 deaths, 
reported to WHO 5. These findings demonstrate 
that the rise of this viral contagious disease, 
which now holds a significant position in global 
incidence of transmissible diseases, is continuing in 
developing nations. Despite all the improvements 
in conventional and contemporary medicine, many 
attempts to control this pandemic had negative 
health effects on people. As a result, conventional 
medicine has become more interested in providing 
healthcare services. Moreover, at least 25% of all 
modern medications are thought to be derived 
directly or indirectly from traditional medicines, 
primarily through the integration of cutting-edge 
technologies with age-old knowledge. A wide 
range of natural extracts and phytoconstituents 
have been investigated for their ability to act as 
drug-like molecules against the SARS-CoV-2 
proteases and found to possess good inhibitory 
activities 6-10. Although few drugs like remdesivir 
gained urgent approval, search for more safer & 
efficient treatment is still required 11, 12. 
 Mpro, papain-like protease, RdRp 
(RNA dependent RNA polymerase) are few of 
the SARS-CoV-2 druggable targets that have 
been identified. The papain-like protease is 
capable of recognizing ubiquitin’s C-terminal 
region. So, papain-like protease inhibitors would 
also inhibit deubiquitinases of host cell, which 
would make drug-discovery against papain-like 
protease complicated. In contradistinction, the 
main protease particularly cleaves polypeptide 
sequence after glutamine. Enzymes like RdRp 
cannot completely operate without previous 
proteolytic release, thus making Mpro as a main 
enzyme in virus replication cycle. The SARS-
CoV-2 Mpro is a cysteine protease, that shares 
96% amino acid identity with SARS-CoV Mpro 
13-19. Mpro forms a homodimer that consists of 
306 amino acid residues in each monomer. Each 
monomer consists of three domains: Domain I 
(8– 101 residues), domain II (102–184 residues) 
and Domain III (201–306 residues). Domain I & 
II were primarily made up of antiparallel â-barrel 
whereas domain III was made up of á-helices. 
Domains II & III are connected by loop of 15 
residues (residues 185– 200). The protomers 

attach to one another through an N-terminal finger 
(residues 1-7) that forms a substrate-binding site 
in a cleft between domains I and II and connects 
domains II & III. Four pockets (S1', S1, S2 & S3) 
make up the substrate-binding site of Mpro, with 
the S10 pocket consisting of a catalytic dyad. This 
catalytic dyad is composed of Cys145 & His41and 
placed in a gap between domains I & II. Domain 
III promotes the formation of the dimer, by salt-
bridge interaction of Glu290 form one monomer 
with Arg4 of the other. Dimerization is essential 
for enzyme’s catalytic activity, as the N-finger of 
each monomer interacts with Glu166 of the other 
to shape the S1 pocket of substrate-binding site. 
The N-finger is compressed between domains 
II & III of the parent protomer and domain II of the 
other in order to reach the interaction site. Mpro 
(nsp5) auto cleaves between non-structural protein 
4 (nsp 4) & nsp6, and then cleaves polyproteins 1a 
& 1ab at 11 specific sites; with a unique cleavage 
specificity Leu-Gln“! (Ser, Ala, Gly), to generate 12 
mature nsp and probably, functional intermediates 
for viral RNA replication and transcription 20-25. 
 Molecular docking is important method 
in structural molecular biology and computer-
aided drug discovery that predicts the predominant 
interactions between a ligand and protein with a 
known three-dimensional structure 26. Accurate 
ADME property predictions can prevent the 
needless testing of compounds that will ultimately 
fail before costly experimental processes, thus 
allowing for informed decisions about a molecule’s 
suitability. In contrast to fragment-based techniques, 
QikProp can predict attributes for both molecules 
with new scaffolds and analogues of well-known 
medications with comparable accuracy. QikProp 
bases its predictions on the whole 3D molecular 
structure 27. 
 Hence, in order to explore potent Mpro 
inhibitors, molecular docking study was performed 
for various phytoconstituents from different 
antiviral medicinal plants against SARS-CoV-2 
Mpro and the phytoconstituents pharmacological 
descriptors and ADME properties were also 
predicted. In addition, interaction fingerprint was 
also generated for best docked phytoconstituents 
and SARS-CoV-2 Mpro complexes and compared 
with that of reference crystal ligand to identify any 
similarities in binding interactions.
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MATERIALS AND METHODS

