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 Phthalates are known to be major environmental hazards. Dibutyl phthalate (DBP), a 
commonly used phthalate ester, is present in a variety of products. Humans can be exposed to 
DBP from various sources, which can release it into biological fluids and cause various health 
problems by penetrating different tissues in the body. The aim of this study was to investigate the 
effects of DBP on pulmonary alveoli in rats and to assess the mitigating influence of S. platensis. 
The study involved 30 young adult male albino rats, which were divided into 3 groups (n = 
10 each): control, group II (rats treated with phthalate ester (DBP; 50 mg/kg body weight/day)), 
and group III (Spirulina-protected animals given phthalate ester (DBP; 50 mg/kg body weight + 
Spirulina (200 mg/kg body weight/day)). The study revealed that alveolar tissues in the groups 
treated with DBP showed significant increases in collagen deposition and inflammatory cellular 
infiltration. Furthermore, the numbers of type-II pneumocytes and alveolar macrophages were 
significantly increased. However, most of these effects were ameliorated by Spirulina platensis. 
These findings suggest that Spirulina may have potentially beneficial effects on pulmonary 
alveoli by mitigating the toxic effects of DBP.
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 Environmental pollution caused by 
chemicals resulting from human activities poses a 
significant threat to human and animal health, and it 
has been a global concern. Chemical contamination 
in food processing can occur through naturally 
occurring contaminants or as a result of interaction 
between food components and packaging materials 
during food processing and manufacturing, which 
can lead to the migration of some toxic compounds 
into food1-5. Although governments have taken 

essential steps to reduce hazardous pollutants in 
food, extra efforts are required to reduce the health 
risks and diseases associated with chemical food 
contamination.
 Endocrine-disrupting chemicals (EDCs) 
are a class of synthetic compounds that are highly 
diverse and used in different industrial fields. 
Insecticides, plasticizers (phthalates), and plastics 
(bisphenol A) are among the most common 
chemicals that pose threats to human health, and 
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they have the potential to cause morbidity6-12. The 
use of plastics has led to environmental problems 
not only because they increase the amount of 
waste produced, but also because phthalates are 
found in adhesives, paints, air fresheners, and 
personal care products. Dibutyl phthalate (DBP) 
is a common phthalate ester found in various 
products, including food packaging, personal care 
products, children’s toys, and medical devices. 
When plastics are exposed to high temperatures, 
hazardous components are leached out or migrate 
into the environment in the form of microplastics 
(MPs) or nanoplastics. These small forms of plastic 
accumulate in food chains and are accessible to 
human exposure via eating, skin contact, and 
inhalation. MPs are subdivided into two main 
groups: primary and secondary MPs. Primary 
MPs are used in the industry as plastic pellets 
and in personal care products such as toothpaste, 
nail varnish, sun creams, scrubs, and bath gels. 
In contrast, secondary MPs are produced from 
excess plastic dispersed into the environment, 
and they are steadily degraded due to photo- and 
thermo-oxidative processes and mechanical 
abrasion, leading to their accumulation in the 
human body. Textile fibers and manufacturing 
packings discharged into washing water from 
machine-washed clothes are the principal sources 
of these litter particles13-19. Epidemiology-based 
studies have shown that exposure to chemical 
contaminant  has been associated with a variety 
of health problems including hematotoxicity, 
neurotoxicity, cardiotoxicity, nephrotoxicity, 
hepatotoxicity, and endocrine disruption9-11. 
A functional endocrine system is required for 
normal growth, development, and maintenance. 
However, in recent years, many environmental 
pollutants such as phthalate esters have been shown 
to interfere with hormonal activity. Nutritional 
interventions for supporting optimal immune 
system function are frequently overlooked in 
public health. Majority of micronutrients have 
pleiotropic effects on immunological function. 
Hence, Spirulina, as a natural “functional food”, 
should be investigated regarding its potential to 
ameliorate nutritional shortages and protect the 
immune system20-33.
 Spirulina cyanobacteria belomgs to blue-
green algae. This microorganism has been used 
as a source of protein and vitamins for people, 

without resulting in any noticeable side effects. 
It is already available in health food stores as a 
dietary supplement in a range of formulations and 
tablets or drinks. Moreover, it has been recognized 
as non-toxic in many toxicological investigations. 
Numerous studies on the efficacy and clinical use 
of Spirulina in management of many illnesses has 
suggested that this alga has antiviral, anticancer, 
and anti-allergic properties34-42.
 Acute respiratory tract infections are 
major causes of morbidity and mortality around 
the world. Nowadays, COVID-19 is the main 
cause of death locally and worldwide. Although, 
the mitigating influence of Spirulina has been 
examined in a variety of tissues, only few studies 
have investigated its benbeficial effects on 
pulmonary tissue. The present research was aimed 
at investigating the chronic toxicity of DBP in 
rat pulmonary alveoli, as well as the mitigating 
influence of S. platensis on the process.

