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	 Electromyography (EMG) based hand movement classification plays a significant role 
in various fields, namely in prosthetics, rehabilitation, biomechanics, etc. This paper presents 
the study of EMG-based hand movement classification of 3 human hand gestures (hand at rest, 
wrist flexion, and wrist extension). The dataset was officially collected from the University 
of California, Irvine (UCI) machine learning repository. The dataset contains 8 channels and 
3 classes representing 3 human hand gestures, with 15000 rows of EMG data for each class. 
The dataset obtained was raw and unprocessed, to filter this dataset Notch and Butterworth 
filters were used. After filtering, the sliding window was performed. Various feature extraction 
techniques, namely frequency domain features (FD) and discrete wavelet transform (DWT) were 
applied separately on the window dataset and then accuracy was tested on different classifiers, 
namely random forest (RF), k- nearest neighbor (KNN), and decision tree (DT). As a novel 
approach, time domain (TD) and DWT extracted features were fused together and then given 
to the classifiers to test accuracy. Among all these feature extractors, the features extracted by 
FD provided the highest accuracy of 81.69 for the RF classifier.

Keywords: Bandpass filter; DWT; Electromyography; Hand movement;
Machine learning; Notch filter.

	 One of the most crucial fields of research 
in the field of biomedical engineering is the 
classifying of human movement based on EMG 
processing of data. Electrical impulses produced 
by muscles during movement, or EMG signals, 
convey significant details about muscle activity and 
movement patterns. Researchers have developed 
models that can effectively categorize various 
forms of human movement based on EMG 
analysis of information due to advancements in 
machine learning techniques. There is still a lack 
of studies in ensuring the development of highly 
accurate and efficient techniques for categorizing 

human motions based on EMG data, despite the 
advancements that have been made in the last 
decade. This gap has been highlighted as a need 
for further investigation in two recent studies that 
have been done in the field.
	 One such work suggested a deep learning 
method for categorizing hand motions based on 
EMG information, which was published in the IEEE 
Journal of Biomedical and Health Informatics. 
The study emphasized the need for additional 
investigation in order to enhance the accuracy of 
the categorizing approach and broaden its relevance 
to various types of actions, considering the fact 
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that the results demonstrated promising accuracy. 
Similar to this research’s suggestion, another study 
offered a feature extraction technique for grouping 
dynamic hand motions based on EMG data in the 
IEEE Transactions on Biomedical Engineering. 
Although the study revealed great classification 
accuracy, researchers also emphasized the need for 
more investigation to develop a more dependable 
grouping technique. The current study offers 
a methodology for identifying human motions 
in light of these research gaps based on DWT 
and machine learning methods for EMG signal 
interpretation. The EMG signals are analyzed 
through the DWT to extract features, which are 
subsequently sent into a classification machine 
learning model. On a dataset of EMG signals 
collected by individuals in good health running a 
variety of movements, the suggested technique is 
reviewed.
Literature Review
	 The paper presents a hand gesture 
recognition system using EMG signals and 
machine learning. The EMG signals are pre-
processed to extract relevant features, and an 
SVM classifier is used for recognition. The system 
achieves a recognition accuracy of up to 96.25% for 
six hand gestures. It is implemented on a Raspberry 
Pi and a Myo armband for real-time recognition in 
less than 10 ms. The system can have applications 
in human-computer interaction, virtual reality, 
and prosthetic control. The study highlights the 
potential of EMG signals as a promising input 
modality for hand gesture recognition1. The paper 
presents a hand gesture classification system 
that uses EMG signals and machine learning 
techniques. The authors evaluate the performance 
of three machine learning algorithms, including 
artificial neural networks (ANN), support vector 
machine (SVM), and KNN, on a dataset of eight 
hand gestures. The proposed system achieves a 
recognition accuracy of up to 98%. The authors also 
investigate the impact of different preprocessing 
and feature extraction techniques on classification 
accuracy. The study highlights the effectiveness of 
EMG signals and machine learning techniques2. 
The paper proposes a system for recognizing hand 
gestures using EMG signals and machine learning 
algorithms. The system captures EMG signals from 
the user’s forearm muscles using a Myo armband 
and applies four machine-learning algorithms to 