Protein preparation 
 A total of 602 crystal structures of SARS-
CoV-2 main protease bound with various inhibitors 
are currently uploaded to the Protein Data Bank 
(PDB) database, containing 439 crystal ligands. 
Among the available structures of SARS-CoV-2 
Mpro, the three-dimensional structure of SARS-
CoV-2 main protease in a covalent complex with 
a pyridine derivative of ABT-957, compound 
1 (PDB: 7AEH) with resolution 1.30 A0; was 
considered in this study to propose novel SARS-
CoV-2 Mpro inhibitors through molecular docking 
studies (https://www.rcsb.org/). 
 Target protein structure was imported 
to Maestro v11.1 (Schrödinger LLC, 2019) 
(Sun Microsystems, Schrodinger, New York, 
USA) workstation running on CentOS 6. Protein 
preparation tasks were performed with the protein 
preparation wizard and prepared before docking 
to add hydrogen atoms, adjustment of protonation 
states for ionizable molecules, formal charge and 
bond order correction, expelling atomic clashes, 
modification of tautomeric forms and repositioning 
of reorientable hydrogens and other operations 
which were not part of X-ray crystal structure 
refinement process. At neutral pH, the protein 
structure minimization was done using the OPLS-
2005 force field, by converging the heavy atoms 
to RMSD of 0.3A0. Based on the already bound 
inhibitor in the crystal structure, the binding site 
on the receptor molecule was identified and a grid 
box of 10A0 ×10 A0 × 10 A0 was generated around 
the substrate binding site residues of Mpro using 
Glide v7.1., residues were cross validated using 
PDBsum 28. 
Identification of best crystal ligand through 
molecular docking studies
 All the 439 crystal ligands of covid-19 
Mpro crystal structures which were available in 
PDB, were collected and prepared using ligprep 
module of schrodinger. All the prepared and 
optimized ligands were subjected to molecular 
docking studies with selected target by Glide XP 
docking 28.
Collection and preparation of phytoconstituents 
 A total of 274 phytoconstituents 
inhibitors, known for their antiviral activity were 
sourced from literature and were extracted from 

PubChem and DrugBank v5.0 databases 29-176. 
DrugBank v5.0, a specialized bioinformatics 
and drug cheminformatics resource, provided 
comprehensive data encompassing chemical, 
pharmacological, and pharmaceutical details 
for the identified compounds. Subsequently, the 
structures of the selected phytoconstituents were 
meticulously prepared, involving the creation 
of three-dimensional geometries, assignment of 
proper bond orders, and the generation of accessible 
tautomer and ionization states. This preparatory 
phase was executed using the LigPrep module. For 
molecular docking studies, the Schrödinger Epik 
module was employed in conjunction with LigPrep 
to ensure a robust analysis of the interactions 
between the phytoconstituents and their target 
molecules 177.
Molecular docking of phytoconstituents with 
Mpro of SARS-CoV-2
 The binding affinities of selected 
phytoconstituents with SAS-CoV-2 Mpro were 
analyzed by performing molecular docking studies 
for identification of the best phytoconstituent 
with good binding affinity. The prepared 
phytoconstituents were docked into 7AEH. 
The binding affinity between the target and 
phytoconstituents was studied using the grid-based 
ligand docking with energetic (GLIDE) XP (extra 
precision) docking technique. Then the prepared 
phytoconstituents were docked into the grid 
utilizing Monte Carlo-based simulated algorithm 
minimization approach. Glide Scores (Gscore) 
and Molecular Mechanics-Generalized Born 
Surface Area (MM-GBSA) were used to analyze 
calculations for the binding free energies, affinities, 
orientation, and ranking of the protein ligand 
complex utilizing the Prime module of Schrodinger 
suite 2021-2 that incorporates the OPLS3 force 
field and VSGB dissolvable model to look through 
calculations. Ten poses were created for each ligand 
during XP docking, and the best pose was preserved 
after post-docking minimization 178.
Prediction of pharmacological descriptors and 
ADME properties
 Selected phytoconstituents were subjected 
to QikProp module of Schrödinger suite to predict 
pharmacological, ADME properties. Additionally, 
SASA and other related values were also predicted 
by Schrödinger suite 179, 180.
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Generation of Interaction fingerprints for best 
docked phytoconstituents and best crystal 
ligand
 Docking interactions of best docked 
phytoconstituents were further analyzed using 
interaction fingerprint analysis to observe 
if they shared any similarities with the best 
co-crystal ligand’s interactions. For the best 
docked compounds and co-crystal ligand docked 
complexes, an interaction fingerprint was created 
that translates the three-dimensional structural 
binding information from a protein-ligand 
complex into a one-dimensional binary string. 

