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	 Autism Spectrum Disorder (ASD) is a major incident neurological disorder. Medical 
practitioners use different diagnostic techniques such as Electroencephalogram (EEG) 
Analysis, Magnetic Resonance Imaging (MRI) analysis, and traditional Behavioral Analysis 
for ASD detection. However, diagnosis success largely depends on specialists' knowledge and 
remains seldom accessible to remote patients. To address this issue, recently, various machine 
learning (ML) approaches have been developed for ASD detection using brain MRI images. 
The performance of these approaches is often limited because of poor feature discrimination, 
inferior quality of features, high feature length, and poor correlation of features. Thus, there 
is a need for robust feature extraction and selection techniques to improve the performance 
of ASD detection. The proposed work demonstrates a fusion of three features, namely Gray 
Level Co-occurrence Matrix (GLCM) based holistic texture features, Local Binary Pattern (LBP) 
based local texture features, and Geometrical Features of the Corpus Callosum (GFCC) from 
brain MRI images. Further, a correlation-based feature selection technique is employed for the 
salient feature selection from the GLCM, LBP, and GFCC set to improve the feature quality. The 
effectiveness of the selected feature is evaluated using three ML classifiers such as K-Nearest 
neighbor (KNN), Support Vector Machine (SVM), and Classification Tree (CT). The proposed 
ASD detection scheme provides an accuracy of 95.86% with 10-fold cross-validation with a 
CT classifier. It is observed that the accuracy of the proposed system is improved by 11.32% 
over the recent GLCM-based ASD system. The correlation-based feature selection techniques 
minimize the recognition time by 34.95% over the ASD system without feature selection.

Keywords: Autism Spectrum Disorder; Classification Tree; Gray Level Co-occurrence Matrix;
K-Nearest Neighbor; Local Binary Pattern; Machine Learning; Magnetic Resonance Imaging;

Support Vector Machine.

	 Autism Spectrum Disorder (ASD) is a 
neurological disorder characterized by persistent 
social communication impairments like difficulties 
in talking and interacting, limited interests, and 
repetitive activities that increase with time1. 
According to the World Health Organization 
(WHO), Autism affects one out of every 160 
children and can cause physical and psychological 

developmental problems. In the United States, the 
prevalence of ASD is estimated to be 1.47 percent, 
with an average lifetime cost of one million dollars 
per patient. The disorder is caused by various 
factors, including inheritance, brain structure, 
function, and environmental influences2-3.
	 The symptoms of ASD usually appear 
in the first two years of life. Early diagnosis is 
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expected to improve the quality of life for persons 
with Autism by providing timely treatment4-5. 
The non-availability of defined biological tests 
for ASD, like other diseases such as diabetes, 
HIV, etc., imposes challenges for ASD detection. 
Also, defining and diagnosing mental health 
disorders is difficult due to the overlapping nature 
of symptoms. ASD detection is significant in 
analyzing the patients’ mental and physical health. 
ASD detection is critical as often the cause of 
ASD is unpredictable, and symptoms are generally 
neglected, which hampers the sustainable health 
life of the person with ASD6.
	 The traditional method of diagnosing 
ASD is based on a psychological examination 
of the person’s behavior, such as a questionnaire 
test or a consultation7. In recent years, various 
bio-signals, such as EEG, ECG, speech, and face, 
have significantly contributed to ASD detection. 
However, the performance of ASD detection 
techniques based on these bio-signals is highly 
sensitive to noise and facts due to other body 
organs, chronic diseases, and environmental and 
sociological parameters. Brain MRI or CT images 
are widely used over other bio-signals because 
of their capability to characterize the structural 
and functional changes in the brain region 
that directly correlate with the activities of the 
human being8. The behavioral observation-based 
diagnostic process is time-consuming and reliant 
on specialists. It may be prone to misdiagnosis 
due to observer fatigue, exhaustion, a lack of 
expert knowledge, and aversion to the Test and 
consultation9. Other than behavioral observations, 
brain signals like EEG and brain images like MRI 
are the major sources of ASD detection. Autism 
can cause anatomical and functional abnormalities 
in the brain, making it easier to recognize ASD10. 
Functional MRI (fMRI) images can highlight 
changes in the brain’s local and regional connection 
patterns. In contrast, structural MRI (sMRI) images 
can provide volumetric and morphometric analyses 
to look at abnormal brain structure11.
	 Analysis of brain MRI data is expected 
to provide valuable markers that result in a more 
accurate diagnosis of brain diseases. ML-based 
techniques have shown significant contributions 
in biomedical image and signal processing, 
such as arrhythmia classification12,13, Tympanic 
Membrane classification14, effective human-

