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	 The key focus of the current study is implementation of an automated semantic 
segmentation model to localize and extract bone regions from digital X-ray images. Methods: 
The proposed segmentation framework uses a pre-processing stage which follows convolutional 
neural network (CNN) obtained segmentation stage to extract the bone region from X-ray 
images, mainly for diagnosing critical conditions such as osteoporosis. Since the presence of 
noise is critical in image analysis, the X-ray images are initially processed with a grey wolf 
optimization (GWO) guided non-local means (NLM) denoising. The segmentation stage uses 
a Multi-Res U-Net architecture with attention modules. Findings: The proposed methodology 
shows superior results while segmenting bone regions from real X-ray images. The experiments 
include an ablation study that substantiates the need for the proposed denoising approach. 
Several standard segmentation benchmarks such as precision, recall, Dice-score, specificity, 
Intersection over Union (IOU), and total accuracy have been used for a comprehensive study. 
The proposed architectural has good impact compared to the state-of-the-art bone segmentation 
models and is compared both quantitatively and qualitatively. Novelty: The denoising using 
GWO-NLM adaptively chose the denoising parameters based on the required conditions and 
can be reused in other medical image analysis domains with minimal finetuning. The design 
of the proposed CNN model also aims at better performance on the target datasets.

Keywords: Convolutional neural network; Grey wolf optimization; Multi-Res U-Net;
Non-local means denoising; Semantic segmentation.

	 Recent advances in computer technology, 
machine learning, and the popularity of deep 
learning algorithms accelerated faster and more 
accurate image analysis, which eventually facilitated 
the popularity of computer-aided diagnosis (CAD). 
Identification, localization, and quantification 
of the region of interest is critical in medical 
diagnosis, and machine vision or image processing 
using machine learning is usually looking forward 
to boosting the perfection of automated decision-
making.

	 Image segmentation refers to a broad 
research domain that helps to localize and extract 
the field of interest and is an important part of 
automated medical diagnosis. Identifying specific 
entities (like bone structures, lesions, blood vessels, 
etc.) from the images we are working with can be 
achieved only after gaining a good understanding 
of their unique features and experience over time. 
Recent years have seen significant advancements 
in the image quality, acquisition time and cost-
effectiveness of well-known medical imaging 
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methods such as computed tomography (CT) scan, 
X-ray imaging, magnetic resonance imaging (MRI) 
and ultrasonography (USG)1. However, these 
modalities have its own drawbacks mainly motion 
artifacts, noise, registration errors and contrast 
variations, leading to poor decision-making unless 
image processing algorithms specially equipped to 
address these issues. The most known applications 
include denoising, image registration, segmentation 
and classification.
	 Earlier, image segmentation approaches 
centered on unsupervised machine learning 
techniques mainly clustering and thresholding 
which may not require massive training data or 
ample computational resources2. Nevertheless, 
the increased complexity and demand for medical 
imaging data has evolved algorithms towards 
general feature extraction, that has raised the 
necessity for supervised machine learning 
techniques. Earlier, traditional most commonly 
used supervised machine learning models could 
learn generalized features from small, labeled 
datasets using handcrafted feature representations. 
However, it demands experts with superior domain 
knowledge, making human intervention inevitable. 
Since the learning depends highly on the reliability 
of the feature vectors, the models may not be 
reusable.
	 Research on decision-making using 
neural networks has been started from the second 
half of 20th century. Numerous problems were 
faced earlier due to a lack of adequate data with 
high-performance computing. However, increased 
digital data accessibility and breakthroughs in GPU 
capabilities accelerated growth in the development 
of neural network algorithms. With the growing 
importance of imaging data in digital data pool, 
research has been further extended to convolutional 
neural networks (CNNs)3. The breakthroughs in 
CNN also benefited the medical image processing 
domain, mainly in the areas of segmentation and 
classification. Likewise, several convolutional 
neural networks based medical image segmentation 
techniques have been reported in the survey.
	 Diagnosis based on bone or similar 
hard tissue segmentation is comparatively lesser, 
and hence most of the research articles in the 
biomedical image segmentation domain focus 
on other predominant imaging modalities such 
as CT or MRI images rather than X-ray images. 