Each fingerprint reflects “structural interaction 
profile” of complex that can be utilized to organize, 
analyze, and visualize the extensive amount of 
information encoded in ligand receptor complexes. 
Value 1 indicates that the specified interaction is 
established, while 0 indicates that there is no such 
interaction 180.

RESULTS AND DISCUSSION

Protein preparation 
 The three-dimensional co-crystal structure 
of SARS-Cov-2 Mpro (PDB I’D: 7AEH) was 

Table 1. List of best docked crystal ligands of SARS-CoV-2 and docking scores with SARS-CoV-2 Mpro (PDB: 
7AEH)

S. Crystal  Crystal  PDB I’D               Docking score Interacting  N
No. ligand  ligand Name  XP G  MMGBSA Amino acids
 Code   Score

1. HF0 7-O-methyl- 7DPV -7.872 -67.5446 Hie 164, Gln 189 2
  dihydromyricetin
2. MYC Myricetin 7B3E -7.812 -60.0807 Hie 164, Glu 166,  3
      Gln 189
3. HER 7-O-methyl-myricetin 7DPU -7.576 -67.1016 Hie 164, Gln 189 2
4. RVW (2~{S},3~{R},4~{R}, 7ARF -6.512 -45.2359 Glu 166, Thr 190 2
  5~{S},6~{S})-2-
  (hydroxymethyl)-6-sulfanyl
  -oxane-3,4,5-triol
5. 93J Pelitinib 7AXM -6.423 -81.9294 Glu 166 2

*N: No. of interactions

Table 2. Docking scores of best docked phytoconstituents and best crystal-ligand 
HF0 against SARS-CoV-2 Mpro

S.  Phytoconstituents  Docking scores with  Interacting Amino Acids  N
No.      Mpro (Kcal/Mol) 
  XP G  MMGBSA   
  Score  (∆G)

1. 3,4-dicaffeoylquinic acid -9.721 -77.4562 Glu 166, Gln 189, Thr 190, Ala 191 5
2. Epigallocatechingallate -8.925 -73.8888 Asn 142, Hie 164, Glu 166,  6
    Gln 189, Thr 190
3. Isomangiferin -8.747 -55.4927 Ser 46, Asn 142, Hie 164,  6
    Glu 166, Gln 189
4. Rosemarinic acid -8.477 -60.0924 Glu 166, Gln 189 3
5. Rutin -8.405 -52.1528 Hie 164, Glu 166, Pro 168 4
6. Gnetupendin -7.99 -61.1349 Glu 166, Thr 190 3
7. Amarogentin -7.989 -73.8429 Asn 142, Glu 166, Gln 189, Thr 190 7
8. HF0 (Best crystal ligand) -7.872 -67.5446 Hie 164, Gln 189 2

*N: No. of interactions
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retrieved from PDB and prepared. The substrate-
binding site residues were specified within the 
4 Å region of co-crystal ligand using PDBsum. 
The substrate-binding pocket of Mpro complex 
comprises residues such as Thr 25, Thr 26, His 
41, Phe 140, Leu 141, Asn 142, Gly 143, Ser 144, 
Cys 145 His 163, His 164, Glu 166, Gln 189 and 
Thr 190 within the 4 Å region around the crystal 
ligand 181.
Molecular docking study for the identification 
of best co-crystal ligand of Mpro