computer interfacing using biometric traits, etc. 
Researchers have extensively experimented with 
ML techniques using brain MRI image datasets 
for brain disorders like Autism, Alzheimer’s, etc. 
The ML-based ASD includes feature extraction, 
selection of appropriate features, and classifier 
for ASD and non-ASD, i.e., Typical development 
(TD) recognition. Various researchers have used 
single or two-feature extraction techniques that 
limit the performance of traditional ML-based ASD 
systems15.  
	 The proposed ASD detection system 
uses a fusion of three types of features Gray 
Level Co-occurrence matrix feature (GLCM), 
Local Binary Features (LBP), and geometrical 
features of the corpus callosum region (GFCC) 
of the brain obtained from sMRI images. The 
suggested ASD detection scheme uses novel 
hybrid feature extraction techniques to characterize 
the sMRI changes that occurred due to Autism. 
Also, researchers give very little concentration to 
the salient feature selection. The proposed work 
employs a correlation-based feature selection 
technique for the salient feature selection from the 
GLCM, LBP, and GFCC set to improve the feature 
quality. Further, the effectiveness of the proposed 
fusion of features is evaluated using KNN, SVM, 
and CT classifiers based on cross-validation 
accuracy.
	 The article is arranged as follows: Section 
II briefly reviews recent trends in Autism Spectrum 
Disorder Detection using ML. Section III describes 
the dataset, feature extraction, and feature selection 
used in the anticipated approach. Further, section 
IV gives the experimental results and discussions 
on the results. Finally, section V concludes 
the paper and presents the future direction for 
improvement in the suggested approach.
Recent trends in Autism Spectrum Disorder 
Detection using Machine Learning
	 Various machine-learning algorithms 
for ASD detection have been presented in recent 
years. This section offers the recent work on 
ASD detection using ML algorithms that focus 
on the various feature extraction and classifier 
algorithms and their performance for ASD 
detection. Morphometric and intensity features 
and a random forest classifier have resulted in 
95% accuracy for intensity features16. Researchers 
investigated a multimodal technique that integrated 
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the characteristics of fMRI and sMRI based on 
convolution neural networks and non-stationary 
independent components (PCA/ICA/k-PCA). It 
has given an ASD detection accuracy of 67.30% 
and 64.30 for ADHD-200 and ABIDE holdout 
data, respectively17,18 studied how to train a 3-D 
Convolutional Neural Network (CNN) to detect 
Autism using a variety of area and spectral 
parameters.19 analyzed the correlation features of 
sMRI that achieved 79% accuracy for ASD using 
the KNN classifier on the National Database of 
Autism Research (NDAR) dataset.20 compared 
the performance of an Extreme Learning Machine 
(ELM) and SVM classifier for cortical thickness 
features of sMRI for ASD detection. It resulted in 
90.18% and 84.73% accuracy for ELM and SVM 
for the ADHD dataset. It shows that geometrical 
features are significant for ASD detection.21 have 
used Pearson correlation and partial correlation 
for texture description of the sMRI, which has 
given 76.15 % accuracy on ADHD. In22, an 
SVM classifier is used for ASD detection using 
geometrical features of the cerebral cortex region.23 
investigated GLCM (6 features) based ASD 
detection based on a manual selection of features. 
It has given 85.71% accuracy using the KNN 
classifier for the ABIDE-I dataset. [24] presented 
an F1-score feature selection strategy for selecting 
significant features from functional connectivity 
features of fMRI images. It provided 80.76% 
accuracy for SVM classification, but its application 
is limited for the sMRI images and larger datasets.25 
investigated that ABID-I provides enhanced 
performance compared with the ABIDE-II dataset 
because of variability in the dataset and subjects 
using CNN architectures. It shows that Adam 
provided higher results compared with traditional 
Adam optimizers. Further, different feature 
selection techniques such as Nilearn26, minimum 
redundancy maximum relevance (MRMR)27, and 
F1-score feature selection28 have been employed 
to improve the distinctiveness of the traditional 
handcrafted features to improve the learning of 
the classification algorithm for ASD detection. 
The summary of several recent machine learning-
based approaches for ASD detection is illustrated in  
Table 1.
	 From the review of several approaches, it 
is observed that ASD detection using MRI images 
is challenging due to the complex structure of the 

