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 Electromyography (EMG) based hand movement classification plays a significant role 
in various fields, namely in prosthetics, rehabilitation, biomechanics, etc. This paper presents 
the study of EMG-based hand movement classification of 3 human hand gestures (hand at rest, 
wrist flexion, and wrist extension). The dataset was officially collected from the University 
of California, Irvine (UCI) machine learning repository. The dataset contains 8 channels and 
3 classes representing 3 human hand gestures, with 15000 rows of EMG data for each class. 
The dataset obtained was raw and unprocessed, to filter this dataset Notch and Butterworth 
filters were used. After filtering, the sliding window was performed. Various feature extraction 
techniques, namely frequency domain features (FD) and discrete wavelet transform (DWT) were 
applied separately on the window dataset and then accuracy was tested on different classifiers, 
namely random forest (RF), k- nearest neighbor (KNN), and decision tree (DT). As a novel 
approach, time domain (TD) and DWT extracted features were fused together and then given 
to the classifiers to test accuracy. Among all these feature extractors, the features extracted by 
FD provided the highest accuracy of 81.69 for the RF classifier.

Keywords: Bandpass filter; DWT; Electromyography; Hand movement;
Machine learning; Notch filter.

	 One	of	the	most	crucial	fields	of	research	
in	 the	 field	 of	 biomedical	 engineering	 is	 the	
classifying	of	human	movement	based	on	EMG	
processing	of	data.	Electrical	impulses	produced	
by	muscles	 during	movement,	 or	EMG	signals,	
convey	significant	details	about	muscle	activity	and	
movement	patterns.	Researchers	have	developed	
models	 that	 can	 effectively	 categorize	 various	
forms	 of	 human	 movement	 based	 on	 EMG	
analysis	 of	 information	due	 to	 advancements	 in	
machine	learning	techniques.	There	is	still	a	lack	
of	studies	in	ensuring	the	development	of	highly	
accurate	and	efficient	techniques	for	categorizing	

human	motions	based	on	EMG	data,	despite	 the	
advancements	 that	 have	 been	made	 in	 the	 last	
decade.	This	gap	has	been	highlighted	as	a	need	
for	further	investigation	in	two	recent	studies	that	
have	been	done	in	the	field.
	 One	such	work	suggested	a	deep	learning	
method	 for	 categorizing	hand	motions	based	on	
EMG	information,	which	was	published	in	the	IEEE	
Journal	 of	Biomedical	 and	Health	 Informatics.	
The	 study	 emphasized	 the	 need	 for	 additional	
investigation	in	order	to	enhance	the	accuracy	of	
the	categorizing	approach	and	broaden	its	relevance	
to	 various	 types	of	 actions,	 considering	 the	 fact	
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that	the	results	demonstrated	promising	accuracy.	
Similar	to	this	research’s	suggestion,	another	study	
offered	a	feature	extraction	technique	for	grouping	
dynamic	hand	motions	based	on	EMG	data	in	the	
IEEE	Transactions	 on	Biomedical	Engineering.	
Although	 the	 study	 revealed	 great	 classification	
accuracy,	researchers	also	emphasized	the	need	for	
more	investigation	to	develop	a	more	dependable	
grouping	 technique.	The	 current	 study	 offers	
a	methodology	 for	 identifying	 human	motions	
in	 light	 of	 these	 research	 gaps	 based	 on	DWT	
and	machine	 learning	methods	 for	EMG	 signal	
interpretation.	The	 EMG	 signals	 are	 analyzed	
through	 the	DWT	 to	 extract	 features,	which	 are	
subsequently	 sent	 into	 a	 classification	machine	
learning	model.	On	 a	 dataset	 of	 EMG	 signals	
collected	by	individuals	in	good	health	running	a	
variety	of	movements,	the	suggested	technique	is	
reviewed.
Literature Review
	 The	 paper	 presents	 a	 hand	 gesture	
recognition	 system	 using	 EMG	 signals	 and	
machine	 learning.	The	 EMG	 signals	 are	 pre-
processed	 to	 extract	 relevant	 features,	 and	 an	
SVM	classifier	is	used	for	recognition.	The	system	
achieves	a	recognition	accuracy	of	up	to	96.25%	for	
six	hand	gestures.	It	is	implemented	on	a	Raspberry	
Pi	and	a	Myo	armband	for	real-time	recognition	in	
less	than	10	ms.	The	system	can	have	applications	
in	 human-computer	 interaction,	 virtual	 reality,	
and	 prosthetic	 control.	The	 study	 highlights	 the	
potential	 of	EMG	 signals	 as	 a	 promising	 input	
modality	for	hand	gesture	recognition1.	The	paper	
presents	 a	 hand	 gesture	 classification	 system	
that	 uses	 EMG	 signals	 and	machine	 learning	
techniques.	The	authors	evaluate	the	performance	
of	 three	machine	 learning	 algorithms,	 including	
artificial	neural	networks	(ANN),	support	vector	
machine	(SVM),	and	KNN,	on	a	dataset	of	eight	
hand	gestures.	The	 proposed	 system	achieves	 a	
recognition	accuracy	of	up	to	98%.	The	authors	also	
investigate	 the	impact	of	different	preprocessing	
and	feature	extraction	techniques	on	classification	
accuracy.	The	study	highlights	the	effectiveness	of	
EMG	signals	 and	machine	 learning	 techniques2.	
The	paper	proposes	a	system	for	recognizing	hand	
gestures	using	EMG	signals	and	machine	learning	
algorithms.	The	system	captures	EMG	signals	from	
the	user’s	forearm	muscles	using	a	Myo	armband	
and	applies	 four	machine-learning	algorithms	 to	

