
INTRODUCTION 

	 The membrane of a living cell is about 5 
nm thick, and primarily made up of a phospholipid 
bilayer molecule. A cytoskeletal network gives 
structural reinforcement, and embedded proteins 
carry out the necessary exchange of material 
between the inside and outside of the cell. The polar 
heads of the phospholipid molecules stick out into 
the aqueous intracellular and extracellular solution. 
In the middle of the bilayer the apolar tails, with a 
length of 16–18 carbons, are directed towards each 
other1. This cell membrane acts as a barrier that 
hinders the free diffusion of ions and molecules 
through cell membrane separating cytoplasm and 
external medium. However, the permeability of 
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ABSTRACT

	 Electroporation is a highly effective method to increase permeability of cell membrane by 
using   series of short intense electric pulses. Using this technique, we can introduce small and 
large molecules into cells. The electroporation of biological membranes has various applications 
in molecular biology and medicine. Despite the numerous applications of electroporation, the 
detailed effects of electric pulse on biological membranes as well as exact mechanisms of pore 
formation in living cells are not well understood. Several in-vitro and in-vivo experimental studies 
have been conducted to determine the mechanisms of action of electroporation in various types 
of membranes. Because of the small spatial and fast temporal scales of this process, direct 
observation of electroporation is difficult, theoretical models and molecular dynamic simulations 
have been developed to facilitate the interpretation of experimental data and the understanding of 
the mechanisms of action of electroporation. The role of phospholipids in respond to external electric 
fields, behavior of water dipoles in the complex electric field landscape of the membrane interface 
and reorganization of water dipoles in pore formation process have been proposed in these studies. 
Pore   characteristics such as life time, ion selectivity, size, kinetics of formation as well as number 
of pores are significant factors in the proposed mechanism of action. The present study reviews the 
different mechanisms of action of electroporation proposed by different experimental and modeling 
studies.  
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membrane can be transiently increased when a cell 
is exposed to the short, intense, external electric 
pulses2-5.  Stampfli was the ûrst to suggest the 
reversible breakdown of cell membranes in response 
to external electric fields6. A few years later Coster 
observed the phenomenon of a “punch through” of 
the cell membrane by an electric field7. Discussions 
on the increase in permeability of the plasma 
membrane of a cell due to the formation of pores, 
an effect subsequently named “electroporation” 
by Neumann and Rosenheck, appeared in 19728. 
The effectiveness of this phenomenon depends on 
several parameters that the influence of extracellular 
media, pulse shape, field strength, pulse duration, 
time window and resting transmembrane voltage 
on cell electropermeabilization was investigated 
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in many studies9-16.  As of today, the medical 
applications of electroporation include gene 
electrotransfer17, transdermal drug delivery, tumor 
and tissue ablation, and the electrochemotherapy 
of tumors18, 19. After the first description of in vitro 
gene transfer to living cells by electroporation (EP) 
this technique has been widely used. Innovation 
and sophistication have taken EP into a second 
era, where pulses well controlled with regard to 
both amplitude and duration can be applied, also in 
the in vivo setting. Gene delivery by EP has proven 
efficient in various tissues including tumor, liver, skin 
and muscle20.  The use of electroporation to transport 
non-permeant chemotherapy drugs has been termed 
electrchemotherapy. Extensive invitro or invivo 
study demonstrated that electrochemotherapy is 
efficient, safe, inexpensive and local treatment 
without significant side effects that can be used 
for various type of superficial tumors21-32. Namely, 
electrochemotherapy was, until 2010 only used 
for superficial and accessible tumor nodules, 
with an approximately 80% objective response 
rate[33, 34] but the first study of deep-seated tumor 
electrochemotherapy based on numerical treatment 
planning was reported in 2010. In this, the first 
reported clinical case, deep-seated melanoma 
metastasis in the thigh of the patient was treated by 
electrochemotherapy, according to a treatment plan 
obtained by numerical modeling. the presented work 
demonstrates that treatment of deep-seated tumor 
nodules by electrochemotherapy is feasible and sets 
the ground for numerical treatment planning-based 
electrochemotherapy35.In contrast to reversible EP 
used in ECT and EGT, the irreversible electroporation 
that was first introduced in 200536  leads to cell death 
and can be used in various applications, including 
tumor ablation37,38. this technique is based upon the 
application of strong electrical fields rather than the 
deposition of heat or chemical agents39, 40.  Neal et 
al demonstrated that human breast cancer tumors 
orthotopically implanted in the mouse can be 
successfully treated using IRE. And IRE could be 
an advantageous alternative to surgical resection 
for breast conserving therapy19. The recent studies 
of in vivo electropermeabilization indicate a shift 
towards the combining this phenomenon with 
other techniques such as sonoporation41, 42 and 
immunotherapy43. Future studies will be to test this 
multimodal poration strategy for delivery of larger 

genetic molecule such as siRNA or even DNA-
plasmid into mammalian cells.