X-ray images are also susceptible to noise and 
contrast variations. Image quality in terms of pixel 
resolution is also critical in X-ray image analysis. 
Moreover, segmentation of the bone regions from 
similarly shaded soft tissues is also challenging. 
As a result, conventional machine learning models 
generally ineffective for segmenting X-ray images.
	 Unsuperv i sed  l ea rn ing  such  as 
thresholding and clustering requires homogeneous 
pixel distribution, and the distinction between the 
foreground and background regions should be 
clear. Active contour-based models require manual 
intervention in marking the initial seed points, 
and such initialization may often require manual 
intervention from an expert. Improper feature 
extraction may create incorrect segmentation in the 
case of conventional supervised ML approaches.
	 Deep learning techniques can learn 
the image data adaptively and provide better 
accuracy, and the same is applicable in X-ray 
images as well. The key objective of current study 
is to develop and implement deep learning-based 
semantic segmentation model that can extract bone 
structures from digital X-ray images. This paper 
presents a novel CNN architecture that addresses 
several drawbacks of the traditional U-Net model4, 
with proper integration of expert modules such 
as attention gates, residual blocks, and deep 
supervision. Additionally, the pipeline employs 
a customized denoising approach: GWO-NLM, 
allowing optimal denoising level adjustment during 
batch pre-processing of X-ray images.
	 The main section of this article is 
as follows: Section 2  elaborates analysis of 
relevant literature on existing bone segmentation 
techniques. Section 3 discusses about the proposed 
network architecture. Section 4 represents the 
experimental setup, results, and discussions. Last, 
Section 5 conclusion of this paper.
Literature Review
	 In this session, a survey on existing bone 
segmentation approaches has been conducted. 
Author proposed a mean-shift segmentation and an 
adaptive region merging algorithm to extract bone 
regions from X-ray images. Mean-shift clustering 
helps cluster the coarse level bone regions, and 
region merging helps identify the true boundaries. 
Though the approach is effective in good-quality 
X-ray images, the model is susceptible to image 
noise and contrast variations. An advanced version 
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of the region growing method has been proposed6 
that uses multi-resolution wavelets and an active 
contour method. The study also uses a faster Hough 
transform to identify the diaphysis region from the 
extracted bone region5.
	 Author segmented lateral skull images 
using a fuzzy set algorithm. Three distinct subsets 
are obtained by minimizing the known fuzzy 
index function: background, skin, and bones. 
As the similarity between two pixels increases, 
the fuzzy index function decreases. Due to the 
absence of spatial information, the segmented bone 
regions are disjoint and degrades the segmentation 
performance.7

	 Author presented a deep learning-based 
pediatric hand bone segmentation from X-ray 
images using a shallow layered U-Net based 
architecture. The model uses an encoder-decoder 
structure with depth-2 and variable kernel sizes for 
multi-scale image analysis. This work is one of the 
foremost hand bone region segmentation studies 
with deep learning these results show favorable 
performance in segmenting the bones from X-ray 
images acquired from children in different age 
groups.8

	 Author presented a machine learning 
approach to segment bone from X-rays, presented 
an end-to-end system that results in efficient 
and robust inference from small datasets. Their 
architecture: X-Net consists of multiple down 
sampling stage and up sampling stage in a single 
network. The multistage deconvolution stage 
entitles deviating the degrees of fine-grain feature 
level reconstruction mainly during upscaling, thus 
creating a denser feature space. The architecture 
is designed to perform more convolution on small 
datasets with minimal reduction in the boundary 
details.8

	 An approach which works on dilated 
residual based U-Net to segment the femur region 
and tibia bones region.9 The model uses dilated 
convolution instead of standard known convolution 
to scale the depth of receptive field without max-
pooling. A study estimating osteoporosis from 
X-ray images using a segmentation followed by 
a bone mineral density estimation. The model 
used a U-Net architecture with an attention gate 
mechanism to focus more on the bone regions. 
The above-discussed CNN models bear the native 
issue of U-Net, such as an unguaranteed focus 

on the region of interest and poor segmentation 
performance over the boundary areas. The proposed 
model investigates the drawbacks in the traditional 
encoder-decoder based CNN models, and addresses 
those issues by integrating appropriate modules to 
improve the bone segmentation.11