classify	 the	 signals	 into	 specific	 hand	 gestures.	
The	study	found	that	the	random	forest	algorithm	
performed	 the	 best,	with	 an	 average	 accuracy	
of	 93.63%.	The	 proposed	 system	 has	 potential	
applications	 in	 prosthetics	 and	 human-machine	
interfaces.	The	study	demonstrates	the	feasibility	of	
using	EMG	signals	and	machine	learning	for	hand	
gesture	recognition	and	provides	valuable	insights	
for	future	research	in	this	field3.
	 The	paper	 introduces	 a	 novel	 approach	
for	 classifying	EMG	 signals,	 utilizing	 a	Radial	
Basis	Function	(RBF)	neural	network.	The	method	
involves	 pre-processing	EMG	signals	 through	 a	
bandpass	filter	and	feature	extraction	using	both	
time-domain	and	frequency-domain	features.	The	
RBF	 neural	 network	 is	 then	 employed	 for	 the	
classification	of	the	EMG	signals	into	various	hand	
gestures.	The	results	demonstrate	high	accuracy,	
surpassing	previous	state-of-the-art	methods.	This	
technique	has	potential	applications	in	prosthetic	
devices	 and	 rehabilitation	 systems,	 and	 its	
robustness	enables	the	processing	of	noisy	data4.	
The	 paper	 proposes	 a	 novel	 technique	 for	 hand	
gesture	 classification	 using	multi-channel	EMG	
signals,	scale	average	wavelet	transform	(SAWT),	
and	convolutional	neural	networks	(CNN).	SAWT	
is	utilized	for	 feature	extraction,	which	 involves	
analyzing	the	frequency	characteristics	of	the	EMG	
signals	at	various	scales.	CNN	is	then	employed	for	
classification,	utilizing	the	extracted	features.	The	
proposed	method	is	evaluated	on	a	forearm	EMG	
signal	dataset,	and	the	results	demonstrate	higher	
classification	accuracy	than	previous	state-of-the-
art	methods.	This	method	could	be	used	in	various	
applications,	such	as	human-computer	interaction	
and	prosthesis	control	systems5.	The	paper	presents	
a	 technique	 for	 recognizing	hand	gestures	using	
EMG	signals	and	an	ANN.	The	method	involves	
preprocessing	 the	 signals,	 extracting	 features	
using	 time-domain	 features	 and	 power	 spectral	
density	 (PSD)	 features,	 and	 training	 an	ANN	
model	for	recognizing	hand	gestures.	The	proposed	
method	 achieves	 high	 classification	 accuracy,	
surpassing	previous	state-of-the-art	methods,	and	
is	evaluated	on	a	dataset	of	EMG	signals	collected	
from	ten	individuals.	This	technique	has	potential	
applications	 in	 human-computer	 interaction	 and	
prosthesis control systems6.
	 The	 paper	 presents	 a	 technique	 for	
identifying	 human	 hand	 movements	 using	



73ShilaSkar et al., Biomed. & Pharmacol. J,  Vol. 17(1), 71-82 (2024)

electromyographic	 (EMG)	 signals.	 Nonlinear	
dimensionality	reduction	and	data	fusion	techniques	
are	applied	to	the	data	to	extract	relevant	features	
for	classification.	The	proposed	method	is	found	
to	be	effective	in	accurately	classifying	different	
hand	movements.	 The	 approach	 is	 expected	
to	 have	 applications	 in	 prosthetics,	 robotics,	
and	 rehabilitation.	The	 results	 indicate	 that	 the	
method	has	the	potential	to	provide	more	accurate	
and	 reliable	 control	 of	 prosthetic	 devices7.	This	
paper	proposes	a	method	 for	 classifying	 surface	
electromyography	 (sEMG)	 signals	 generated	
during	 basic	 hand	movements	 using	 bagging	
and	DWT	 techniques.	 The	 sEMG	 signals	 are	
preprocessed	 using	DWT	 to	 extract	 features,	
and	 the	 bagging	 algorithm	 is	 used	 to	 ensemble	
multiple	 classifiers	 for	 improved	 accuracy.	The	
proposed	method	is	evaluated	using	a	dataset	of	
sEMG	signals	generated	by	 ten	healthy	subjects	
performing	 five	 hand	movements.	The	 results	
indicate	 that	 the	 proposed	method	 outperforms	
alternative	 approaches.,	 achieving	 an	 average	
accuracy	 of	 97.66%8.	 This	 literature	 review	
presents	 a	method	 for	 classifying	 sEMG	signals	
generated	 during	 human	 hand	movements	 for	
myoelectric	control.	The	proposed	method	involves	
the	extraction	of	time-domain	features	from	sEMG	
signals,	 the	 selection	 of	 features	 is	 done	 using	
various	genetic	algorithms,	and	they	are	classified	
using	 SVM.	The	method	 is	 evaluated	 using	 a	
dataset	of	sEMG	signals	generated	by	ten	subjects	
performing	six	hand	movements.	The	performance	
of	the	proposed	model	shows	a	high	accuracy	of	
97.57%,	demonstrating	its	potential	for	myoelectric	
control applications9.
	 This	 research	 provides	 a	method,	 for	
classifying	EMG	signals	with	 the	 help	of	DWT	
and	 forest	 rotation.	EMG	signals	 are	often	used	
in	 prosthetic	 devices	 and	 rehabilitation	 systems	
to	 control	 the	movements	 of	 artificial	 limbs	 or	
assistive	devices.	The	classification	of	EMG	signals	
is	 a	 challenging	 task	 due	 to	 the	 variability	 and	
complexity	of	the	signals10.	The	paper	presents	a	
novel	method	for	recognizing	hand	gestures	from	
video	input	using	a	combination	of	DWT	and	SVM	
algorithms.	The	DWT	is	used	to	extract	features	
from	 the	 video	 frames,	which	 are	 then	 used	 as	
inputs	to	the	SVM	classifier11.	The	author	provides	
an	approach	for	recognizing	human	actions	based	
on	EMG	with	 the	 help	 of	 deep	 belief	 networks	