	 Experimental or theoretical models have 
been proposed to explain the mechanism of this 
reversible membrane electropermeabilization and 
its potentiality to allow the access of non-permeant 
molecules inside the cells, Nevertheless, the 
molecular definition of the “Transient Permeable 
Structures” is not yet known. The purpose of this 
paper is to review different studies about mechanism 
of electroporation.

Theory of Electroporation
	 The transmembrane potential induced in 
a cell by an external field is generally described by 
the Eq.1: 

	 ∆Vm=f Eext rcos ϕ	 ...(1)                                                              

	 Where Vm is the trans-membrane potential, 
f a form factor describing the impact of the cell on 
the extracellular field distribution, Eext  the applied 
electric field, r the cell radius, and ϕ is the polar 
angle with respect to the external field. The value 
for the factor  is listed by many authors as 1.5; 
however, this factor is dependent on a number of 
different factors14. Electroporation is achieved when 
the Vm superimposed on the resting transmembrane 
potential is larger than a threshold,   Vm is generally 
reported to be in the order of 1 V44, although 
an experimental and theoretical study has later 
described it as being 20045.  This voltage affects the 
functioning of voltage-gated membrane channels, 
initiates the action potentials, it can lead to cell 
membrane electroporation46. Permeabilization will 
initially happen at the pole of the cell facing the 
positive electrode, because owing to the negative 
interior of the cell this is where the capacitance of the 
membrane is first exceeded when an external field 
is applied(fig1)47. Despite the wide laboratory use of 
electroporation, the details of the effects of electric 
fields on biological membranes, and particularly 
the  exact molecular mechanisms of pore creation 
in living cells, are not well understood48. Numerous 
experimental and theoretical studies have been 
aimed at revealing the mechanism of electroporation.

Experimental Studies
	 Several exper imental studies have 
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been carried out to determine the mechanism of 
electroporation in various types of membranes 
ranging from artificial lipid bilayers to chick myocyte 
monolayers49-57. These studies investigated the 
properties of pore formation and resealing using 
pulse charge techniques58,59 measured the kinetics 
of electroporation in voltage-clamped membranes60, 
tracked the movement of ions and fluorescent 
dyes across electroporated membranes61, imaged 
the transmembrane potential using voltage-
sensitive dyes62 and visualized large pores using 
freeze-fracture electron microscopy52. Beside of 
these constant current method can be applied for 
continuous observation of pore dynamical behavior63. 
Litster64 and Taupin, Dvolaitzky, and Sauterey65 were 
probably the first to mention the role of thermal 
ûuctuations in pore formation, and the existence 
of a threshold pore formation energy. Also under 
electrical stress, there are two types of membrane 
behaviors: irreversible and reversible electrical 
breakdown. In the case of irreversible electrical 
breakdown a measurable increase in membrane 
conductance rapidly leads to mechanical rupture 
of the membrane66, 67. But by using short-intense 
electric pulses (reversible) even after five to six 
orders of magnitude increase of conductance, 
membrane conductance quickly drops to the initial 
level upon voltage decrease51, 58. 

	 To reveal the electroporation process in 
the early stage, conductance variations  associated 
with the formation of transient metastable single 
pores in unmodified bilayer lipid membrane were 
studied under high electric fields68. In addition, single 
metastable nanopores are formed before the actual 
electroporation under constant-current conditions69. 
This finding showed that transmembrane potential 
value is more relevant in triggering electroporation 
process than the current value. However, the current 
value defines the speed of membrane charging 
and transitions pace between subsequent stages 
of electroporation. Also, this study showed that the 
planar membrane is significantly more susceptible 
to electroporation when its capacitance is low, which 
is probably related to its thickness and structure.

	 Direct observation of electroporation is 
difficult because of the small spatial and fast temporal 
scales of this process. Therefore, theoretical models 
have been developed to facilitate the interpretation 

Fig. 1: Electroporation occurs when an applied 
external field exceeds the capacity of the cell 
membrane. It is proposed that water enters the 
cell membrane during the dielectric breakdown 
and that transient hydrophilic pores are formed

of experimental data and the understanding of the 
mechanism of electroporation.

 Theoretical Models
	 A  number  o f  theore t i ca l  mode ls 
have been proposed for the explanation of 
electroporation. Hydrodynamic, elastic, hydroelastic, 
viscohydroelastic, phase transition, domain-interface 
breakdown model and aqueous pore formation are 
examples of these models.The hydrodynamic, the 
elastic, the viscoelastic, and the viscohydroelastic 
models consider electroporation as a large scale 
phenomenon, with no direct role attributed to 
the molecular structure of the membrane. The 
phase transition model and the domain-interface 
breakdown models represent the other extreme, 
attempting to explain the electroporation by the 
properties of individual lipid molecules and the 
interactions between them. The aqueous pore 
formation offers a compromise between these two 
approaches considering the electropermeabilization 
as a result of the formation of transient aqueous 
pores in the lipid bilayer. Each pore is formed by a 
large number of lipid molecules, while the shape, 
size, and stability of the pore are strongly influenced 
by the nature of these molecules and their local 
electrochemical interactions70.