 All the prepared crystal ligands were 
docked with SARS-Cov-2 Mpro and results were 
represented in Table 1. Among all the crystal 
ligands, HF0 exhibited good docking score -7.872 
Kcal/Mol and selected as reference crystal ligand.
Ligand preparation
 The structures of selected phytoconstituents 
were prepared prior to molecular docking using 
Ligprep module of the Schrodinger. The preparation 
was conducted at a pH of 7.0 ± 2, employing the 
OPLS_3 forcefield, and involved the enhancement 
of protonation states and consideration of ligand 
stereochemical nature. Energy minimization was 
performed as part of the ligand preparation process.  
Molecular Docking
 Molecular docking study was performed 
for selected phytoconstituents against SARS-
CoV-2 Mpro to identify potent inhibitors. All the 
selected phytoconstituents and crystal ligands 
were docked into the substrate-binding site of Mpro 
and binding energies were represented in Table 
2. Furthermore, protein-ligand binding energies 
revealed that seven phytoconstituents strongly 
bind to substrate binding site of main protease with 
more binding affinity than best co-crystal ligand 
HF0. Among all the selected phytoconstituents, 
3,4-dicaffeoylquinic acid showed better XP G 
score -9.721 Kcal/Mol than best co-crystal ligand 
HF0 (-7.872kcal/Mol). It was clearly observed 
that all the best docked phytoconstituents and best 
crystal ligand HF0 showed at least two H-bond 
interactions with substrate binding site. 
Prediction of Pharmacological descriptors and 
ADME properties
 Absorption, distribution, metabolism, 
excretion, and toxicity (ADMET) characteristics 
were estimated using qikprop module to measure 
the phytoconstituents’ potential as therapeutics. 
Various properties like mol. weight; volume; 
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Fig. 1. Docking Interactions of 3,4-dicaffeoylquinic 
acid with SARS-CoV-2 Mpro

Fig. 2. Docking Interactions of Epigallocatechingallate 
with SARS-CoV-2 Mpro

Fig. 3. Docking Interactions of Isomangiferin with 
SARS-CoV-2 Mpro

Fig. 4. Docking Interactions of Rosemarinic acid with 
SARS-CoV-2 Mpro

globularity descriptor; hydrophobic component of 
SASA; total solvent accessible surface area; weakly 
polar component of SASA; ð (carbon and attached 
hydrogen) component of SASA; ionization 
potential; H-Bond acceptors & donors; Log Po/w; 
brain/blood partition coefficient; human serum 
albumin binding; No. of violations of Lipinski’s 
rule of five; No. of violations of Jorgensen’s rule of 
three; Predicted skin permeability etc. These results 
indicated that pharmacological descriptors of the 
most of phytoconstituents were found to be with 
in the acceptable range for 95% of known drugs 
(Table 3 & 4).

Generation of Interaction fingerprints for best 
docked phytoconstituents and best crystal 
ligand
 To describe the 3D protein-ligand 
interactions of the best docked phytoconstituents 
with SARS-CoV-2 Mpro, a 9-bit interaction 
fingerprint was generated. Pharmacophore feature 
is represented by each bit of the fingerprint, which 
is denoted by the numbers 0 (absence of specified 
interaction) or 1 (presence of specified interaction) 
(Table 5). 
 I n t e r a c t i o n s  o f  b e s t  d o c k e d 
phytoconstituents were compared with that of 
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best crystal ligand HF0. It was observed that all 
the best docked phytoconstituents binds to Mpro 
through at least one hydrogen (H)-bond with 
Glu 166 residue with better binding affinity than 
HF0 (Fig 1-7). In addition, 3,4-dicaffeoylquinic 
acid, epigallocatechingallate, isomangiferin, 
rosemarinic acid and gnetupendin B showed 

H-bond interactions with Gln 189 similar to that 
of best co-crystal ligand HF0. Docking results 
indicated that these H-bond interactions with 
residues Glu166 and Gln189 are very important as 
any interaction with Glu166 can lead to inactive 
monomer formation that interferes with Mpro 
catalytic activity; and also, Glu166 anchor holds 