(DBN).	The	EMG	signals	are	preprocessed	using	
a	sliding	window	and	feature	extraction	techniques,	
and	then	the	presented	approach	is	evaluated	using	
a	dataset	of	EMG	signals	generated	by	ten	subjects	
performing	six	movements	of	the	hand.	97.65%	of	
the	highest	accuracy	was	obtained	for	the	proposed	
methodology,	demonstrating	the	effectiveness	of	
using	DBN	for	EMG-based	action	recognition12.	
This	research	paper	provides	a	method	for	detecting	
the	voice	activity	and	classification	of	noise	using	
DWT	and	sub-band	selection.	The	proposed	method	
involves	preprocessing	the	audio	signal	using	DWT	
to	 extract	 features	 in	 different	 frequency	bands,	
followed	 by	 selecting	 the	most	 discriminative	
sub-	 bands	 and	 classification	 SVM.	 For	 the	
presented	method	highest	accuracy	was	obtained	
for	voice	activity	detection	and	noise	classification,	
demonstrating	its	potential	for	speech	enhancement	
applications13.	This	 case	 report	 investigates	 the	
potential	of	 a	virtual	 reality	gaming	 system	 that	
combines	EEG	and	EMG	for	the	rehabilitation	of	
facial	palsy.	The	patient	showed	improvements	in	
muscle	strength,	coordination,	and	facial	symmetry	
after	four	weeks	of	using	the	system,	suggesting	
its	potential	as	a	rehabilitation	 tool14.	This	study	
examines.	The	study	considers	the	bond	between	
the	moment	of	ARM	on	electromyographic	activity	
and	the	length	of	the	muscle.	Results	suggest	that	
the	length	of	the	muscle	and	moment	arm	have	a	
significant	impact	on	muscle	activity,	indicating	the	
importance	of	considering	both	factors	in	muscle	
function	studies15.
	 The	 study	 presents	 a	 method	 for	
recognizing	 finger	 movements	 using	 EMG	
signals	and	image	processing.	Electromyographic	
signals	were	obtained	from	the	hand	muscles	and	
processed	 to	generate	an	EMG	map,	which	was	
then	used	to	identify	the	specific	finger	movement.	
The	proposed	method	showed	promising	results	in	
accurately	 recognizing	finger	movements16.	The	
paper	investigates	the	heterogeneity	or	redundancy	
in	the	activity	of	the	brachial	muscle	biceps	during	
isometric	contractions	using	multi-channel	EMG	
signals	and	PCA.	The	study	measures	 the	EMG	
signals	from	the	biceps	brachii	muscle	of	healthy	
individuals	and	processes	the	signals	using	PCA	
to	 estimate	 the	muscle	 activation	 patterns.	The	
muscle’s	 electrical	 activity	 during	 isometric	
contractions	is	heterogeneous,	and	the	use	of	PCA	
multiple	channels	EMG.	The	study	highlights	the	
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potential	 applications	 of	 PCA	multiple	 channel	
EMG	signals	in	assessing	the	functions	of	muscles	
in	clinical	and	research	settings17.
	 The	paper	proposes	a	method	to	enhance	
hand	gesture	classification	by	applying	Gaussian	
filtering	 to	 EMG	 signals.	 The	 study	 involves	
collecting	EMG	signals	from	eight	hand	muscles	
during	the	execution	of	six	different	hand	gestures.	
The	 signals	 are	 preprocessed	 and	 then	 filtered	
using	a	Gaussian	filter.	The	filtered	signals	are	then	
used	as	inputs	in	SVM	classifiers	so	that	the	hand	
gestures	can	be	classified.	The	study	demonstrates	
that	the	proposed	method	significantly	improves	the	
classification	accuracy	of	hand	gestures	compared	
to	using	unfiltered	signals.	The	results	highlight	the	
potential	applications	of	Gaussian	filtering	of	EMG	
signals	in	improving	hand	gesture	recognition	for	
various	human-machine	interface	systems18.	This	
paper	investigates	the	use	of	wearable	sensors	for	
classifying	the	EMG	patterns	which	are	based	on	
the	changes	in	the	joint	elbow	angle.	The	authors	
collected	EMG	signals	and	elbow	joint	angle	data	
from	healthy	 participants	 during	 three	 different	
elbow	movements.	They	applied	machine	learning	
algorithms	 to	 the	 data	 and	 achieved	 an	 average	
classification	 accuracy	 of	 97.67%.	The	 study	
demonstrates	 the	 potential	 of	 using	wearable	
sensors	for	accurate	and	non-invasive	classification	
of	EMG	signals	 based	on	 joint	 angle	 changes19.	
This	 paper	 proposes	 an	 infinite	 hidden	Markov	
model	(IHMM)	based	classification	approach	for	
recognizing	human	hand	movements	using	surface	
EMG	signals.
	 The	method	was	 tested	 on	 a	 dataset	 of	
8	hand	movements	and	obtained	an	average	rate	
of	 recognition	 of	 94.4%.	The	 IHMM	approach	
showed	 improved	 performance	 compared	 to	
other	 classification	methods	 and	 has	 potential	
for	applications	in	prosthetic	control	and	human-	
computer interaction20.
	 This	paper	introduces	a	novel	ensemble	
approach	 for	 the	 precise	 diagnosis	 of	 cardiac	
arrhythmia	 (ARR),	normal	 sinus	 rhythm	(NSR),	
and	congestive	heart	failure	(CHF)	is	presented.	It	
is	based	on	shifted	one-dimensional	local	binary	
patterns	(S-1D-LBP)	and	long	short-term	memory	
(LSTM).	With	a	remarkable	99.6%	success	rate,	
the	 suggested	method	 successfully	 captures	 the	
temporal	dependencies	and	discriminative	features	
of	ECG	signals.	Its	dependability	and	robustness	