classify the signals into specific hand gestures. 
The study found that the random forest algorithm 
performed the best, with an average accuracy 
of 93.63%. The proposed system has potential 
applications in prosthetics and human-machine 
interfaces. The study demonstrates the feasibility of 
using EMG signals and machine learning for hand 
gesture recognition and provides valuable insights 
for future research in this field3.
	 The paper introduces a novel approach 
for classifying EMG signals, utilizing a Radial 
Basis Function (RBF) neural network. The method 
involves pre-processing EMG signals through a 
bandpass filter and feature extraction using both 
time-domain and frequency-domain features. The 
RBF neural network is then employed for the 
classification of the EMG signals into various hand 
gestures. The results demonstrate high accuracy, 
surpassing previous state-of-the-art methods. This 
technique has potential applications in prosthetic 
devices and rehabilitation systems, and its 
robustness enables the processing of noisy data4. 
The paper proposes a novel technique for hand 
gesture classification using multi-channel EMG 
signals, scale average wavelet transform (SAWT), 
and convolutional neural networks (CNN). SAWT 
is utilized for feature extraction, which involves 
analyzing the frequency characteristics of the EMG 
signals at various scales. CNN is then employed for 
classification, utilizing the extracted features. The 
proposed method is evaluated on a forearm EMG 
signal dataset, and the results demonstrate higher 
classification accuracy than previous state-of-the-
art methods. This method could be used in various 
applications, such as human-computer interaction 
and prosthesis control systems5. The paper presents 
a technique for recognizing hand gestures using 
EMG signals and an ANN. The method involves 
preprocessing the signals, extracting features 
using time-domain features and power spectral 
density (PSD) features, and training an ANN 
model for recognizing hand gestures. The proposed 
method achieves high classification accuracy, 
surpassing previous state-of-the-art methods, and 
is evaluated on a dataset of EMG signals collected 
from ten individuals. This technique has potential 
applications in human-computer interaction and 
prosthesis control systems6.
	 The paper presents a technique for 
identifying human hand movements using 



73Shilaskar et al., Biomed. & Pharmacol. J,  Vol. 17(1), 71-82 (2024)

electromyographic (EMG) signals. Nonlinear 
dimensionality reduction and data fusion techniques 
are applied to the data to extract relevant features 
for classification. The proposed method is found 
to be effective in accurately classifying different 
hand movements. The approach is expected 
to have applications in prosthetics, robotics, 
and rehabilitation. The results indicate that the 
method has the potential to provide more accurate 
and reliable control of prosthetic devices7. This 
paper proposes a method for classifying surface 
electromyography (sEMG) signals generated 
during basic hand movements using bagging 
and DWT techniques. The sEMG signals are 
preprocessed using DWT to extract features, 
and the bagging algorithm is used to ensemble 
multiple classifiers for improved accuracy. The 
proposed method is evaluated using a dataset of 
sEMG signals generated by ten healthy subjects 
performing five hand movements. The results 
indicate that the proposed method outperforms 
alternative approaches., achieving an average 
accuracy of 97.66%8. This literature review 
presents a method for classifying sEMG signals 
generated during human hand movements for 
myoelectric control. The proposed method involves 
the extraction of time-domain features from sEMG 
signals, the selection of features is done using 
various genetic algorithms, and they are classified 
using SVM. The method is evaluated using a 
dataset of sEMG signals generated by ten subjects 
performing six hand movements. The performance 
of the proposed model shows a high accuracy of 
97.57%, demonstrating its potential for myoelectric 
control applications9.
	 This research provides a method, for 
classifying EMG signals with the help of DWT 
and forest rotation. EMG signals are often used 
in prosthetic devices and rehabilitation systems 
to control the movements of artificial limbs or 
assistive devices. The classification of EMG signals 
is a challenging task due to the variability and 
complexity of the signals10. The paper presents a 
novel method for recognizing hand gestures from 
video input using a combination of DWT and SVM 
algorithms. The DWT is used to extract features 
from the video frames, which are then used as 
inputs to the SVM classifier11. The author provides 
an approach for recognizing human actions based 
on EMG with the help of deep belief networks 

