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abSTraCT

 In this paper, we present a new mathematical analysis that models the growth and control 
of tumors in living tissue. In these models, we use the D-factor, a fold form from catastrophe theory, 
to impose control on tumor growth. By adjusting parameters, the models exhibit stationary states 
at which the immune system is stabilized and the number of tumor cells is either driven to zero or 
remains constant.
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InTroduCTIon

 Modern medicine is providing reliable 
approaches for screening, diagnosis, treatment, 
prevention, and early intervention of cancer. 
Fortunately, current research levels are high enough 
to identify many cancer types as curable and studies 
are underway to find those cures.

 In this work, we study mathematical 
models for tumor growth. Some previous studies 
have developed mathematical models for biological 
immune systems. For example, Adimya and 
Crauste considered a nonlinear mathematical 
model of hematopoietic stem cell dynamics in which 
proliferation and apoptosis are controlled by growth 
factor concentrations1. 
 
 Structured models were found by Roeder 
et al. 2 to consistently explain a broad variety 
of phenomena in patients with chronic myeloid 
leukemia. Furthermore, Kim et al.3, 4 developed 
a model for describing the dynamics during the 
treatment of chronic myelogenous leukemia. This 
model is intended to replace the recent agent-based 
model.

 By changing the init ial susceptible 
population after each epidemic generation, models 
developed by Roeder et al.5 incorporate the effects 
of vaccination.

 In this work, we model tumor growth by 
considering interactions between tumor cells and 
cells that resist cancer growth, that is, cells that 
regulate antitumor activity. The latter can be viewed 
as a control system applied to tumors, and the 
creation of models that combine control laws with 
a class of structurally steady mappings constitutes 
a new approach to cancer study. The work may be 
important for both its practical applications and its 
theoretical novelty.

 To develop and test new models in the 
theory of control in immunology, we apply classical 
and modern theories of control, theoretical and 
applied methods in the study of dynamic systems, 
modern catastrophe theory and its application to 
population models, and Lyapunov stability theory.

 We view cancer as uncontrolled proliferation 
of tumor cells in an organism. Our task is to suppress 
outbreaks and stabilize the organism (through the 
influence of a vaccine) when outbreaks do occur.
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mathematical models
 To track the growth of tumor and tumor-
resistant cell populations, we start with a relatively 
simple model (§ 2.1). Then we add terms to account 
for the control of tumor growth (§ 2.2) and determine 
the stability of that extended model (§ 2.3). Then 
we extend the model further to account for the 
suppression of the boomerang effect (§ 2.4).

Initial model
 To model cell populations, including 
their interactions and influence, we start with two 
dynamical variables: the concentration of tumor 
cells and the concentration of cells that have specific 
resistance to tumor growth. Cells with natural 
resistance have some level of activity, which is 
included in the model as a parameter. 

 In particular, the temporal evolution of 
the two concentrations is modeled by these two 
differential equations6
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 Here x1 is the concentration of free cells 
(effector cells), x2 is the concentration of tumor cells, 
j is the growth rate of effector cells, bx1x2 is the death 
rate of effector cells due to their interactions with 
tumor cells, x1x2 is the death rate of tumor cells due 
to their interactions with effector cells, a controls the 
growth rate of effector cells due to interactions with 
tumor cells, d controls the growth rate of tumor cells, 
g controls the natural death rate of effector cells, and 
m controls the natural death rate of tumor cells. Thus, 

our model is a system of two differential equations 
involving six parameters. 

 The phase portrait7, 8 for system (1) is 
shown in Fig. 1. The stationary points of the model 
are determined from the conditions x1 = 0 and x2 = 
0. Therefore, from (1), model 1 has three equilibrium 
states:
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 These are marked by the filled circles in 
Fig. 1.

Note that the Jacobi matrix of system (1) is
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adding a Control Law to the Initial model

 To promote the stabilization of an organism 
in a predictable manner, we present a new method 
for controlling cell populations through interactions 
between effector and tumor cells. We call this 
approach a “compensatory effect.”

 To model system (1), we add a synchronic 
controlling D-factor, which is a function of structurally 
steady mappings known as a “fold catastrophe.” One 
of the most important points in catastrophe theory 
is the behavior of smooth functions that depend on 
a parameter. The D-factor used here represents a 
fold form (one of the 7 forms of catastrophe theory)9, 

10. Then model (1) becomes

Fig. 1:Phase Portrait of System (1). Fig. 2: Phase Portrait of System (2).
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 Negative values indicate a specific 
influence on the organism. The controlling parameter 
can be thought of as the influence of the therapy 
(vaccination) being received. 

 Stationary points are determined from the 
conditions 0=x , and therefore, system (2) has 
these equilibrium states:
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 The phase portrait of system (2) is shown 
in Fig 2. The Jacobi matrix of system (2) is
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region of Stability for the extended model
 We now determine the conditions at which 
the system of nonlinear equations (2) exhibits 
stability. To this end, we construct the Lyapunov 
function. We also use the central Morse theorem with 

fold catastrophe from the classification of Thom’s 
theorem.

 Stability is a fundamental notion in the 
qualitative theory of differential equations and is 
essential for many applications. In turn, Lyapunov 
functions are a basic instrument for studying 
stability; however, there is no universal method for 
constructing Lyapunov functions. Nevertheless, in 
some special cases, a function can be constructed 
by applying special techniques11,12.