make	 it	 a	 useful	 tool	 for	 categorizing	 different	
signals[21].	Difficulties	arise	in	the	identification	
of	 posture	 and	 recognition	 of	 human	 actions	
for	 computer	 vision	 systems.	 Such	 tasks	 find	
significance	in	healthcare	and	robotics.	Artificial	
intelligence	(AI)	 techniques	can	be	employed	 in	
the	 analysis	 of	 repetitive	 postures	 and	 physical	
movements.	This	study	evaluated	the	performance	
of	 convolutional	 neural	 networks	 (CNNs)	 in	
classifying	videos	by	utilizing	the	Kinect	Activity	
Recognition	Dataset	 (KARD)	and	 the	Microsoft	
Research	(MSR)	Pairs	dataset.	These	CNN	models,	
however,	are	problematic	to	train	with	video	data	
since	their	efficiency	is	poorer	in	comparison	with	
image	 data.	 By	 determining	 human	 poses	 and	
extracting	video	frames	at	set	intervals,	a	unique	
solution	 to	 eliminating	 extraneous	 visuals	was	
proposed	 in	 the	 study.	Essentially,	 this	 involves	
the	 extraction	 of	 frames	 from	datasets	 based	on	
videos,	with	a	 laser	 focus	on	human	poses.	The	
frames	 are	 extracted	using	 a	 specific	 frequency,	
and	the	human	pose	of	each	extracted	frame	is	then	
established22.	A	suggested	technique	for	short-term	
hand	gesture	recognition	uses	Myo	armband	signals	
analysis.	The	method	divides	 long-term	 signals,	
which	stand	for	several	gestures,	into	short-term	
signals,	which	 stand	 for	 a	 single	 gesture.	 From	
the	short-term	signals,	five	statistical	time	domain	
features	are	extracted.	For	17	gestures,	the	average	
precision,	sensitivity,	and	F1-score	obtained	in	the	
results	were	86.5%,	83%,	and	82.2%,	respectively.	
The	suggested	short-term	identification	approach	
performs	 better	 than	 the	 current	 long-term	
identification	approach23.
	 This	paper	presents	a	novel	method	using	
Support	Vector	Machines	 (SVM)	 to	 categorize	
upper	 limb	movements	 based	 on	myoelectric	
signals.	 It	 examines	post-processing	 techniques,	
feature	 selection,	 data	 segmentation,	 and	SVM	
model	tuning	as	means	of	optimizing	SVM-based	
myoelectric	control.	The	study	also	highlights	the	
good	 accuracy,	 robustness,	 and	 computational	
efficiency	 of	 SVM	 by	 comparing	 it	 to	 neural	
networks	 such	as	Multilayer	Perceptrons	 (MLP)	
and	Linear	Discriminant	Analysis	 (LDA)24.	This	
paper	 presents	 a	 novel	 approach	 for	 low-power,	
real-	 time	analysis	of	Electromyography	 (EMG)	
signals,	which	are	essential	for	gesture	control	and	
prosthetic	devices.	It	achieves	over	99%	accuracy	
in	identifying	nine	wrist-hand	movements	by	using	
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minimal	 time-domain	 features,	 Kernel	 Fisher	
discriminant	feature	projection,	and	Radial	Basis	
Function	neural	network	classifiers.	Implemented	
on	 the	ARM	Cortex-A53,	 it	 provides	 50	 times	
faster	 processing	 times	 than	 the	 state-of-the-art	
time-frequency	techniques25.