	 An applied electric field is capable of 
affecting the hydrated polar head groups of lipids, 
which leads to the formation of hydrophilic pores. 
The field-induced translational motions of the polar 
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lipids in the curved pore wall also rationalize the 
huge acceleration of lipid flip-flop and the eventual 
redistribution of the lipids and charges from the 
internal membrane monolayer to the outer monolayer 
and vice versa71. One deficiency of the model is the 
lack of consideration of the hydration of proteins and 
lipid polar headgroups as well as the hydrated ions 
that are subject of transport through the pores70. It 
should be taken into account that the lipids adjacent 
to the aqueous molecules inside of the pore are 
reoriented in a manner that their hydrophilic heads 
are facing the pore, while their hydrophobic tails are 
hidden inside the membrane72. 

	 Today, the aqueous pore formation model 
is considered to be the most convincing explanation 
of electroporation. To improve the current aqueous 
pore model, the molecular dynamic simulations were 
used.

Molecular Dynamic Models
	 MD simulations provide the most basic 
and fundamental approaches for modeling the 
effect of electric fields on cells. Considering the cell 
membrane as a lipid bilayer, the interacting particles 
are characterized by charged polar heads of the lipids. 
Thus, the structural details on the nanoscale can be 
included into the simulation for maximum accuracy 
and relevant physics. The MD models suggest that 
pulses of 1 ns duration or less may be ineffective at 
causing electro-pore formation, regardless of the 
field amplitude, since the field will not be present 
long enough to support the entire sequence of 
water and lipid reorganization necessary to form a 
stable pore73. MD appears to be the most plausible 
approach to understanding spatial and temporal 
electric field membrane interactions on a nanoscale. 
MD is a time-dependent kinetic scheme that follows 
the trajectories of N-interaction bodies subject to 
chosen external fields. It is a microscopic approach 
that specifically treats every atom within the chosen 
simulation region. MD relies on the application of 
classical Newtonian mechanics for the dynamical 
movement of ions and neutral atoms, taking into 
account the multiple interactions within a realistic 
molecular representation of the biosystem. The 
results of MD calculations shed light on the physics of 
such interactions and provide information on critical 
electric fields for field–membrane interactions. Thus, 
for example, a segment of the lipid bilayer membrane 

or a channel protein is first constructed taking into 
account the initial geometric arrangement of all the 
atoms and their bonding angles. Regions of water 
containing user-specified ion densities are then 
defined on either side of the membrane to form the 
total simulation space. This method has only recently 
been used to model cellular membranes under the 
electrical field74-77, mechanical stress or both of 
them78, 79. Here, a few of most significant results are 
mentioned separately: 

Behavior of Water Molecules
	 According to Tieleman’s investigation, 
qualitatively, the pore formation does not seem to 
depend on the nature of the lipid head-group. In fact, 
his MD simulations show that pore formation is driven 
by local electric field gradients at the water/lipid 
interface. The initial steps of pore formation do not 
seem to depend on the nature of the lipid headgroups 
but are determined by the increased likelihood of 
water defects. Indeed Water molecules move in 
field gradients, which increases the probability of 
water defects penetrating into the bilayer interior. 
Such water defects cause a further increase in the 
local electric field, accelerating the process of pore 
formation. The likelihood of pore formation appears 
to be increased by local membrane defects involving 
lipid headgroups. The resulting pores are hydrophilic, 
lined by phospholipid headgroups80.