 We construct the Lyapunov function for 
system (2) and then use geometric interpretation 
to find the region of stability. The geometric 
identification of stable states reduces to creating 
a family of closed surfaces that surround the zero 
equilibrium of coordinates. The system state moves 
across contour curves; that is, each integrated curve 
can cross each of these surfaces, as illustrated in 
Fig. 3.

 To apply the geometric interpretation, we 
must find the Lyapunov function, which is a positive 
definite state function V(x) > 0 whose time derivative 
is locally negative definite 
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 It is known that this system can be 
described by these dynamical equations:
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 It is also known that the time derivative of 
the corresponding Lyapunov function has the form

Fig. 3: Geometrical Interpretation of Stability Fig. 4: Gradient of a Function
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 The gradient of a function ),...,,( 21 nxxxV  is 
a vector defined by
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 The vector ),...,,( 21 nxxxΦ  is a velocity 
vector of a point m, as depicted in Fig 4.

According to (4) and (5), we have 
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 where x = x1, x2,..., xn{ }.The time derivative 
of the Lyapunov function is a scalar product of the 
gradient and the phase velocity vector. Note that 
in Fig. 4, the vector )(xgradV  is perpendicular to 
the surface constxV =)(  and is in the direction of the 
maximum increase in )(xV .  

 Now, we construct the vector function

)),();,((),( 21221121 xxVxxVxxV =
  
 whose gradient has a magnitude equal to 
the absolute value of the velocity vector for system 
(2) and whose direction is opposite to that of the 
velocity vector. For system (2), we form components 

of the gradient-vector Lyapunov function and find
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 This expression shows that dV/dt < 0.

 To find the integral components, we 

integrate  only over 1x
 and integrate 
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 Thus, the Lyapunov function takes this 
scalar form: 

)()()( 21 xVxVxV +=

 However, the Lyapunov function V(x) is 
not positive definite because it contains negative 
components (terms of odd degree). Hence, we need 
to find the conditions under which the Lyapunov 
function is positive definite.

 To do so, we next build the Hessian matrix 
of the Lyapunov function: 
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 At point (0;0), the Lyapunov function in 
square form is
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 Then the conditions for positive definiteness 
of the square form are 

Fig. 5: Phase Portrait of System (1) Fig. 6: Phase Portrait of System (2)
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 From the condition 0>M  and the definition 
of M below (2), the parameters satisfy 0>J  and . 

01 >+ γk  They are also real. 

 Thus, we have found conditions for the 
parameters under which our Lyapunov function is 
positive definite and its time derivative is negative 
definite. These conditions identify an area of robust 
stability for dynamical system (2) [14]. This means 
that system (2) captures system states in which 
tumors do not continue to grow.

boomerang effect
 Although the model in (2) includes 
situations in which tumors do not grow, in clinical 
practice, we know that many tumors initially respond 
well to treatment, but after a short time, they start 
to grow again. That is, once a chemical treatment 
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 Thus, with the D-factors, we exclude the 
boomerang effect and can control the growth of cell 
numbers resulting from uncontrolled cell proliferation. 
Phase portraits for system (7) appear in Fig. 7.
  

reSuLTS and dISCuSSIon

 In this section, we illustrate the behavior of 
each of the above models for selected values of their 
parameters. Figure 5 shows results from system (1) 
when its six parameters have these values:

5,04.0,4.0,3,3.1,10 ====== γδηαβJ . 

 The stationary point at x2 = 0, x1 ‘“ 0 
represents zero concentration of cancer cells, that 
is, complete recovery of the organism.

 Figure 6 shows calculated results for 
system (2) using parameter values

5.11,5,04.0,4.0,3,3.1,10 ======= kJ γδηαβ

The values for the first six parameters are the same 
as those used for system (1) above; the difference is 
only in the seventh parameter. Figure 6 also shows 
a stationary state that represents a complete cure 
(x2 = 0).

 Results for system (6) are also shown in 
Fig. 5 for the following parameter values:

15.0,05.1,15.0
,1.0,5,04.0,4.0,3,3.1,10

===
=======

FRH

EJ γδηαβ

 Figure 7 contains results for system (7). 
Figure 7a pertains to these parameter values:

15.0,05.1,5.11,15.0
,1.0,5,04.0,4.0,3,3.1,10

====
=======

FRkH

EJ γδηαβ

 In Fig. 7b, the results are for the same 
parameter values, except that the value of parameter 
J was increased from 10 to 20.

 In both Figs. 7a and 7b, a complete cure 
is possible, but in Fig. 7b, the cure requires a higher 
concentration of effector cells (response of the 
immune system).

Fig. 7: Phase Portrait of System (7)

has started, some tumors may adapt; hence, the 
treatment is no longer effective. We call this the 
“boomerang effect”7. Clinically, protective measures 
must be repeated regularly to avoid the boomerang 
effect. If protective measures are not regular, there 
will be time for tumor cells to adapt to chemical 
treatments.

 To exclude the “boomerang effect” in our 
mathematical model, we consider the following 
model:
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 where the fractional terms describe loss 
changes. Now we add D-fañtor terms to system 
(6):
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