Methodology
	 The current study aims at segmenting 
bone regions from X-ray images that can be 
further processed to diagnose related critical 
illness conditions such as osteoporosis12. Since 
the quantification of the bone area is crucial in 
quantifying the bone mineral density (BMD), the 
segmentation quality should be fair enough to 
conduct further analysis. Hence the methodology 
is designed to improve the quality of the overall 
segmentation performance by integrating a novel 
denoising method for smoothing the image data 
followed by a deep learning-based segmentation. 
The overall pipeline is divided into two sub-
processing stages. The initial stage will do a pre-
processing stage to make the images in uniform 
pixel resolution and reduce noise from the raw 
input X-ray images. The latter stage uses the actual 
CNN-based semantic segmentation to extract bone 
regions from the soft tissue and background areas.
Pre-processing Stage
	 In this study, we have used X-ray images 
to segment the hard tissue bone regions25. The input 
images are acquired from various body parts such 
as chest, femur, ankle, etc., and hence generated 
with different pixel resolutions. The X-ray images 
may also be corrupted with noise and can make 
the segmentation task challenging. Hence the pre-
processing part contains a resizing stage followed 
by a denoising stage for filtering the data for the 
subsequent segmentation stages.
Image Resizing
	 The X-ray images in the current study 
is of different resolution and a resizing operation 
is necessary to standardize the images for further 
analysis. Since the subsequent stage uses a CNN 
based segmentation, we resized all images to 
512x512 resolution by considering various factors 
such as image quality, and computation complexity.
Image Denoising
	 X-ray images are often susceptible to 
various images noises such as speckle noise, 
impulse noise, and Poisson noise13. The type 
and amount of noise can vary widely depending 
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on the hardware configuration; therefore, it is 
nearly impossible to expect low noise X-ray 
images. This demands an exclusive denoising 
stage prior to the main segmentation procedure. 
In this study proposes an improved non-local 
means (NLM) denoising14, optimized using grey 
wolf optimization (GWO)15 to filter the image 
with a proper trade-off among denoising level and 
computation time. The following sub-sections 
provide an in-depth discussion of the proposed 
grey wolf optimization-based non-local means 
(GWO-NLM) denoising stage.
	 An NLM filter’s denoising performance is 
generally determined by numerous hyperparameters 
such as search  radius, kernel size and level 
of degrees of filtering. In general, these parameters 
are chosen empirically by weighing a variety 
of considerations such as the desired denoising 
region and computational cost. However, manually 
selecting these variables is challenging when 
processing a large image dataset. The choice of 
these several parameters has a serious impact 
on the weight of similarity between comparable 
blocks, which influences the denoising result. For 
example, a search space or large kernel increases 
the processing complexity, whereas a small 
sized kernel or search window may not remove 
noisy pixels within the needed range. As a result, 
automating the selection of these hyperparameters 
will aid in determining the ideal trade-off amongst 
the time complexity and denoising performance.
	 This paper presents an automatic 
parameter-based selection method for Non-Linear 
Means filters based on GWO. GWO assesses 
relevant  combination of the Non-Linear Means 
parameters based on the obtained fitness function 
the optimal combination is chosen. These best 
parameters are later provided to the Non-Linear 
Means module to fit the final denoising stage. The 
architecture block diagram flow is depicted in 
Figure 1.
	 Local Means Filters find the pixels 
average value around the neighborhood of a target 
pixel, then replace target pixel with those values. 
Though this operation smoothens the image by 
removing odd pixels, it may also introduce an 
undesired blurring effect near the edges. On the 
other side, the non-local means filtering algorithm 
considers a nearby area around the target pixel and 
then finds the identical patches in that particular 