images, the shape of the brain, and the availability 
of a larger dataset for evaluation. The performance 
of various machine learning classifiers depends on 
the raw features obtained from the MRI images that 
show sensitivity to the poor quality of features.

Material and Methods

	 The work aims to provide a discriminative 
feature set for ASD detection, investigates the 
importance of automatic machine learning-based 
ASD detection, and presents a feature selection 
scheme to improve ASD detection accuracy. This 
section provides details on the Materials and 
Methods used during the experimentation.	
Dataset
	 Extensive experimentation is performed 
on the ABIDE-I dataset (sMRI images)24, 
encompassing 1075 samples from 16 sites, as 
described in Table 2. It consists of 544 ASD 
samples and 531 TD samples. This dataset is 
collected for persons aged 7-64 years old. The 
total dataset is split into 70:30 for training and 
testing, respectively. Pre-processed ABIDE images 
having a resolution of 256×256 pixels are being 
considered. 
Proposed Methodology
	 The algorithmic flow diagram of the 
proposed ASD system is illustrated in Figure 
1, which includes feature extraction, feature 
selection, and classification. The proposed ASD 
system uses three feature extraction techniques to 
characterize the sMRI (GLCM, LBP, and GFCC). 
The prominent features are selected using a 
correlation-based feature selection algorithm. For 
classification, three ML classifiers that researchers 
majorly adopt are applied, which will be suitable 
for fair comparison of feature fusion technique 
with state-of-the-art results reported by other 
researchers.
Feature Extraction
	 The proposed ASD detection approach 
collaborates the global features of the texture of 
brain sMRI images obtained using GLCM and LBP 
and geometrical features of the corpus callosum 
region of the brain. The proposed collaborative 
feature fusion of GLCM, LBP, and GFCC provides 
the feature vector of 273 samples that includes 12 
features of GLCM, 255 features of LBP, and six 
features of GFCC.
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Gray Level Co-occurrence Matrix Features
	 GLCM is a statistical texture descriptor 
representing the co-occurrence of a pair of 
image pixels with a particular value. It uses 
a gray co-occurrence matrix to provide the 
spatial representation of the image texture. The 
different texture attributes can be characterized 
using GLCM, such as energy, entropy, contrast, 
homogeneity, variance, auto-correlation, cluster 
shade, cluster prominence, mean, etc. The different 
attributes extracted using the co-occurrence matrix 
P are summarized as follows:
Contrast
	 Contrast provides the gray level variance 
between the pixel and its adjacent pixels over the 
entire image, as given in Eq. 1.

	 ...(1)

	 The contrast value is 0 for homogeneous 
texture; for sMRI images, it lies between 0 to 
[size(P,1)-1]2.
Correlation
	 Correlation characterizes the degree of 
similarity between two adjacent pixels over an 
entire image. It lies between -1 and 1 for positively 
and negatively correlated images. It is calculated 
using Eq. 2.

	
...(2)

	 Where, µ
i
 and µ

j 
are mean over row 

and column, respectively, and s
i 
and s

i
 represent 

variations over row and column, respectively. 
Energy
	 Energy provides the uniformity of the 
texture computed using Eq. 3. Higher value energy 
(1) represents a high degree of uniformity in the 
texture, whereas lower value (0) provides a low 
degree of uniformity in texture. 

	 ...(3)
Homogeneity
	 It provides the degree of closeness of 

GLCM distribution to its diagonal and has a value 
between 0 and 1. It has a value of 1 for diagonal 
GLCM. It is computed using Eq. 4. 