MATERIALS AND METHODS

Experimental design
 A total of 30 adult male albino rats 
weighing 150 to 200 g, were used in this study. The 
rats were kept in a room in an environment with 
equal durations of light and darkness at 24 ± 1°C, 
and humidity of 50 ± 10 %. The study received 
approval from the ethical authority of our Medical 
Faculty. The animals were divided into three 
sets, each with 10 animals.  Rats in control group 
comprised 2 equal sub-sets given either normal 
feed or S. plantensis (0.20 g/kg bw daily)43. Group 
II received dibutyl phthalate (DBP; 50 mg/kg bw/
day), while the 3rd group was given S. platensis 
(0.20 g/kg bw daily), in addition to DBP (0.050 g/
kg bw daily). Each treatment was administered for 
2 months via gavaging. Dibutyl phthalate (DBP) 
was supplied by Sigma Company, St Louis, MO, 
USA. The blue-green alga was obtained in powder 
form from a local vendor. Daily body weights, as 
well as feed and water consumption, were recorded. 
Daily treatment doses were adjusted in line with 
body weight changes. The doses were chosen based 
on the overall no-observed-adverse-effect level 
(NOAEL) for DBP (50 mg/kg bw/day) which was 
reported by other researchers44.
Anatomical studies
 At designated times, the rats were 
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euthanized using overdose of sodium pentobarbital 
(200 mg/kg). The lungs were excised and examined 
for any changes in shape or weight. The length of 
each lung was measured, from the most prominent 
point in the apex to a point in the middle of the 
basal surface, while the width was measured from 
the middle of the hilum to the point meeting this 
point horizontally on the sternocostal surface.The 
organs were weighed using mini scale. Then, the 
data were input into IBM SPSS 20.0 software. The 
results are presented as mean ± SD, i.e., minimum 
and maximum. Data with normal distribution were 
compared amongst multiple groups with analysis 
of varaince.
Tissue processing for microscopy
 The right lung tissue was processed for 
microscopy using standard procedures. These 
involved tissue fixation in HCHO, clearing, 
dehydration, sectioning, H&E staining and routine 
examination under a light microscope. The other 
lung tissue was fixed in glutaraldehyde solution 
(3%), followed by processing for TEM. Electron 
microscopy was done, and photographs of relevant 
fields were obtained using Joel 100CX TEM45.

RESULTS

 In this research, DBP administration 
for 8 weeks did not result in death or changes in 
appearance in any rat group, relative to control. No 
apparent morphological and anatomical changes 
were detected during dissection of the lung in any 
of the experimental groups, either in the color of 
the organ, or in its shape. Lung weight was within 
the normal range of 385-395 mg (for the right lung) 
and 265-272 mg (for the left lung) in all groups 
(Table 1). The average external length of the right 

lung was 2.8-3.4 cm, while that of the left lung was 
in the range of 1.8-2.3 cm. The average values of 
external width for the right and right lungs were 
0.5-1-0 and 0.4-0.8 cm, respectively. As shown in 
Table 1, there were no significant differences in 
these parameters in left lung in all groups (positive, 
negative control, treated, protected; p > 0.05).  
Light microscopy (H&E) results
 Rat lung paraffin slices from controls 
(-ve and +ve) had essentially normal alveolar 
features (Figure 1 A). Relative to controls, 
group II (experimental group, i.e., DPB-treated), 
histological sections of rat right lungs of group II 
revealed presence of pulmonary lesions reflected 
in some collapsed alveoli and distended alveoli, 
thickened inter-alveolar septa due to cellular 
infiltration as well as hyaline material, proliferation 
of type II pneumocytes, foamy macrophages and 
congested blood vessels. There were desquamated 
cells inside the alveolar lumen (Figures 1 B and 1 
C).
 In group III (protected group), co-
treatment with S. platensis and DBP produced 
significant protection of alveolar morphorlogy 
which is evident in mitigation of alveolar lesions, 
except for slight enlargement of inter-alveolar 
septae due to infiltration of cells associated with 
mild congestion of blood vessels. Several bloated 
alveoli were lined with more or less normal type I 
and II pneumocytes. A slight thickening appeared 
in the inter-alveolar septa due to collagen fibers and 
few cellular infiltrations. Moreover, the numbers of 
macrophages and septal cells were less than those 
in group II (Figures 1 D and 1 E).
 Data of TEM in +ve and -ve control rats 
revealed normal morphorlogy of alveoli with 
distended walls lined by type I pneumocytes and 