search space and replaces the center pixel with a 
weighted average with respect to selected patches 
center pixels. Each patch is assigned a weight 
depending on its similarity to the target patch. Thus, 
in NLM filtering, the updated pixel value mostly 
depends on the center pixels of the patches very 
close to the target patch and can retain the relevant 
details such as edges and corners.
	 The GWO algorithm is designed to 
simulate the natural leadership mechanism in 
hierarchical and hunting fashion of grey wolves. 
Based on the ranking, a wolf pack can be divided 
into four categories namely alpha (á), beta (â), 
delta (ä), and omega (ù). Here, Alpha is leader 
of the wolves during hunting, alpha, beta, and 
delta wolves altogether adjust and modify their 
locations in response to the prey’s position, while 
omega wolves follow either of them. The GWO 
model treats alpha, beta, and delta wolves as 
primary search agents, with their positions as the 
optimal solutions to the optimization problem 
given. The search agent’s locations are updated 
with respect to the fitness function. Hence, Once 
the fitness function starts converging and obtain 
optimal value, the average of the alpha, beta, and 
delta wolves search agent last locations will be 
considered as the optimal solution. 
	 In the proposed denoising algorithm, the 
patch size (P) around each target pixel, research 
window radius (R), and filtering parameter (h) 
control the degree of smoothing and is planned 
to adjust it adaptively based on an optimal trade-
off between the degree of filtering and the time 
complexity to process the image. Therefore, the 
search agent space will be in 3D space represented 
using ,  and . These parameters are updated in each 
iteration and hence an   search agent () at  iteration 
can be represented as . The number of search agents 
is also critical while designing a GWO model. 
	 The GWO algorithm initializes with a set 
of random values of the search agent parameters 
and will pass through the fitness function:

	
...(1)

	 where  Iout is the output of the NLM filter 
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with input image Iin,  indicates the sharpness of 
the image, r and c are the rows and columns in 
the image, W1, W2  and W3 are the weights used 
to assign a balance between various criteria, and  
represent the time complexity in seconds while 
filtering the image.
	 The following steps describe the various 
stages in a GWO-NLM denoising approach.
Step1: Initialization of the search agents
	 The no. of search agents corresponds to 
the number of wolves in the pack. So, there can be 
a minimum three search agents (alpha, beta, and 
delta). The higher the search agents, more omega 
wolves will be in action that leads to a better 
optimization at the cost of computational cost being 
increased. 
	 Let  is the group of searches agents’ 
elements, where  represents the position of 
search agent. The representation of the search 
agent location is mainly depending on the no. of 
parameters required to obtain optimized solution 
for a given problem. The proposed algorithm uses 
five search agents which is analogous to a pack 
of five wolves. During initialization, the search 
agent’s initial positions are always initialized with 
some random values within the parameter’s lower 
and upper bounds. ,  and  parameters are optimized 
in the case of NLM optimization, and the equation 
will be

	 ...(2)

	 ...(3)

	 where (PU, RU, hU) and (PL, RL, hL) denotes 
upper bound , lower bound of patch size, search 
radius, and degree of filtering.

Step 2: Finding alpha, beta and delta search 
agents
	 Compute the objective function   〖_i〗
(Xn ) corresponding to each search agent based on 
their values at ith iteration. This will be calculated 
for all search agents, and the scores of alpha, beta 
and delta search agents are updated based on this 
fitness values as shown below.

	 Let Xi
n; n={1,2,…,N};  is the set of search 

agents,  Xi
α, Xi

β, and Xi
δ are the positions of alpha, 

beta and delta search agents, and Si
α, Si

β, and Si
δ 

are the fitness scores of alpha, beta and delta in the 
iteration, their values are updated as shown below.

	 ...(4)

	 ...(5)

	 ...(6)

Step 3: Update the remaining search agents 
positions 
	 After updating the high ranked alpha, 
beta, and delta agents based on the fitness function, 
the remaining search agents are also updated with 
respect to the positions of these alpha, beta, and 
delta agents. Mathematically, they are shown in 
following equations.

	 ...(7)

	 ...(8)

	 ...(9)

	 ...(10)

	 ...(11)

	 ...(12)
                                                                                               

	 ...(13)
	 where the constant vectors  {C1,C1,C3}, 
and {A1,A1,A3}, are computed by using the 
formulae