	 ...(4)
Mean
	 It estimates the intensity of all pixels in 
the relationships that contributed to the GLCM.

	 ...(5)
Variance
	 The variance of the intensities of all 
reference pixels in the relationships that contributed 
to the GLCM.

	 ...(6)
Cluster Prominence
	 Cluster prominence evaluates the 
asymmetry of the brain MRI image. The higher 
asymmetry caused by ASD in brain structures 
shows a higher cluster prominence value.

	 ...(7)

Cluster Shade
	 Cluster shades provide information 
regarding the matrix’s skewness, representing the 
image’s uniformity.

	
...(8)

Inverse difference
	 It describes the texture of the image and 
results in a high value when the gray levels over 
the image are uniform.

	
...(9)
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Table 1. Summary of recent work in ASD detection

Author	 Feature Extraction	 Classifier	 Database	 Performance

(Katuwal, 2020)17	 Morphometric and 	 Random Forest 	 112 Non-ASD 	 Area Under Curve: 
	 intensity Features	 Classifier	 and 115 ASD 	 Intensity features (95%), 
			   patient’s data	 cortical folding index 
				    (69 %), cortical and 
				    subcortical volume (69 %), 
				    and surface area (68 %).
(Sen, 2018)18	 Autoencoder, PCA	 Support Vector 	 ADHD-200 	 Accuracy: 67.30% 
		  Machine	 holdout data 	 (ADHD-200 holdout 
			   and ABIDE 	 data and 64.30% 
			   holdout data	 (ABIDE holdout data)
(Dekhil, 2019)9	 Correlation matrices	 K-Nearest 	 NDAR	 fMRI-75%, sMRI-79%, 
		  neighbor 		  fMRI+sMRI-81%
		  Classifier
(Peng, 2013)21	 Cortical Thickness	 ELM & SVM	 ADHD	 90.18% (ELM) and 
				    84.73% (SVM)
(Sara Calderon, 	 Pearson and Partial 	 SVM	 ADHD	 76.15 %
2012)22	 correlation
(Lohar, 2020)24	 GLCM	 KNN	 Autism Brain 	 85.71 %
			   Imaging Data 
			   Exchange 
			   (ABIDE) I

Table 2. Description of ABID-I dataset (16 sites)

Database Name	 ASD	 TD

Caltech_Anat	 21	 17
KKI_Anat	 20	 35
Leuven_Anat	 30	 34
MaxMun_Anat	 23	 34
NYU_Anat	 105	 79
OHSU_Anat	 13	 15
Olin_Anat	 20	 16
Pitt_Anat	 31	 26
SBL_Anat	 14	 16
SDSU_Anat	 12	 24
Stanford_Anat	 21	 19
Trinity_Anat	 24	 25
UCLA_Anat	 56	 43
USM_Anat	 58	 43
UM_Anat	 68	 77
Yale_Anat	 28	 28
Total Samples 	 544	 531

Dissimilarity
	 It provides the degree of variance in the 
image’s texture.

	
...(10)

Autocorrelation
	 Autocorrelation depicts the characteristics 
of similarity in the pattern and periodic patterns in 
the image.

	
...(11)

Entropy
	 Entropy provides the degree of randomness 
in the brain sMRI images.

	 ...(12)

Local Binary Pattern Features
	 LBP is a scale-invariant, rotation-
invariant, computationally efficient, and simple 
texture descriptor. It provides a local representation 
of the image texture using a binary pattern where 



2448Dhamale et al., Biomed. & Pharmacol. J,  Vol. 16(4), 2443-2455 (2023)

Fig. 1. Process flow of proposed methodology

Fig. 2. Process of LBP feature extraction 

the neighboring pixel intensities are compared with 
centered pixel intensity in the local window of 3×3 
pixels. If the neighboring pixel value is greater than 
the central pixel value, it is assumed to be a binary 
one; otherwise, zero is given in Eq. 13.