(DBN). The EMG signals are preprocessed using 
a sliding window and feature extraction techniques, 
and then the presented approach is evaluated using 
a dataset of EMG signals generated by ten subjects 
performing six movements of the hand. 97.65% of 
the highest accuracy was obtained for the proposed 
methodology, demonstrating the effectiveness of 
using DBN for EMG-based action recognition12. 
This research paper provides a method for detecting 
the voice activity and classification of noise using 
DWT and sub-band selection. The proposed method 
involves preprocessing the audio signal using DWT 
to extract features in different frequency bands, 
followed by selecting the most discriminative 
sub- bands and classification SVM. For the 
presented method highest accuracy was obtained 
for voice activity detection and noise classification, 
demonstrating its potential for speech enhancement 
applications13. This case report investigates the 
potential of a virtual reality gaming system that 
combines EEG and EMG for the rehabilitation of 
facial palsy. The patient showed improvements in 
muscle strength, coordination, and facial symmetry 
after four weeks of using the system, suggesting 
its potential as a rehabilitation tool14. This study 
examines. The study considers the bond between 
the moment of ARM on electromyographic activity 
and the length of the muscle. Results suggest that 
the length of the muscle and moment arm have a 
significant impact on muscle activity, indicating the 
importance of considering both factors in muscle 
function studies15.
	 The study presents a method for 
recognizing finger movements using EMG 
signals and image processing. Electromyographic 
signals were obtained from the hand muscles and 
processed to generate an EMG map, which was 
then used to identify the specific finger movement. 
The proposed method showed promising results in 
accurately recognizing finger movements16. The 
paper investigates the heterogeneity or redundancy 
in the activity of the brachial muscle biceps during 
isometric contractions using multi-channel EMG 
signals and PCA. The study measures the EMG 
signals from the biceps brachii muscle of healthy 
individuals and processes the signals using PCA 
to estimate the muscle activation patterns. The 
muscle’s electrical activity during isometric 
contractions is heterogeneous, and the use of PCA 
multiple channels EMG. The study highlights the 
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potential applications of PCA multiple channel 
EMG signals in assessing the functions of muscles 
in clinical and research settings17.
	 The paper proposes a method to enhance 
hand gesture classification by applying Gaussian 
filtering to EMG signals. The study involves 
collecting EMG signals from eight hand muscles 
during the execution of six different hand gestures. 
The signals are preprocessed and then filtered 
using a Gaussian filter. The filtered signals are then 
used as inputs in SVM classifiers so that the hand 
gestures can be classified. The study demonstrates 
that the proposed method significantly improves the 
classification accuracy of hand gestures compared 
to using unfiltered signals. The results highlight the 
potential applications of Gaussian filtering of EMG 
signals in improving hand gesture recognition for 
various human-machine interface systems18. This 
paper investigates the use of wearable sensors for 
classifying the EMG patterns which are based on 
the changes in the joint elbow angle. The authors 
collected EMG signals and elbow joint angle data 
from healthy participants during three different 
elbow movements. They applied machine learning 
algorithms to the data and achieved an average 
classification accuracy of 97.67%. The study 
demonstrates the potential of using wearable 
sensors for accurate and non-invasive classification 
of EMG signals based on joint angle changes19. 
This paper proposes an infinite hidden Markov 
model (IHMM) based classification approach for 
recognizing human hand movements using surface 
EMG signals.
	 The method was tested on a dataset of 
8 hand movements and obtained an average rate 
of recognition of 94.4%. The IHMM approach 
showed improved performance compared to 
other classification methods and has potential 
for applications in prosthetic control and human- 
computer interaction20.
	 This paper introduces a novel ensemble 
approach for the precise diagnosis of cardiac 
arrhythmia (ARR), normal sinus rhythm (NSR), 
and congestive heart failure (CHF) is presented. It 
is based on shifted one-dimensional local binary 
patterns (S-1D-LBP) and long short-term memory 
(LSTM). With a remarkable 99.6% success rate, 
the suggested method successfully captures the 
temporal dependencies and discriminative features 
of ECG signals. Its dependability and robustness 