MateRiaL and Methods

data Collection
	 The	 dataset	was	 obtained	 via	 the	UCI	
Machine	Learning	Repository.	The	 signals	 are	
collected	using	a	PC	equipped	with	a	Bluetooth	
receiver	and	a	MYO	Thalamic	bracelet	worn	on	the	
forearm.	Eight	sensors	equally	spread	around	the	
forearm	on	the	bracelet	hold	the	ability	to	collect	
myographic	signals.	The	signals	are	sent	to	a	PC	
through	 a	Bluetooth	 link.	The	 36	 patients’	 raw	
EMG	data	are	shown	while	they	made	a	series	of	
static	hand	motions.	Two	series	are	executed	by	the	
subject,	each	with	six	(or	seven)	main	motions.
	 The	 duration	 of	 each	 motion	 was	 3	
seconds,	with	a	3-second	break	in	between	each	
gesture.	The	 original	 dataset	 consists	 of	 seven	
classes:	0	denotes	unmarked	data,	1	denotes	a	hand	
at	rest,	2	denotes	a	hand	clenched	in	a	fist,	3	denotes	
wrist	flexion,	4	denotes	wrist	extension,	5	denotes	
radial	deviations,	and	6	denotes	ulnar	deviations.
	 For	this	specific	problem	statement,	three	
classes	 -	 hand	 at	 rest,	wrist	 flexion,	 and	wrist	
extension	were	considered.	A	total	of	8	channels	
and	15000	samples	are	considered	for	each	class.
Pre-processing
	 Bandpass	filtering	is	a	technique	used	in	
signal	 processing	 to	 isolate	 a	 specific	 frequency	
range	of	 a	 signal	while	 suppressing	or	 blocking	
frequencies	outside	that	range.	This	can	be	useful	
for	removing	unwanted	noise	or	interference	or	for	
identifying	specific	frequency	components	of	the	
signal	that	are	of	interest.	As	there	are	8	channels,	
the	 signals	 from	 each	 channel	 are	 sampled	 at	
1000Hz	with	a	low	cutoff	of	10Hz,	a	high	cutoff	
is	set	at	400Hz,	and	the	order	is	4.
	 On	 the	 other	 hand,	 notch	 filtering	 is	 a	
method	for	removing	a	certain	band	of	frequencies	
from	a	signal	while	leaving	the	remainder	of	the	
frequency	spectrum	unaffected.	This	can	be	useful	
for	removing	unwanted	harmonics	from	the	signal	
as	well	as	for	removing	noise	or	interference	that	
is	concentrated	in	a	specific	frequency	band.

	 The	 parameters	 for	 the	 notch	filter	 are	
the	Q	factor	set	at	10	and	the	notch	frequency	at	
60Hz.	Fig.	2,	3	&	4	represent	original	&	filtered	
8-channeled	signals,	where	(A)	represents	original	
signals	 and	 (B)	filtered	 signals.	By	observation,	
filtered	 signals	 look	more	 uniform	as	 compared	
to	 the	 original	 signals.	That’s	 the	 advantage	 of	
filtering	the	signal.
	 After	applying	bandpass	filter	and	notch	
filter	 to	 each	 channel	 of	EMG	 signal,	 the	most	
important	step	is	to	divide	or	segment	each	channel	
into	a	fixed	number	of	window	sizes	and	overlaps.	
Overlap	 refers	 to	 the	 number	 of	 samples	 that	
overlap	between	adjacent	windows,	window	size	
refers	to	the	number	of	samples	or	data	points	in	
each	window.
	 For	this	proposed	methodology	the	highest	
results	were	observed	after	setting	the	window	size	
to	100	and	overlapping	of	50%	of	the	window	size.	
When	related	work	was	reviewed,	it	was	observed	
that	when	the	window	size	and	overlap	is	small,	
there	will	be	fewer	chances	of	data	loss	during	this	
process.
	 For	calculating	the	total	window	for	each	
channel	Eq.	1	is	used.

...(1)

Considering	 15000	 samples	 for	 each	 class.	By	
applying	 the	 formula	 of	 step	 5	 in	 the	 above	
algorithm.
Total	rows	=	15000,	Window	size	=	100	&	Overlap	
=	50	For	above	case,

	 ...(2)
	 By	doing	the	above	calculations,	for	each	
channel,	299	rows	were	generated.	As	there	are	8	
channels	299*8,	it	will	generate	2392	rows	for	each	
class.

Algorithm	01:	Algorithm	of	Sliding	Window	
Start
For each channel in the column
Get	the	data	from	the	current	channel
Get	the	number	of	rows	present	in	current_channel
Calculate	total	number	of	windows	using	(Total_
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rows – Window_size)	/	Overlap + 1
Store	the	result	in	variable	‘new_window’
For each window i ->	new_window
Calculate	the	start_index	of	current_window	using	
(i*overlap)
Calculate	 the	 end_index	 of	 current_window	 as	
(start_index	+	window_size)
If	(end_index	>	Total_rows)
End_index	=	Total_rows
Extract	the	data	from	current_window
Store	the	data	in	list
End of	Algorithm	

Feature extraction
	 After	 the	 pre-processing	 step,	 reducing	
the	number	of	parameters,	or	features,	is	a	crucial	
technique	 for	 characterizing	EMG	 signals.	The	
wavelet	transform	is	a	useful	tool	for	decomposing	
the	 signal	with	high	 time	 resolution,	breaking	 it	
down	into	basic	wavelets	obtained	by	dilating	and	
translating	a	single	function.
	 For	feature	extraction,	the	signals	can	be	
handled	 in	 the	FD,	DWT,	and	fusion	of	TD	and	
DWT.
	 Frequency	 Domain	 features:	 These	
features	 are	 based	 on	 the	 frequency	 content	 of	
the	EMG	 signal.	 Some	 examples	 of	 frequency	
domain	features	include	the	power	spectrum	and	
the	frequency	of	the	dominant	peak.
Mean Frequency
	 MNF,	or	mean	normalized	frequency,	is	
computed	as	the	weighted	average	frequency	in	an	
EMG	 (electromyography)	power	 spectrum.	 It	 is	
determined	by	taking	the	sum	of	the	products	of	the	
power	spectrum	and	their	respective	frequencies,	
which	is	then	divided	by	the	total	sum	of	the	power	
spectrum24.	 Furthermore,	MNF	 is	 also	 referred	
to	 as	mean	power	 frequency	 and	mean	 spectral	
frequency	in	various	works.	The	equation	for	MNF	
is	as	follows:

	 ...(3)

	 Where,	f
j
	represents	the	frequency	value	

of	the	EMG	power	spectrum	at	the	frequency	bin	
j,	Pj	 represents	 the	EMG	power	spectrum	at	 the	
same	frequency	bin	j,	and	M	denotes	the	length	of	

the	frequency	bin.	When	analyzing	EMG	signals,	
M	is	is	commonly	defined	as	the	next	power	of	2	
based	on	the	length	of	the	EMG	data	in	the	time	
domain.
Variance
	 The	measure	of	how	spread	out	the	EMG	
signal	is.

	 ...(4)
skewness
	 The	measure	 of	 the	 asymmetry	 of	 the	
EMG	signal	distribution.	A	data	set	is	said	to	be	
symmetric	if	it	looks	the	same	to	both	the	right	and	
left	of	the	center	point.

	 ...(5)

	 The	mean	is	denoted	as	Yi,	the	standard	
deviation	as	s,	and		N	represents	the	number	of	data	
points.	It’s	important	to	note	that	when	computing	
skewness,	the	standard	deviat	s3 is	calculated	with	
N	in	the	denominator,	as	opposed	to	N-1.
	 The	formula	for	skewness	mentioned	in	
Eq(5)	 is	commonly	known	as	the	Fisher-	Pearson	
coefficient	of	skewness.
	 A	skewness	of	zero	characterizes	a	normal	
distribution,	 and	 data	 that	 exhibits	 symmetry	
should	 have	 skewness	 values	 close	 to	 zero.	
Negative	skewness	values	suggest	a	leftward	skew,	
while	positive	skewness	values	indicate	a	rightward	
skew	in	the	data.
Kurtosis
	 Kurtosis	 is	a	statistical	 technique	in	the	
time	domain	that	characterizes	data	distribution	and	
identifies	the	presence	of	data	peaks.	It	quantifies	
the	degree	to	which	data	deviates	from	a	normal	
distribution	 curve	 by	 comparing	 the	 inclination	
of	the	data	distribution	curve’s	peaks	to	that	of	a	
normal	curve.

	 ...(6)

	 The	mean	is	denoted	as	Yi,	the	standard	
deviation	as	s,	and	 	N	 represents	 the	number	of	
data	points.
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	 A	positive	kurtosis	value	indicates	heavy-
tailed	data,	while	a	negative	value	suggests	light	
tails.	This	 comparison	with	 a	 standard	 normal	
distribution	 helps	 determine	whether	 the	 data	
distribution	 is	 flatter	 or	more	 peaked	 than	 the	
normal	distribution.	It’s	important	to	note	that	the	
kurtosis	value	for	a	standard	normal	distribution	is	
3.0.	If	the	standard	normal	distribution	is	3,	then	the	
equation	becomes	a	bit	different.	It’s	often	referred	
to	as	“excess	kurtosis”.

 
...(7)

	 Time	Domain	Features:	These	 features	
are	based	on	the	time	variation	of	the	EMG	signal.	
Some	examples	of	time	domain	features	include	
the	mean,	standard	deviation,	and	kurtosis	of	the	
signal.

Mean absolute Value
	 This	feature	provides	the	absolute	values	
of	all	amplitude.

	 ...(8)
	 Here	xn	is	a	signal	time	series	for	n=1,2,3	
…	N,	and	N	is	the	number	of	data	points.
standard deviation
	 The	 measure	 of	 the	 dispersion	 or	
variability	 of	 the	 EMG	 signal.	 The	 standard	
deviation	is	a	metric	that	quantifies	the	extent	of	
fluctuations	in	a	signal	relative	to	its	mean.

	 ...(9)

table 1. Comparison	of	Dataset	and	Performance	of	Different	Paper

Paper	 Dataset	 Technique	 Performance

Subasi	et	al.,	2018[8]	 Multiple	Dataset	 ANN,	K-NN,	SVM,	DT	 ANN	provided	the	highest	
	 	 	 Accuracy	of	98%
Agarwal	et	al.,	2019[11]	 Independently		 DWT	&	SVM	 Cross-validation	shows	
	 collected	 	 94%	accuracy
Abdullah	et	al.,	2021[13]	 TIMIT	 Evaluation	Method	by		 VDA	provides	Accuracy	
	 	 Voice	Activated	Device		 of	91.5%
	 	 (VAD)
Wen	et	al.,	2021[20]	 Independently		 SVM,	KNN	&	bagged		 Bagged	trees	ensemble	
	 collected	 trees	ensemble	 modelgives	96.2%

Fig. 1. Block	Diagram



78 ShilaSkar et al., Biomed. & Pharmacol. J,  Vol. 17(1), 71-82 (2024)

Fig. 2. Hand	Gestures	-	(1)	hand	at	rest,	(2)	wrist	flexion,	and	(3)	wrist	extension

table 2. Features	description

Feature	Extractor		 Description
and	Feature	Count	
(In	columns)