.	
..(13)

	 The histogram of the LBP texture 
descriptor is computed, which provides 256 values. 
The histogram is calculated over the N×N blocks. 
The LBP histogram minimizes the feature vector 

length and helps to achieve the rotation-invariant 
and scale-invariant nature.  
Geometrical Features of Corpus Callosum
	 The corpus callosum shows significant 
changes in ASD patients, such as increased 
area, irregularity in perimeter, and increase in 
shape and length. The multi-Otsu thresholding 
is employed for segmenting corpus callosum 
from brain sMRI images. The cluster with corpus 
callosum is considered for further processing. The 
morphological opening and closing are performed 
to minimize the noise and unwanted parts in the 
segmented output. Six geometrical properties 
of the segmented corpus callosum, such as area, 
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Fig. 3. Process of geometrical feature extraction of the corpus callosum

Fig. 4. a) Correlation value of original feature b) Sorted Features in descending order.

perimeter, Major axis length, minor axis length, 
solidity, and extent, are computed to characterize 
the ASD and TD MRI. The flow diagram of 
the geometrical feature extraction of the corpus 
callosum is shown in Figure 3.
Feature Selection
	 The overall feature vector combines 
GLCM, LBP, and GFCC features, as illustrated 
in equation 14. The features of GLCM, LBP, and 
GFCC are described in Equations 15, 16, and 17, 
respectively.

...(14)

...(15)

	 ...(16)
F e a t G F C C ( 2 6 8 - 2 7 3 )= { A r e a 1 , P e r i m e m e t e r 2 , 
MajorAxisLength3, MinorAxisLength4, Solidity5, 
Extent6}

...(17)
	 High correlation features are more 
linearly dependent and have approximately the 
same influence on the dependent variable. When 
two features have a high correlation, one might 
be dropped. If two feature sequences have similar 
values, then the cross-correlation value attains 
maximum value. The cross-correlation-based 
feature selection helps to minimize the redundant 
information from the feature set and reduces the 
feature vector.
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Table 3. Feature description of GLCM, LBP, and GFCC

Feature 	 Total  	 Description
Extraction 	 Features
Techniques

GLCM	 12	 Variance, energy, entropy, contrast, inverse difference, and dissimilarity 
		  provide better discrimination over homogeneity, autocorrelation, mean, 
		  cluster shade, correlation, and cluster prominence.
LBP	 256	 LBP Histogram
GFCC	 6	 Area, perimeter, Major axis length, minor axes length, solidity, and extent

Table 4. Performance of GLCM features based on % cross-validation accuracy

No. of 	 K-fold	 Classification 	 KNN 	 KNN 	 KNN 	 KNN 	 Linear 	 RBF 	 Polynomial 
Features		  Tree	 (K=3)	 (K=5)	 (K=7)	 (K=9)	 SVM	 SVM	 SVM

6	 5	 90.63	 55.63	 55.19	 54.64	 50.46	 56.07	 56.07	 57.96
6	 10	 90.71	 55.99	 56.55	 52.83	 50.38	 56.1	 56.1	 58
6	 15	 90.63	 56.95	 54.95	 53.23	 50.92	 55.14	 56.57	 52.73
12	 5	 87.87	 50.38	 52.06	 52.88	 50.09	 56.54	 91.11	 43.92
12	 10	 87.94	 50.47	 45.01	 46.66	 50.03	 56.58	 91.03	 43.89
12	 15	 87.77	 55.52	 55.14	 56.57	 52.73	 54.67	 57.44	 55.9

Table 5. Performance of LBP features based on % cross-validation accuracy

No. of 	 K-fold	 Classification 	 KNN 	 KNN 	 KNN 	 KNN 	 Linear 
Features		  Tree	 (K=3)	 (K=5)	 (K=7)	 (K=9)	 SVM

6	 5	 89.73	 56.04	 53.67	 56.03	 61.21	 64
12	 5	 92.52	 52.8	 57.43	 51.41	 54.66	 63.54
255	 5	 93.59	 52.3	 54.19	 55.6	 53.79	 93.58
6	 10	 89.74	 53.09	 56.6	 56.96	 58.93	 63.91
12	 10	 92.55	 59.82	 51.92	 55.51	 56.19	 63.46
255	 10	 93.61	 59.3	 54.67	 57.44	 55.9	 93.58
6	 15	 89.68	 51.46	 57.17	 58.47	 56.57	 64.09
12	 15	 92.47	 55.58	 54	 55.23	 53.46	 63.61
255	 15	 93.57	 59.3	 57.49	 56.44	 58.03	 93.58