make it a useful tool for categorizing different 
signals[21]. Difficulties arise in the identification 
of posture and recognition of human actions 
for computer vision systems. Such tasks find 
significance in healthcare and robotics. Artificial 
intelligence (AI) techniques can be employed in 
the analysis of repetitive postures and physical 
movements. This study evaluated the performance 
of convolutional neural networks (CNNs) in 
classifying videos by utilizing the Kinect Activity 
Recognition Dataset (KARD) and the Microsoft 
Research (MSR) Pairs dataset. These CNN models, 
however, are problematic to train with video data 
since their efficiency is poorer in comparison with 
image data. By determining human poses and 
extracting video frames at set intervals, a unique 
solution to eliminating extraneous visuals was 
proposed in the study. Essentially, this involves 
the extraction of frames from datasets based on 
videos, with a laser focus on human poses. The 
frames are extracted using a specific frequency, 
and the human pose of each extracted frame is then 
established22. A suggested technique for short-term 
hand gesture recognition uses Myo armband signals 
analysis. The method divides long-term signals, 
which stand for several gestures, into short-term 
signals, which stand for a single gesture. From 
the short-term signals, five statistical time domain 
features are extracted. For 17 gestures, the average 
precision, sensitivity, and F1-score obtained in the 
results were 86.5%, 83%, and 82.2%, respectively. 
The suggested short-term identification approach 
performs better than the current long-term 
identification approach23.
	 This paper presents a novel method using 
Support Vector Machines (SVM) to categorize 
upper limb movements based on myoelectric 
signals. It examines post-processing techniques, 
feature selection, data segmentation, and SVM 
model tuning as means of optimizing SVM-based 
myoelectric control. The study also highlights the 
good accuracy, robustness, and computational 
efficiency of SVM by comparing it to neural 
networks such as Multilayer Perceptrons (MLP) 
and Linear Discriminant Analysis (LDA)24. This 
paper presents a novel approach for low-power, 
real- time analysis of Electromyography (EMG) 
signals, which are essential for gesture control and 
prosthetic devices. It achieves over 99% accuracy 
in identifying nine wrist-hand movements by using 
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minimal time-domain features, Kernel Fisher 
discriminant feature projection, and Radial Basis 
Function neural network classifiers. Implemented 
on the ARM Cortex-A53, it provides 50 times 
faster processing times than the state-of-the-art 
time-frequency techniques25.

Material and methods

Data Collection
	 The dataset was obtained via the UCI 
Machine Learning Repository. The signals are 
collected using a PC equipped with a Bluetooth 
receiver and a MYO Thalamic bracelet worn on the 
forearm. Eight sensors equally spread around the 
forearm on the bracelet hold the ability to collect 
myographic signals. The signals are sent to a PC 
through a Bluetooth link. The 36 patients’ raw 
EMG data are shown while they made a series of 
static hand motions. Two series are executed by the 
subject, each with six (or seven) main motions.
	 The duration of each motion was 3 
seconds, with a 3-second break in between each 
gesture. The original dataset consists of seven 
classes: 0 denotes unmarked data, 1 denotes a hand 
at rest, 2 denotes a hand clenched in a fist, 3 denotes 
wrist flexion, 4 denotes wrist extension, 5 denotes 
radial deviations, and 6 denotes ulnar deviations.
	 For this specific problem statement, three 
classes - hand at rest, wrist flexion, and wrist 
extension were considered. A total of 8 channels 
and 15000 samples are considered for each class.
Pre-processing
	 Bandpass filtering is a technique used in 
signal processing to isolate a specific frequency 
range of a signal while suppressing or blocking 
frequencies outside that range. This can be useful 
for removing unwanted noise or interference or for 
identifying specific frequency components of the 
signal that are of interest. As there are 8 channels, 
the signals from each channel are sampled at 
1000Hz with a low cutoff of 10Hz, a high cutoff 
is set at 400Hz, and the order is 4.
	 On the other hand, notch filtering is a 
method for removing a certain band of frequencies 
from a signal while leaving the remainder of the 
frequency spectrum unaffected. This can be useful 
for removing unwanted harmonics from the signal 
as well as for removing noise or interference that 
is concentrated in a specific frequency band.

	 The parameters for the notch filter are 
the Q factor set at 10 and the notch frequency at 
60Hz. Fig. 2, 3 & 4 represent original & filtered 
8-channeled signals, where (A) represents original 
signals and (B) filtered signals. By observation, 
filtered signals look more uniform as compared 
to the original signals. That’s the advantage of 
filtering the signal.
	 After applying bandpass filter and notch 
filter to each channel of EMG signal, the most 
important step is to divide or segment each channel 
into a fixed number of window sizes and overlaps. 
Overlap refers to the number of samples that 
overlap between adjacent windows, window size 
refers to the number of samples or data points in 
each window.
	 For this proposed methodology the highest 
results were observed after setting the window size 
to 100 and overlapping of 50% of the window size. 
When related work was reviewed, it was observed 
that when the window size and overlap is small, 
there will be fewer chances of data loss during this 
process.
	 For calculating the total window for each 
channel Eq. 1 is used.