DWT8	columns	 The	8	columns	of	features	extracted	by	DWT:	standard	deviation	of	Level	1	
	 approximation	coefficients,	mean	absolute	Values	of	level	1	approximation	coefficients,	
	 standard	deviation	of	level	2	approximation	coefficients,	mean	of	absolute	values	of	
	 level	2	approximation	coefficients,	standard	deviation	of	level	3	approximation	
	 coefficients,	mean	of	absolute	values	of	level	3	approximation	coefficients,	standard	
	 deviation	of	the	level	3	Detail	coefficients,	and	mean	of	absolute	values	of	the	
	 level	3	detail	coefficients
FD4	columns	 The	4	columns	of	features	extracted	by	FD:	Mean	of	the	frequency	domain	values,	
	 Variance	of	the	frequency	domain	values,	Skewness	of	frequency	domain	values,	
	 and	Kurtosis	of	frequencydomain	values
Fusion	of	TD	and		 Mean	of	the	time	domain	values,	Standard	Deviation	of	the	time	domain	values,	
DWT	10	columns	 standard	deviation	of	level	1	approximation	coefficients,	mean	of	absolute	values	of	
	 level	1	approximation	coefficients,	standard	deviation	of	level	2	approximation	
	 coefficients,	mean	of	absolute	values	of	level	2	approximation	coefficients,	standard	
	 deviation	of	level	3	approximation	coefficients,	mean	of	absolute	values	of	level	3	
	 approximation	coefficients,	standard	deviation	of	the	level	3	detail	Coefficients,	and	
	 mean	ofabsolute	values	of	the	level	3	detail	coefficient

	 Here,	xn is the nth	data	point,	µ	is	the	mean	
of	the	dataset,	and	N	is	is	the	total	number	of	data	
points	in	the	dataset.
	 DWT:	A	mathematical	method	 known	
as	the	DWT	is	used	to	divide	a	signal	into	many	
sets,	each	of	which	has	a	time	series	of	coefficients	
that	describe	the	signal’s	behavior	in	a	particular	
frequency	range.	The	signal	can	now	be	represented	
in	 terms	 of	 its	 frequency	 constituents	 and	 the	
corresponding	 temporal	 development	 thanks	 to	
this	transformation.

	 A	 three-level	wavelet	 decomposition	 is	
employed	by	using	 the	Daubechies	4	algorithm.	
The	 details	 and	 approximation	 coefficients	 are	
separated	according	to	the	level	of	decomposition.	
n stands	for	the	center	of	shift,	and	S for the scale 
factor.

	 ...(10)
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Fig. 3. (1)	Class0	Original	vs	Filtered	Signal;	(2)	Class1	Original	vs	Filtered	Signal;	(3)	Class2	Original	vs	
Filtered	Signal

	 Following	the	extraction	of	features	from	
different	 feature	 extractors,	 it	 obtained	 distinct	
numbers	of	columns	for	each	method.	Specifically,	
the	DWT	 yielded	 8	 columns,	 the	 FD	method	
provided	4	columns,	and	the	combination	of	TD	
and	DWT	resulted	in	10	columns.	A	comprehensive	
description	 of	 each	 column	 for	 every	 feature	
extractor	is	presented	in	the	respective	tables.
	 Table	 2	 briefly	 describes	 3	 feature	
extractors.	After	extracting	the	feature	from	these	
3	 above	 feature	 extractors	 it	 is	 necessary	 to	use	
principal	component	analysis	(PCA)	this	is	because	
PCA	is	used	to	reduce	the	number	of	features	from	
the	above	feature	extractor	without	losing	too	much	
information,	and	 it	 identifies	 the	most	 important	
features.	It	makes	features	more	recognizable	for	

classification.	This	 can	 be	 helpful	 for	machine	
learning	algorithms	and	classification.	Also,	 it	 is	
useful	for	getting	accurate	results.
training and testing
	 After	extracting	the	features	from	DWT	
FD	for	3	classes,	the	next	step	is	to	assign	a	class	
label	 to	 each	 extracted	 feature	 class.	 For	DWT	
each	 class	 contains	 2092	 features	 extracted.	
After	 assigning	 the	 class	 label	 to	 the	 feature	 it	
is	 necessary	 to	 append	 all	 the	 data	 frames	 of	 3	
classes	before	passing	them	to	a	classifier.	Before	
passing	to	the	classifier,	it	is	essential	to	split	the	
dataset	 into	 70-30	 portions.	 Same	 procedure	 is	
done	for	FD.	Usually,	the	training	portion	of	the	
data	should	be	greater	or	higher	 than	the	 testing	
data,	as	it	allows	the	model	to	identify	and	learn	the	
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table 3. Classifier	model	result

DWT	Feature	Extractor
Classifier	 Accuracy	 Precision	 Recall	 F1-Score

Random	Forest	 80.77	 80.95	 80.77	 80.77
K-nearest	Neighbor	 77.10	 76.85	 77.10	 76.67
Decision	Tree	 80.77	 80.93	 80.77	 80.76

FD	Feature	Extractor
Classifier	 Accuracy	 Precision	 Recall	 F1-Score

Random	Forest	 81.69	 81.53	 81.69	 81.61
K-nearest	Neighbor	 35.57	 35.70	 35.57	 34.99
Decision	Tree	 81.69	 81.89	 81.69	 81.78