Results and Discussion

	 The system’s performance is evaluated 
based on various metrics such as percentage 
accuracy, recall, precision, and F1-score. The 
total features used in experimentations and 
feature details are mentioned in Table 3. A cross-
correlation-based feature selection approach 
identifies the relevance of the extracted features 
using GLCM, LBP, and GFCC. There are a total 
of 274 features, which comprise 255 LBB features, 
6 GFCC features, and 12 GLCM features.
	 The cross-correlation-based feature 
selection aids in selecting the important features 
to minimize the computational complexity and 

improve the feature discrepancy. The selected 
features using the cross-correlation-based feature 
selection technique are shown in Figure 4. 
Figure 4 a) provides the correlation value of 
every feature in the feature set that can result in 
better distinctiveness. The features are arranged 
in descending order so that the most promising 
features can be selected for classifier training. 
The effectiveness of the suggested technique is 
evaluated for a variable number of features, and 
the best value is decided based on cross-validation 
accuracy.
	 The performance of various classifiers 
for selected GLCM features is described in Table 
4. The cross-correlation-based feature selection 
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Table 6. Performance of geometrical features based on % cross-validation accuracy

No. of 	 K-fold	 Classification 	 KNN 	 KNN 	 KNN 	 KNN 	 Linear 	 Polynomial 
Features		  Tree	 (K=3)	 (K=5)	 (K=7)	 (K=9)	 SVM 	 SVM

3	 5	 81.76	 64.45	 53.7	 55.13	 56.55	 56.07	 56.07
6	 5	 89.72	 46.23	 50.89	 52.77	 55.55	 52.76	 56.07
3	 10	 81.77	 64.5	 59.89	 58.74	 57.9	 56.1	 56.1
6	 10	 89.69	 45.75	 48.05	 53.67	 56.55	 52.18	 56.1
3	 15	 81.71	 62.47	 60.38	 58.92	 55.87	 56.12	 56.32
6	 15	 89.68	 46.19	 50.06	 50.44	 54.69	 52.76	 56.12

Table 7. Performance of proposed collaborative features (GLCM-LBP-GFCC) 
based on % cross-validation accuracy

No. of 	 K-fold	 Classification 	 KNN 	 KNN 	 KNN 	 KNN 	 Linear 	 RBF 	 Polynomial 
Features 		  Tree	 (K=3)	 (K=5)	 (K=7)	 (K=9)	 SVM 	 SVM	 SVM
(GLCM-
LBP-
GFCC)

10	 5	 90.66	 54.71	 58.39	 57.89	 57.06	 63.58	 100.00	 42.51
	 10	 90.71	 55.49	 56.51	 57.44	 59.39	 63.61	 100.00	 42.55
	 15	 90.63	 57.01	 56.85	 58.03	 56.79	 63.71	 100.00	 42.50
	 20	 90.77	 58.40	 57.68	 57.04	 60.68	 63.54	 100.00	 42.27
	 25	 90.15	 57.20	 57.20	 57.00	 59.30	 63.54	 100.00	 42.41
20	 5	 92.55	 51.41	 52.34	 49.08	 48.17	 67.77	 100.00	 60.70
	 10	 92.48	 56.03	 54.65	 52.31	 51.92	 67.81	 100.00	 60.73
	 15	 92.54	 55.18	 53.86	 53.86	 51.50	 66.80	 100.00	 60.10
	 20	 92.66	 56.00	 57.07	 53.14	 51.77	 67.80	 100.00	 60.57
	 25	 92.25	 54.70	 53.10	 53.29	 50.54	 66.30	 100.00	 59.70
30	 5	 93.93	 51.37	 54.17	 58.42	 69.17	 70.58	 100.00	 43.47
	 10	 93.89	 53.37	 55.58	 56.94	 58.87	 70.54	 100.00	 43.37
	 15	 93.87	 50.17	 54.38	 56.98	 59.40	 70.60	 100.00	 43.33
	 20	 93.90	 53.04	 53.63	 57.04	 58.45	 70.10	 100.00	 43.00
	 25	 93.16	 52.60	 53.50	 54.59	 54.90	 68.30	 100.00	 42.20
40	 5	 95.78	 51.82	 52.74	 56.02	 57.42	 60.73	 100.00	 40.14
	 10	 95.77	 56.01	 54.84	 55.17	 53.67	 60.77	 100.00	 40.21
	 15	 95.80	 56.47	 53.71	 54.15	 54.73	 60.76	 100.00	 40.19
	 20	 95.86	 55.27	 53.50	 54.59	 54.90	 59.73	 100.00	 40.00
	 25	 94.30	 54.38	 53.10	 53.29	 50.54	 57.20	 100.00	 39.20
50	 5	 93.89	 53.37	 55.58	 56.94	 58.87	 70.54	 100.00	 43.37
	 10	 93.93	 51.37	 54.17	 58.42	 69.17	 70.58	 100.00	 43.47
	 15	 92.25	 54.70	 53.10	 53.29	 50.54	 66.30	 100.00	 59.70
	 20	 92.48	 56.03	 54.65	 52.31	 51.92	 67.81	 100.00	 60.73
	 25	 90.63	 57.01	 56.85	 58.03	 56.79	 63.71	 100.00	 42.50