	 ...(14)
And
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                                                                              ...(15)

and r1, and  r2 are the random vectors in the range 
[0, 1] and  is linearly decaying from 2 to 0.
	 Hence the locations of alpha, beta, and 
delta is directly depending on the fitness values and 
the omega search agents are based on the average 
positions of those top three search agents.
Step 4: Stopping criteria
	 Steps 2 and 3 are repeated iteratively to 
update the positional vectors of the search agents 
in order to arrive at the optimal condition. Because 
the entire process is iterative, a stopping criterion 
is required to terminate the process once it reaches 
an optimal state. As a result, a stopping criterion is 
defined based on Fitness value or specifying a fixed 
number of executed iterations.
Image Normalization
	 The denoised image is planned to process 
via a CNN model and converted to a Z-normalized 
form to reduce the redundancy in the data and 
make it in a finite range of 0 - 1. It is achieved 
by subtracting the mean value from the data and 
dividing it using the standard deviation.
Semantic Segmentation
	 The proposed method uses a deep 
learning architecture that uses an encoder-decoder 
based Convolutional neural network model with 
several optimization modules. The approach uses 
attention modules, residual connections, and 
rigorous supervision to improve learning. The 
U-Net architecture with a depth of 4 is used as the 
baseline architecture. The encoding and decoding 
stages include a combination of traditional 
convolution layers and residual modules. By 
customizing the network architecture, Our 
proposed implemented model overcomes several 
shortcomings of the mainstream  CNN based 
segmentation architectures. The following sections 
provide an in-depth explanation of the proposed 
segmentation model.
CNN Architecture
	 The proposed model uses a series of 
normal convolution layers and residual convolution 
blocks in each encoder and decoder depths to 
leverage multiscale feature extraction and reduce 
computation cost. A standard convolution layer is 
used in each depth, followed by a residual block 

consisting of two standard convolution layers. 
This will contribute a total of three successive 
convolution operations with 3x3 kernels and lead 
to a feature extraction at three different scales 
(3x3, 5x5, and 7x7). The identity mappings in 
the residual block reduce the feature degradation 
problem and vanishing gradient issues and 
improve learning performance by enabling better 
convergence through several possible network 
paths. 
	 Another advantage of these residual 
connections is in reducing the computational 
overhead. When the number of convolution layers 
increases, the computation cost often increases 
significantly due to the quadratic effect16. in 
the increase in parameters. This will contribute 
considerable multiplications and lead to an 
undesirable training time complexity. Furthermore, 
the quadratic effect increases the memory required 
to process additional feature space. Hence, 
spreading the trainable parameters into multiple 
convolution layers per depth using residual blocks 
helps promote better learning with less computation 
complexity.
	 The proposed network architecture uses 
a module called attention gates to regulate the pass 
of finer features in both the encoder and the decoder 
frameworks. Oktay et al.17 proposed one of the first 
deep learning system for segmentation using 
an attention gated U-Net model. Attention modules 
aid in guiding the learning by focusing more on 
the relevant areas of the image where significant 
characteristics are located. Though pooling 
operations in the standard U-Net architecture’s 
encoder stage helps pass relevant features to the 
deeper layer, it also causes the loss of finer details 
due to the down sampling of feature spaces. This 
lack of learning about the finer features may reduce 
saliency and affect segmentation efficiency, and 
skip connections are usually preferred in FCNN 
frameworks to reduce these issues. 
	 However, long skip connections cannot 
preserve the saliency in the layers in advanced 
depths and may lead to a semantic disparity 
between the encoder and decoder features. In 
addition, as the activation outcomes at deeper 
layers have a greater level of detail, using the 
attention modules in advanced depths aids in 
negating irrelevant features and passing salient 
information from the field of interest of the image. 



941Dodamani & Danti, Biomed. & Pharmacol. J,  Vol. 16(2), 935-946 (2023)

The proposed segmentation network utilizes a 
convolutional block attention module (CBAM) 18 

comprised of a channel and a spatial submodule, 
where they highlight the prominent features 
through a set of parallel convolutional processes.
	 The model also uses residual blocks to 
pass features from encoder to decoder path at 
shallow depths. This will minimize the semantic 
gap between the activation outcomes of the 
starting and ending layers and makes the feature 
concatenation more useful. In order to preserve 
the high-level features at the advanced encoder 
layers and to minimize the semantic gap between 
the shallow depths, the initial depths (depth-0 
and depth-1) uses more residual blocks in the 
skip connection, depth-2 and depth-3 use a single 
residual block to bypass the features, and the 
depth-4 uses an attention block.
	 The side layers in figure 2 illustrate 
the “deep supervision” 19, in which the final 
classification layer uses upsampled activation from 
all decoder levels after appropriately resizing the 
feature map via transpose convolution. Hence, 
the final classification layer can directly assess on 
features from various image scales and contributes 
comprehensive learning in the network.
Training Methodology
	 Each convolutional layer in the encoding 
path (both standard convolution and residual block) 
utilizes batch normalization and ReLU activation20. 