Formation of Water Wire and Lipid Headgroups 
Reorient
	 Formation of water wires and water 
channels in the hydrophobic domain of lipid bilayers 
when these are subject to an electrical ûeld in the 
range 0.5–1.0 V/nm demonstrated by Tarek and 
coworker. The simulations have evidenced that the 
electroporation process takes place in two stages; 
first, water molecules organized in single ûle like 
wires penetrate the hydrophobic core of the bilayer. 
This water penetration is apparently favored by local 
defects in the lipid headgroup region. Then, these 
‘defects’ grow in size, reaching the nanometer length 
scale, these pores are stabilized by lipid headgroups 
that migrate from the membrane-water interface to 
the middle of the bilayer lipid interface. It is suggested 
that water wires formation, the precursor to full 
electroporation, is driven by local ûeld gradients at 
the water81.  
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Analysis of Energetics: Reorganization of Water 
Dipoles
	 Tokman et al, using molecular dynamics 
simulations, demonstrated that pore formation 
is driven by the reorganization of the interfacial 
water molecules. Their energetic analysis and 
comparisons of simulations with and without the lipid 
bilayer showed that the poration process is driven 
by field-induced reorganization of water dipoles 
at the water-lipid or water-vacuum interfaces into 
more energetically favorable configurations, with 
their molecular dipoles oriented in the external field. 
They concluded that interfacial water molecules are 
the main players in the process, its initiators and 
drivers. The role of the lipid layer, to a first-order 
approximation, is then reduced to a relatively passive 
barrier. This new view of electroporation simplifies 
opens up new opportunities in both theoretical 
modeling of the process and experimental research 
to better control or to use it in new, innovative 
ways[82]. According to this view, the pore formation 
is driven by the collective tendency of the interfacial 
water dipoles to minimize their electrostatic 
interactions, while adopting an orientation that 
minimizes the energy of the water dipole in the 
external electric field, reflected in the steady drop 
in the per molecule energy of waters in the nascent 
pore as the protrusion develops.

Properties of Nanopores
	 According to several experimental and 
theoretical models, the following features have been 
obtained for the pores:

Pore Lifetime
	 Studies that employed conventional 
electroporation (using milli- and microsecond-
duration pulses) showed that the permeabilized 
state of the plasma membrane persists from 
fractions of a second to minutes and even hours 
after the treatment83, 84. However, first studies of 
plasma membrane poration with USEP introduced 
nanopores as “nanosecond-duration, nanometer-
diameter openings in the membrane”85. In the same 
study, observations of the effect of high-rate pulse 
trains indicated longer nanopore lifetime, possibly 
“on the order of microseconds”. Counterintuitively, 
the smallest pores (<“1 nm in diameter) were 
reported to have relatively long lifetime, probably 
because of the existence of a significant energy 

barrier which prevents their complete closing[83].

Ion Selectivity of Nanopores
	 Aqueous pores having diameter much 
larger than ions passing through them are unlikely 
to have any ion selectivity, and relative permeabilities 
of different ions will be proportional to their water 
mobility. In contrast, USEP-opened nanopores 
display preferential permeability to certain ion 
species. This effect was found both in cells that 
were exposed intact and “patched” afterward, and in 
those that were “patched” prior to the exposure[86]. 
These experiments established that nanopores are 
preferentially permeable to cations. Although K+ and 
Cl” ions have the same mobility in water, Cl” anion 
was about 10-fold less permeable, and this result 
was reproduced in several independent series of 
experiments85.

Number and Size of Pore
	 From those studies in which the number 
and sizes of pores were estimated, it follows that 
the pores induced by exposure to an electric pulse 
leading to the poration of almost 100% of the cells 
are smaller than 0.5–1.0 nm[87, 88], Nevertheless, 
the appearance of such small pores is sufficient for 
a cell to be regarded as porated. fractions of porated 
cell dependence on the amplitude and the duration 
of the electric pulse89.

Kinetics of Pore Formation and Resealing
	 The kinetics of pore formation in cellular 
and artificial membranes during an electric pulse 
and their disappearance after the pulse are mainly 
measured by studying the time course of the 
changes of (1) the membrane conductivity[90-93], 
(2) the total permeability of the membrane to small 
inorganic ions87, 94, and (3) the fraction of cells 
permeable to small inorganic ions95, 96 or certain 
membrane-impermeant compounds97. The process 
of the disappearance of pores after an electric pulse 
is particularly important for   practical applications. 
Estimated numerical values of the parameters show 
that increasing the amplitude of an electric pulse 
increases apparent number of pores created during 
the pulse (the rate of pore resealing remains the 
same) or the rate of pore resealing (the average 
number of pores remains the same)98. The kinetics 
of the membrane penetration of water ûngers and of 
lipid headgroups is highly dependent, as expected, 
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on the intensity of the applied ûeld. Whereas at 
0.5V/nm the ûrst water ûngers develop within a 
nanosecond, the same process is much faster (200 
PS) for the 1.0 V/nm run. Migration of the headgroups 
toward the interior of the bilayer takes longer (4 ns 
and 1 ns, respectively for the bilayer subject to 0.5 
V/nm and 1 V/nm)[81]. The resealing time could 
also vary with the cell type, and be affected by the 
composition and temperature of the extracellular 
medium83.

CONCLUSION 

	 Electroporation is a promising technique 
for targeted drug delivery with various applications 
in cancer therapy. The initial studies on the 
treatment of superficial and deep seated tumors 
with electroporation showed significant outcomes. 
To improve the electroporation as a new modality 
in cancer treatment, different studies should be 
performed to determine the mechanisms of action 
of the technique. Conducting in-vivo and in-vitro 
experimental, as well as exact modeling studies can 
shed light on the different aspects of mechanisms of 
action of this technique.      
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