approach suggests that variance, energy, entropy, 
contrast, inverse difference, and dissimilarity 
provide better discrimination over homogeneity, 
autocorrelation, mean, cluster shade, correlation, 
and cluster prominence features. It has shown 
90.71% for six features and 10-fold cross-validation 
for the classification tree classifier, and 91.11% 

accuracy for the RBF-SVM classifier GLCM does 
not focus on the gradient changes in the different 
directions and spatial dependencies in the brain 
MRI image. The GLCM matrix generation method 
is time-consuming for a large-resolution image, and 
features are sensitive to the image resolution.
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Table 8. Recognition time for ASD detection

Method	                                         Recognition Time (sec)
	 Without Feature 	 With Feature Selection 
	 Selection	 (40 Features)

GLCM-LBP-GFCC-KNN	 36.50 	 28.23
GLCM-LBP-GFCC-CT	 31.13	 20.25
GLCM-LBP-GFCC-SVM (Linear)	 32.76	 21.39
GLCM-LBP-GFCC-SVM (Polynomial)	 32.35	 21.89

Fig. 5. Overall performance of a proposed system

	 The LBP features show local texture 
descriptions and help characterize the gradient 
change’s local characteristics over the brain MRI 
image, as given in Table 5. The LBP-CT shows a 
higher percentage accuracy for the complete feature 
vector. However, LBP-CT provides 92.55% for 
12 features and shows almost equal performance 
compared with total LBP features. The RBF and 
Polynomial SVM shows overfitting for LBP 
features and 100% accuracy for all features for 
different k-fold cross-validation. 
	 The performance of three classifiers, 
KNN, SVM, and CT, using geometrical features is 
discussed in Table 6. It has shown higher accuracy 
for six geometrical features along with a CT 
classifier for 5-fold cross-validation. It is observed 
that feature reduction shows lesser significance for 
the geometrical features because of less number 

of features. RBF SVM shows overfitting for 
geometrical features, resulting in 100% accuracy 
for different features and k-fold cross-validations.
	 Table 7 shows the performance of the 
proposed collaborative features that encompass 273 
features of GLCM, LBP, and geometrical features. 
	 The proposed collaborative features 
provide 95.86% accuracy for the CT classifier 
for 40 features for 20-fold cross-validation. 
Increasing the cross-fold validation increases the 
chances of distribution of the proper training set. 
When the proposed method is evaluated using the 
KNN classifier, it provides better results for K=3 
compared with K=5, K=7, and K=9. It has given 
56.47% accuracy for 40 features and 15-fold cross-
validation for K=3. Figure 5 shows the comparative 
analysis of the overall performance of the proposed 
system. It is observed that the CT classifier gives 
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Table 9. Performance comparison with traditional schemes

Author & Year	 MRI Images	 Feature Extraction 	 Feature 	 Classifier	 Performance 
		  Technique	 Selection		  (% Accuracy)