The proposed model employs a depth-3 CNN 
architecture and operates on 512x512  image 
resolution. All convolutions use 32 kernels in 
depths 0 and 1, and the no. of kernels increases 
in successive layers. As a result, the depth-2 and 
depth-3 encoder stages employ 64 and 96 kernels, 
respectively. The hyperparameters such as the 
number of kernels in each layer, the no. of layers in 
the residual block, and network depth are designed 
based on the feedback obtained from several 
experiments. The increasing number of kernels in 
the higher depths helps widen the feature space 
and compensate for the feature size reduction due 
to max-pooling. Through the CBAM activation 
module, the bottleneck features are passed from 
the last encoding layer to the foremost decoding 
layer. Besides, CBAM is integrated prior to the 
final classification layer in order to concentrate the 
characteristics primarily from the region of interest.
	 The decoding path employs appropriate 

reverse operations to increase the resolution of the 
feature space to that input image. The Transposed 
convolution is used to perform the up sampling. 
The encoding path’s feature maps are concatenated 
with the decoding layers via skip connections. 
Additionally, L2 regularizes21 are included to 
prevent overfitting. The final classification layer 
employs the sigmoid activation function to scale 
the segmentation map’s probability values into the 
range [0,1].
	 The loss function is another parameter 
that can significantly impact while updating the 
trainable weight parameters. Our model, aims at 
segmenting the bone regions from X-ray images 
and hence the chance of class imbalance between 
the foreground class (bone region) and background 
class (soft tissue region + image background). 
This particular class imbalance can affect the 
required learning process and adversely affect the 
segmentation performance. Hence, the current 
work uses a loss function Tversky loss function22 
that can handle the bias in the segmentation classes. 
While using the Tversky loss function, the weighing 
factors for false negatives and false positives can 
be adjusted and considered a generalized Dice 
loss. This enables the model to train by keeping a 
good precision-recall trade-off based on the input 
data. Mathematically, the Tversky loss function is 
depicted as:

	
...(16)

	 where TP, FP, and FN represents false 
positive, true positive and false negative and a  
and b are the weight factors. The values of á and â 
are chosen as 0.2 and 0.8 experimentally, based on 
the performance of the bone segmentation dataset 
in both recall and precision evaluation.
	 We performed 5-fold cross-validation 
method to avoid bias and statistical related 
uncertainty. In each fold, the entire data has been 
split into training data and testing data in an 80:20 
ratio. 20% of the training data is again considered 
as the validation data and is mainly used to save 
the weight parameters during the training process. 
A starting learning rate of 0.001 with the Ad grad 
optimizer23 is used while updating the kernel 
weights. For weight initialization, He normal 
weight initialization is used, and the training 
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was performed with a batch size of 8. As the no. 
of samples in the bone segmentation dataset is 
less, an online augmentation is also performed. 
Flip, Rotation, and sheer augmentation is been 
performed for increasing the no. of training 
samples. Our model has also been trained up to 
100 epochs by keeping an early stopping patience 
of 50 epochs

Results and discussion

Dataset
	 The study uses XSITRAY24 dataset that 
consist of 48 high resolution unannotated X-ray 
images. It consists of X-ray scans of various body 
parts including chest, femur, ankle, elbow etc. The 

dataset images are resized to a standard resolution 
of 512x512 pixel resolution and are manually 
annotated with the supervision of expert medical 
practitioners.
Experimental Setup
	 Analysis and comparison of our proposed 
model’s performance with other similar models 
have been carried out both quantitatively and 
qualitatively. All experiments were carried out 
using Python programming with the Keras library. 
Google Colab is used to implement the model 
and to perform an ablation study for finetuning 
the hyperparameters. Precision, specificity, recall, 
Dice score, and accuracy are the segmentation 
benchmarks used to demonstrate the performance 
of the model from various perspectives in this 