Fusion	of	TD	and	DWT
Classifier	 Accuracy	 Precision	 Recall	 F1-Score

Random	Forest	 80.21	 80.30	 80.21	 80.19
K-nearest	Neighbor	 78.07	 77.47	 78.77	 77.71
Decision	Tree	 81.21	 80.36	 81.21	 80.22

significant	pattern.	This	is	necessary	for	the	model	
to	accurately	predict	outcomes	when	presented	with	
new,	unseen	testing	data.
	 Once	the	model	is	trained,	it	internalizes	
the	patterns	it	has	learned	from	the	training	data	
and	 uses	 this	 knowledge	 to	make	 predictions	
based	 on	 the	 testing	 data.	 To	 determine	 the	
performance	of	 the	model	3	classifiers	are	used:	
random	forest,	decision	tree(DT),	and	K–nearest	
neighbor.	Random	Forest	is	an	effective	machine	
learning	 (ML)	 algorithm	utilized	 for	 predictive	
tasks,	such	as	classification	and	regression,	where	
input	 variables	 or	 features	 are	 used	 to	make	
predictions.	DT	 is	 an	ML	 classifier,	 and	 it	 is	 a	
representation	of	the	decision-making	process,	it	is	
a	model	that	takes	the	shape	of	a	tree.	The	internal	
nodes	 of	DT	 represent	 tests	 on	 input	 variables,	
and	branches	 indicate	outcomes.	KNN	is	a	non-
parametric	algorithm	used	in	machine	learning	for	
classification	 and	 regression	 tasks.	Unlike	 other	
algorithms,	KNN	does	not	make	any	assumptions	
about	the	underlying	distribution	of	the	data.

ResuLts and disCussion

	 Table.3	shows	the	results	for	all	the	feature	
extractors	 and	 their	 performance	 on	 different	
classifiers.	3	classifiers	were	used,	among	all	these	

classifiers,	the	RF	classifier	provided	the	highest	
accuracy	of	81.69%	when	applied	to	FD-extracted	
features,	along	with	the	RF,	the	DT	classifier	also	
provided	promising	 results	with	 an	 accuracy	 of	
80.77%	 for	TD-extracted	 features.	The	 idea	 of	
fusing	TD	 and	DWT	 features	 also	 resulted	 in	
promising	 results	 and	 achieved	 an	 accuracy	 of	
81.21%	for	the	DT	classifier.
	 One	 noteworthy	 observation	 was	
that	 the	 RF	 classifier	 exhibited	 exceptional	
performance	when	 applied	 to	 features	 extracted	
from	the	frequency	domain.	This	suggests	that	the	
frequency-	related	characteristics	of	EMG	signals	
played	 a	 pivotal	 role	 in	 distinguishing	 between	
different	 hand	movements.	This	 indicates	 that	
features	related	to	the	temporal	characteristics	of	
EMG	signals	 provided	valuable	 information	 for	
classification.	In	addition,	the	researchers	explored	
a	 novel	 approach	 by	 fusing	 time	 domain	 and	
DWT	 features,	 yielding	noteworthy	 results.	The	
combined	features	achieved	an	accuracy	of	81.21%	
with	the	DT	classifier,	implying	that	the	fusion	of	
both	temporal	and	frequency-related	information	
enhanced	classification	accuracy,	underscoring	the	
potential	 of	 utilizing	multiple	 feature	 extractors	
in	 tandem.	These	 findings	 not	 only	 highlight	
the	 effectiveness	 of	 specific	 feature	 extractors	
and	 classifiers	 in	 EMG-based	 hand	movement	
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Graph 1. Bar	graph	of	the	accuracy	comparison

classification	 but	 also	 suggest	 the	 advantage	 of	
exploring	 hybrid	 feature	 extraction	methods	 to	
further	improve	classification	performance.
Future scope and Conclusion
	 The	developed	EMG-based	hand	moment	
classification	model	shows	promising	results	and	
holds	potential	for	deployment	in	various	sectors	
and	applications.	Particularly	in	the	medical	sector,	
it	can	aid	in	diagnosing	and	monitoring	conditions	
by	analyzing	muscle	activity	patterns.	Clinicians	can	
leverage	the	model	to	identify	abnormalities	such	
as	muscle	weakness,	dystonia,	or	peripheral	nerve	
injuries	affecting	hand	movements.	Additionally,	
the	model	 has	 implications	 for	 prosthetics	 and	
orthotics,	providing	intuitive	control	for	prosthetic	
hand	movements.	 By	 utilizing	 diverse	 feature	
extraction	techniques	and	preprocessing	methods,	
the	project	achieved	an	accuracy	rate	of	80%	in	
classifying	hand	gestures,	including	hand	at	rest,	
wrist	flexion,	and	wrist	extension.
	 The	authors	of	this	research	have	currently	
focused	on	three	specific	hand	movements.	In	the	
future,	they	plan	to	expand	their	investigation	to	
encompass	 a	 broader	 range	of	 hand	movements	
commonly	 utilized	 in	 daily	 life,	 such	 as	wrist	
pronation,	wrist	 rotation,	wrist	 radial	 deviation,	
and	more.	Upon	the	inclusion	of	these	additional	
hand	movements,	 the	 authors	 intend	 to	 extract	
relevant	features	for	each	movement.	Subsequently,	
they	will	work	towards	integrating	these	features	

into	a	model	designed	for	prosthetic	hands.	This	
research	is	expected	to	have	a	greater	impact	on	
the	biomedical	field	in	the	future.
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