(Lohar, 2020)24	 ABIDE-I (sMRI)	 GLCM	 NA	 KNN (K=15)	 85.71 %
(Devika, 2021)25	 ABIDE-II (fMRI)	 Functional 	 F1-score 	 SVM	 80.76 %
		  connectivity 	 selection
		  matrix
(Maryam , 2019)26	 ABIDE-I (fMRI)	 CNN-Adamax	 NA	 Softmax	 72.00%
	 ABID-II (fMRI)	 CNN-Adamax	 NA	 Softmax	 67.00%
(Yang , 2019)27	 ABIDE (rs-fMRI)	 Different Features	 NA	 Ridge Classifier	 71.98%
(Chen, 2016)28	 ABIDE (rs-fMRI)	 Functional 	 F1-score 	 SVM	 79.17 %
		  connectivity 	 selection
		  matrix
(Zhou, 2014)29	 ABIDE (sMRI)	 Cortial thickness 	 mRMR	 SVM	 70.00%
		  and geometrical 
		  gray matter
Proposed approach	 ABIDE-I (sMRI)	 GLCM-LBP-GFCC	 Correlation- 	 KNN (K=9)	 69.17 %
			   based	 Linear SVM	 70.54 %
			   Feature	 Polynomial SVM	 60.73 %
			   Selection	 CT	 95.86 %

the highest accuracy of 95.85% for 20-fold cross-
validation and performs better than the KNN, linear 
SVM, and polynomial-SVM classifier. The linear 
SVM provides superior results compared with 
the polynomial classifier. The feature selection 
is important in the system’s accuracy and helps 
minimize the algorithm’s complexity. 
	 The total recognition time of the proposed 
scheme with and without feature selection is 
described in Table 8. It is noticed that the cross-
correlation-based feature selection methods help to 
consider the prominent features and minimize the 
recognition time of ASD detection. It is observed 
that the proposed GLCM-LBP-GFCC and the CT 
classifier provide a lesser recognition time of 20.25 
sec for 40 features.
	 The performance of the proposed scheme 
is compared with the previous machine learning-
based approaches used for ASD detection, as given 
in Table 9. It is observed that the anticipated scheme 
outperforms the traditional techniques and suggests 
that a combination of features and efficient feature 
selection helps to improve ASD detection accuracy.
	 It is noted that the proposed approach 
provides 11.80-43.07% improvement over the 
existing techniques utilized for ASD detection 
given in [21,24-29]. The hybrid feature extraction 
technique combines the local texture, global 

texture, and geometrical characteristics of the sMRI 
for ASD detection. Also, the correlation-based 
feature selection aids in choosing the salient and 
distinctive features to improve the ASD detection 
rate. The proposed GLCM-LBP-GFCC-based 
attribute scheme for ASD detection gives superior 
results for CT classifier (95.86%) compared 
with KNN (69.17%), linear SVM (70.54%) and 
polynomial SVM (60.73%).

Conclusion

	 The paper presented the effectiveness of 
the feature fusion technique for ASD detection 
using sMRI of the brain. The collaboration of 
three types of features, namely GLCM, LBP, 
and GFCC, is proposed. Instead of selecting 
all features, the cross-correlation-based feature 
selection is used. The effectiveness of the proposed 
approach is validated using three classifiers such 
as K-Nearest Neighbor, Support Vector Machine, 
and Classification Tree classifier based on cross-
validation accuracy. It is observed that the feature 
fusion technique and cross correlation-based 
feature selection help to grab the salient features 
from the obtained feature set, provide better 
accuracy with a minimum number of features, 
and effectively result in lesser recognition time. 
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The proposed scheme has shown 95.86% accuracy 
for the CT classifier for the collaborative features 
obtained from GLCM, LBP, and GFCC, along with 
cross-correlation-based feature selection.
	 In the future, the performance of the 
anticipated system can be further improved by 
using deep learning frameworks. The availability 
of the ASD dataset is very challenging, and 
limited dataset availability causes class imbalance 
problems. Thus, a data augmentation strategy can 
tackle the class imbalance issue. The efficiency and 
trust of the ASD detection system can be enhanced 
using multimodal biometrics traits such as facial 
expressions, speech, EEG signals, etc., for ASD 
detection.
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