Fig. 1. Block diagram of the GWO-NLM stage

Table 1. Quantitative analysis to assess the segmentation performance

Method	 Precision	 Recall	 Dice Score	 Specificity	 Accuracy

Fathima 	 75.17	 90.60	 82.16	 83.79	 86.18
Proposed method(without denoising)	 86.69	 76.08	 81.04	 93.67	 87.50
Proposed method(with Shock filter)	 88.77	 81.25	 84.84	 94.42	 89.80
Proposed method(with GWO-NLM)	 85.82	 88.36	 87.07	 92.1	 90.79
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Fig. 2. Block diagram of the Proposed Segmentation network.

Fig. 3. Training performance of proposed model for 100 epochs

quantitative analysis. Mathematical representations 
of these benchmarks are depicted below. 

	
...(17)

	 ...(18)
                                           
Specificity                            ...(19)
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Fig. 4. Quantitative analysis: (a) Input image, (b) Ground truth, (c) Proposed method (without denoising), (d) 
Proposed method (with Shock filter), and (e) Proposed method (with NLM-GWO)
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Dice Score                                  ...(20)
                                           

Accuracy                               ...(21)
	
The quantitative results shown in Table 1 are 
obtained by comparing the proposed segmentation 
technique to a state-of-the-art model with the same 
dataset.  
	 The model performance in updating the 
loss values is shown in figure 3. The testing loss 
almost follows the training loss pattern and shows a 
right fitted model for the target bone segmentation.
	 The results obtained from the proposed 
segmentation model are analyzed quantitatively and 
are illustrated in Table 1. It has been analyzed and 
compared with a state-of-the-art bone segmentation 
model to show its superiority in extracting bone 
regions. While implementing the existing model, 
we have used the same X-ray dataset and trained 
from scratch for a fair comparison. To validate the 
effectiveness of the design aspects of the proposed 
model, the analysis also includes an ablation study 
with various design elements.
	 The quantitative analysis Table 1. 
Demonstrates a significant improvement when the 
proposed model is used. The model is constrained 
by severe data issues such as limited training 
samples and inter-class similarity between the 
bone and soft tissue regions. These limitations 
are overcome by incorporating several design 
elements that enhance the overall  segmentation 
performance. The performance of the proposed 
model with numerous ablations also exemplifies 
the effectiveness of the suggested denoising step 
in proficiently extracting the bone regions.
	 In biomedical image analysis like bone 
segmentation, precision and recall are highly 
significant to keep a better output without missed 
regions or over-segmented false detections. Since 
the Dice score represents the recall and harmonic 
mean of precision, its higher values point to a 
better segmentation that evaluates the similarity 
of the prediction map with respect to the actual 
ground truth image. In the ablation study, we used 
the proposed CNN in three combinations: without 
pre-processing, shock filter-based denoising, and 
GWO-NLM denoising. In the proposed method 
with GWO-NLM, the precision and recall are high 
and have the highest Dice score compared with the 

state-of-the-art CNN model for bone segmentation. 
The proposed segmentation model shows the best 
precision performance with the shock filter but 
with undesired recall results. Overall results with 
the model without denoising also show inferior 
results compared to other ablations.
	 Segmentation outcomes are also evaluated 
qualitatively by visually examining the test 
samples, and a few randomly selected test samples 
are shown in figure 4. The obtained results show 
the advantage of the proposed model against other 
approaches, especially in avoiding the missing bone 
pixels without adding too many false positives.

Conclusion

	 The current study focused on solving a 
bone segmentation problem from X-ray images. 
Our proposed model uses an exclusive denoising 
algorithm that uses a GWO optimization with an 
NLM filter for adaptively estimating the denoising 
parameters. This helped avoid manual finetuning 
and saved much time in batch pre-processing. The 
proposed segmentation model uses a complex CNN 
module that uses various modules such as attention 
gates, residual blocks, and deep supervision that 
helps to solve several drawbacks of the standard 
U-Net model to extract information from small 
datasets. The learning uses custom loss function: 
Tversky loss to give proper weightage to both 
the precision and recall and hence improving the 
overall segmentation performance.
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