...(1)

Considering 15000 samples for each class. By 
applying the formula of step 5 in the above 
algorithm.
Total rows = 15000, Window size = 100 & Overlap 
= 50 For above case,

	 ...(2)
	 By doing the above calculations, for each 
channel, 299 rows were generated. As there are 8 
channels 299*8, it will generate 2392 rows for each 
class.

Algorithm 01: Algorithm of Sliding Window	
Start
For each channel in the column
Get the data from the current channel
Get the number of rows present in current_channel
Calculate total number of windows using (Total_
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rows – Window_size) / Overlap + 1
Store the result in variable ‘new_window’
For each window i -> new_window
Calculate the start_index of current_window using 
(i*overlap)
Calculate the end_index of current_window as 
(start_index + window_size)
If (end_index > Total_rows)
End_index = Total_rows
Extract the data from current_window
Store the data in list
End of Algorithm	

Feature Extraction
	 After the pre-processing step, reducing 
the number of parameters, or features, is a crucial 
technique for characterizing EMG signals. The 
wavelet transform is a useful tool for decomposing 
the signal with high time resolution, breaking it 
down into basic wavelets obtained by dilating and 
translating a single function.
	 For feature extraction, the signals can be 
handled in the FD, DWT, and fusion of TD and 
DWT.
	 Frequency Domain features: These 
features are based on the frequency content of 
the EMG signal. Some examples of frequency 
domain features include the power spectrum and 
the frequency of the dominant peak.
Mean Frequency
	 MNF, or mean normalized frequency, is 
computed as the weighted average frequency in an 
EMG (electromyography) power spectrum. It is 
determined by taking the sum of the products of the 
power spectrum and their respective frequencies, 
which is then divided by the total sum of the power 
spectrum24. Furthermore, MNF is also referred 
to as mean power frequency and mean spectral 
frequency in various works. The equation for MNF 
is as follows:

	 ...(3)

	 Where, f
j
 represents the frequency value 

of the EMG power spectrum at the frequency bin 
j, Pj represents the EMG power spectrum at the 
same frequency bin j, and M denotes the length of 

the frequency bin. When analyzing EMG signals, 
M is is commonly defined as the next power of 2 
based on the length of the EMG data in the time 
domain.
Variance
	 The measure of how spread out the EMG 
signal is.

	 ...(4)
Skewness
	 The measure of the asymmetry of the 
EMG signal distribution. A data set is said to be 
symmetric if it looks the same to both the right and 
left of the center point.

	 ...(5)

	 The mean is denoted as Yi, the standard 
deviation as s, and  N represents the number of data 
points. It’s important to note that when computing 
skewness, the standard deviat s3 is calculated with 
N in the denominator, as opposed to N-1.
	 The formula for skewness mentioned in 
Eq(5) is commonly known as the Fisher- Pearson 
coefficient of skewness.
	 A skewness of zero characterizes a normal 
distribution, and data that exhibits symmetry 
should have skewness values close to zero. 
Negative skewness values suggest a leftward skew, 
while positive skewness values indicate a rightward 
skew in the data.
Kurtosis
	 Kurtosis is a statistical technique in the 
time domain that characterizes data distribution and 
identifies the presence of data peaks. It quantifies 
the degree to which data deviates from a normal 
distribution curve by comparing the inclination 
of the data distribution curve’s peaks to that of a 
normal curve.

	 ...(6)

	 The mean is denoted as Yi, the standard 
deviation as s, and  N represents the number of 
data points.
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	 A positive kurtosis value indicates heavy-
tailed data, while a negative value suggests light 
tails. This comparison with a standard normal 
distribution helps determine whether the data 
distribution is flatter or more peaked than the 
normal distribution. It’s important to note that the 
kurtosis value for a standard normal distribution is 
3.0. If the standard normal distribution is 3, then the 
equation becomes a bit different. It’s often referred 
to as “excess kurtosis”.

	
...(7)

	 Time Domain Features: These features 
are based on the time variation of the EMG signal. 
Some examples of time domain features include 
the mean, standard deviation, and kurtosis of the 
signal.

Mean Absolute Value
	 This feature provides the absolute values 
of all amplitude.

	 ...(8)
	 Here xn is a signal time series for n=1,2,3 
… N, and N is the number of data points.
Standard Deviation
	 The measure of the dispersion or 
variability of the EMG signal. The standard 
deviation is a metric that quantifies the extent of 
fluctuations in a signal relative to its mean.