Fig. 5.  Docking Interactions of Rutin with SARS-
CoV-2 Mpro

Fig. 6. Docking Interactions of Gnetupendin B with 
SARS-CoV-2 Mpro

Fig. 7. Docking Interactions of Amarogentin with 
SARS-CoV-2 Mpro

Fig. 8. Docking interactions of best crystal ligand HF0 
with SARS-CoV-2 Mpro
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the ligand firmly to the central region of binding 
site, that facilitates the multiple interactions 
with remaining residues 182-184. Further, the 
H-bond interaction with Gln189 helps in inhibitor 
recognition through increasing S2 subsite plasticity 
185. In addition to interaction with Glu 166 and Gln 
189, 3,4-dicaffeoylquinic acid exhibited H-bond 
interactions with backbone residues of Thr 190 and 
Ala 191 (Fig 1). Epigallocatechingallate displayed 
H-bond interactions with backbone residues of 
Hie 164, Thr 190 and with side chain residues of 
Asn 142 (Fig 2). Isomangiferin showed H-bond 
interactions with the backbone residues of Hie 164; 
with side chain residues of Ser 46, Asn 142 (Fig 3). 
Rutin displayed H-bond interactions with backbone 
residues of Hie 164, Pro 168 (Fig 5). Gnetupendin 
B exhibited H-bond interaction with backbone 
residue of Thr 190 (Fig 6). Amarogentin showed 
H-bond interactions with side chain residues of 
Asn 142 and with backbone residue of Thr 190 
(Fig 7). Best crystal ligand HF0 exhibited H-bond 
interactions with backbone residue of Hie 164; 
side chain residue of Gln 189 of Mpro (Figure 8). 
The results of the present study indicated that these 
best docked phytoconstituents can efficiently bind 
with key amino acid residues such as Glu 166, Gln 
189 in the substrate binding site of SARS-CoV-2 
Mpro with more binding affinity than the reference 
HF0, which can result in the formation of inactive 
monomer thus inhibiting the catalytic activity of 
main protease in virus replication. The best docked 
phytoconstituents also exhibited interactions with 
more than two amino acids in SARS-CoV-2 Mpro 
substrate binding site. However, in addition to 
aforementioned hits, experimental validation 
of computational studies by in vitro and in vivo 
methods is required to discover the therapeutic 
efficacy of 3,4-dicaffeoylquinic acid as novel 
SARS-CoV-2 Mpro inhibitor.

CONCLUSION

 The SARS-CoV-2 Mpro is considered 
to be a potential drug target, because it differs 
from human proteases and plays important role 
in viral replication. Hence, the present study 
explored the inhibitory potentials of 274 antiviral 
phytoconstituents from medicinal plants against 
SARS-CoV-2 Mpro. Then, the best docked crystal 
ligand HF0 (-7.872kcal/Mol) was selected as 

reference among 439 crystal ligands of Mpro. Among 
the phytoconstituents, 3,4-dicaffeoylquinic acid 
was found to show good binding affinity with XPG 
score -9.721 kcal/Mol than standard HF0. From 
ADMET properties prediction, it was found that 
most of the phytoconstituents showed acceptable 
pharmacological properties. Interaction fingerprint 
analysis revealed that Glu 166 was present in 
seven best docked phytoconstituents, either as 
close contact or as participant in H-bond which 
diminishes the catalytic activity of SARS-CoV-2 
Mpro resulting in inhibition of viral replication. 
Thus the present study provided an insight about 
possible mechanism of 3,4-dicaffeoylquinic acid 
in inhibition of catalytic function of Mpro which 
would help in the further development of SARS-
CoV-2 Mpro inhibitors. From above results, it has 
been observed that the 3,4-dicaffeoylquinic acid 
has potential to act as novel SARS-CoV-2 Mpro 
inhibitors. Further in vitro studies will be required 
to understand the efficacy of 3,4-dicaffeoylquinic 
acid in inhibition of COVID-19 main protease.
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