	 ...(9)

Table 1. Comparison of Dataset and Performance of Different Paper

Paper	 Dataset	 Technique	 Performance

Subasi et al., 2018[8]	 Multiple Dataset	 ANN, K-NN, SVM, DT	 ANN provided the highest 
	 	 	 Accuracy of 98%
Agarwal et al., 2019[11]	 Independently 	 DWT & SVM	 Cross-validation shows 
	 collected	 	 94% accuracy
Abdullah et al., 2021[13]	 TIMIT	 Evaluation Method by 	 VDA provides Accuracy 
	 	 Voice Activated Device 	 of 91.5%
	 	 (VAD)
Wen et al., 2021[20]	 Independently 	 SVM, KNN & bagged 	 Bagged trees ensemble 
	 collected	 trees ensemble	 modelgives 96.2%

Fig. 1. Block Diagram
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Fig. 2. Hand Gestures - (1) hand at rest, (2) wrist flexion, and (3) wrist extension

Table 2. Features description

Feature Extractor 	 Description
and Feature Count 
(In columns)

DWT8 columns	 The 8 columns of features extracted by DWT: standard deviation of Level 1 
	 approximation coefficients, mean absolute Values of level 1 approximation coefficients, 
	 standard deviation of level 2 approximation coefficients, mean of absolute values of 
	 level 2 approximation coefficients, standard deviation of level 3 approximation 
	 coefficients, mean of absolute values of level 3 approximation coefficients, standard 
	 deviation of the level 3 Detail coefficients, and mean of absolute values of the 
	 level 3 detail coefficients
FD4 columns	 The 4 columns of features extracted by FD: Mean of the frequency domain values, 
	 Variance of the frequency domain values, Skewness of frequency domain values, 
	 and Kurtosis of frequencydomain values
Fusion of TD and 	 Mean of the time domain values, Standard Deviation of the time domain values, 
DWT 10 columns	 standard deviation of level 1 approximation coefficients, mean of absolute values of 
	 level 1 approximation coefficients, standard deviation of level 2 approximation 
	 coefficients, mean of absolute values of level 2 approximation coefficients, standard 
	 deviation of level 3 approximation coefficients, mean of absolute values of level 3 
	 approximation coefficients, standard deviation of the level 3 detail Coefficients, and 
	 mean ofabsolute values of the level 3 detail coefficient

	 Here, xn is the nth data point, µ is the mean 
of the dataset, and N is is the total number of data 
points in the dataset.
	 DWT: A mathematical method known 
as the DWT is used to divide a signal into many 
sets, each of which has a time series of coefficients 
that describe the signal’s behavior in a particular 
frequency range. The signal can now be represented 
in terms of its frequency constituents and the 
corresponding temporal development thanks to 
this transformation.

	 A three-level wavelet decomposition is 
employed by using the Daubechies 4 algorithm. 
The details and approximation coefficients are 
separated according to the level of decomposition. 
n stands for the center of shift, and S for the scale 
factor.

	 ...(10)
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Fig. 3. (1) Class0 Original vs Filtered Signal; (2) Class1 Original vs Filtered Signal; (3) Class2 Original vs 
Filtered Signal

	 Following the extraction of features from 
different feature extractors, it obtained distinct 
numbers of columns for each method. Specifically, 
the DWT yielded 8 columns, the FD method 
provided 4 columns, and the combination of TD 
and DWT resulted in 10 columns. A comprehensive 
description of each column for every feature 
extractor is presented in the respective tables.
	 Table 2 briefly describes 3 feature 
extractors. After extracting the feature from these 
3 above feature extractors it is necessary to use 
principal component analysis (PCA) this is because 
PCA is used to reduce the number of features from 
the above feature extractor without losing too much 
information, and it identifies the most important 
features. It makes features more recognizable for 

classification. This can be helpful for machine 
learning algorithms and classification. Also, it is 
useful for getting accurate results.
Training and Testing
	 After extracting the features from DWT 
FD for 3 classes, the next step is to assign a class 
label to each extracted feature class. For DWT 
each class contains 2092 features extracted. 
After assigning the class label to the feature it 
is necessary to append all the data frames of 3 
classes before passing them to a classifier. Before 
passing to the classifier, it is essential to split the 
dataset into 70-30 portions. Same procedure is 
done for FD. Usually, the training portion of the 
data should be greater or higher than the testing 
data, as it allows the model to identify and learn the 
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Table 3. Classifier model result

DWT Feature Extractor
Classifier	 Accuracy	 Precision	 Recall	 F1-Score

Random Forest	 80.77	 80.95	 80.77	 80.77
K-nearest Neighbor	 77.10	 76.85	 77.10	 76.67
Decision Tree	 80.77	 80.93	 80.77	 80.76

FD Feature Extractor
Classifier	 Accuracy	 Precision	 Recall	 F1-Score

Random Forest	 81.69	 81.53	 81.69	 81.61
K-nearest Neighbor	 35.57	 35.70	 35.57	 34.99
Decision Tree	 81.69	 81.89	 81.69	 81.78

Fusion of TD and DWT
Classifier	 Accuracy	 Precision	 Recall	 F1-Score

Random Forest	 80.21	 80.30	 80.21	 80.19
K-nearest Neighbor	 78.07	 77.47	 78.77	 77.71
Decision Tree	 81.21	 80.36	 81.21	 80.22

significant pattern. This is necessary for the model 
to accurately predict outcomes when presented with 
new, unseen testing data.
	 Once the model is trained, it internalizes 
the patterns it has learned from the training data 
and uses this knowledge to make predictions 
based on the testing data. To determine the 
performance of the model 3 classifiers are used: 
random forest, decision tree(DT), and K–nearest 
neighbor. Random Forest is an effective machine 
learning (ML) algorithm utilized for predictive 
tasks, such as classification and regression, where 
input variables or features are used to make 
predictions. DT is an ML classifier, and it is a 
representation of the decision-making process, it is 
a model that takes the shape of a tree. The internal 
nodes of DT represent tests on input variables, 
and branches indicate outcomes. KNN is a non-
parametric algorithm used in machine learning for 
classification and regression tasks. Unlike other 
algorithms, KNN does not make any assumptions 
about the underlying distribution of the data.

Results and Discussion

	 Table.3 shows the results for all the feature 
extractors and their performance on different 
classifiers. 3 classifiers were used, among all these 

classifiers, the RF classifier provided the highest 
accuracy of 81.69% when applied to FD-extracted 
features, along with the RF, the DT classifier also 
provided promising results with an accuracy of 
80.77% for TD-extracted features. The idea of 
fusing TD and DWT features also resulted in 
promising results and achieved an accuracy of 
81.21% for the DT classifier.
	 One noteworthy observation was 
that the RF classifier exhibited exceptional 
performance when applied to features extracted 
from the frequency domain. This suggests that the 
frequency- related characteristics of EMG signals 
played a pivotal role in distinguishing between 
different hand movements. This indicates that 
features related to the temporal characteristics of 
EMG signals provided valuable information for 
classification. In addition, the researchers explored 
a novel approach by fusing time domain and 
DWT features, yielding noteworthy results. The 
combined features achieved an accuracy of 81.21% 
with the DT classifier, implying that the fusion of 
both temporal and frequency-related information 
enhanced classification accuracy, underscoring the 
potential of utilizing multiple feature extractors 
in tandem. These findings not only highlight 
the effectiveness of specific feature extractors 
and classifiers in EMG-based hand movement 
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Graph 1. Bar graph of the accuracy comparison

classification but also suggest the advantage of 
exploring hybrid feature extraction methods to 
further improve classification performance.
Future Scope and Conclusion
	 The developed EMG-based hand moment 
classification model shows promising results and 
holds potential for deployment in various sectors 
and applications. Particularly in the medical sector, 
it can aid in diagnosing and monitoring conditions 
by analyzing muscle activity patterns. Clinicians can 
leverage the model to identify abnormalities such 
as muscle weakness, dystonia, or peripheral nerve 
injuries affecting hand movements. Additionally, 
the model has implications for prosthetics and 
orthotics, providing intuitive control for prosthetic 
hand movements. By utilizing diverse feature 
extraction techniques and preprocessing methods, 
the project achieved an accuracy rate of 80% in 
classifying hand gestures, including hand at rest, 
wrist flexion, and wrist extension.
	 The authors of this research have currently 
focused on three specific hand movements. In the 
future, they plan to expand their investigation to 
encompass a broader range of hand movements 
commonly utilized in daily life, such as wrist 
pronation, wrist rotation, wrist radial deviation, 
and more. Upon the inclusion of these additional 
hand movements, the authors intend to extract 
relevant features for each movement. Subsequently, 
they will work towards integrating these features 

into a model designed for prosthetic hands. This 
research is expected to have a greater impact on 
the biomedical field in the future.
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