Table 1. Lung length, width, and weight in each group

Group  Right lung   Left lung  
 Length Width Weight Length Width Weight

Group Ia 3.07±0.23 0.77±0.19 390.45±3.30 2.02±0.17 0.60±0.14 267.65±3.15
Group Ib* 3.02±0.31 0.68±0.19 390.28±3.14 1.95±0.19 0.62±0.12 269.17±1.57
Group II 3.08±0.23 0.75±0.19 390.00±2.98 2.02±0.17 0.60±0.14 268.72±1.71
Group III 3.05±0.26 0.73±0.18 390.88±1.61 2.05±0.19 0.60±0.14 268.30±1.43
F 1.25 2.07 0.882 1.98 0.874 0.41
P 0.365 0.105 0.432 0.211 0.411 0.811
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Fig. 1. (A) Photomicrograph of control rat lung (group I) showing, normal architecture of the alveoli separated by 
very thin interalveolar septa. The alveoli are lined by flat type I pneumocytes and rounded type II pneumocytes. 

B & C: Group II (DBP-treated group) showing collapsed alveoli (A) separated by very thick interalveolar septae. 
Note the mononuclear cellular infiltration, congestion of blood vessels (V), acidophilic hyaline material, and 

numerous foamy macrophages. D & E: group III (concomitant administration of DBP and spirulina), showing 
areas of collapsed alveoli and other distended, preserved lung architecture, except very mild increase in thickness 
of interalveolar septa, some acidophilic hyaline material, exfoliated cells and congested blood vessels containing 

acidophilic vacuolated material (V). H&E stain; x100.

clear cytoplasm, and type II pneumocytes with 
apical microvilli facing alveolar lumen, indicating 
characteristic lamellated structure (Figure 2).
 In DPB-treated rats, lung tissue showed 
collapsed alveoli demarcated with abnormal type 
II pneumocytes having empty lamellar bodies. 

Alveoli separation with thick interalveolar septa 
occurred due to infiltration by different cells: 
mononuclear inflammatory cells, septal cells or 
foamy macrophage, and desquamated cells in the 
lumen, in addion to significant increase in collagen 
deposition (Figures 3 and 4).
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Fig. 2. Electron micrograph of group I revealing open alveoli (A) bordered by flat nuclei of type I pneumocytes 
(P1) and type II pneumocytes (P2) with characteristic lamellated structure (‘!) and apical microvilli (mv).  

 Group III  (protected group) had 
considerable degree of preservation of the alveolar 
architecture which was evident in reduced alveolar 
lesions, although slight enlargement of inter-
alveolar septa due to cell invasion associated with 
mild congestion of blood vessels. There were 
numerous swollen alveoli lined with more or 
less normal type I and II pneumocytes. The inter-
alveolar septa appeared mildly thickened due to 
collagen fibers and few cellular infiltrations. The 
numbers of macrophages and septal cells were less 
than that in group II (Figure 5).

DISCUSSION

 The present  study was aimed at 
elucidating the effect of chronic exposure of 
DBP on pulmonary alveoli, and the possible 
protective effect of Spirulina. The DBP treatment 
exacerbated alveolar injury. This may be attributed 
to oxidative stress which was morphologically 
reflected in proliferation of type II pneumocytes 
and alveolar macrophages, collapsed alveoli, 

cellular infiltrations, congestion of blood vessels 
and desquamated cells. It is generally agreed 
that nutrient deficiency may lead to changes in 
immunity which are demonstrated as changes in 
levels of T-cells, IgA antibody response, cytokines 
and NK cells46-49.
 Spirulina might modulate the immune 
system by mitigating nutritional deficiencies. 
Previous research have demonstrated that 
phycocyanin (PC), a protein extracted from 
cyanobacteria, has a variety of benefits such as 
antioxidant and anti-inflammatory properties50-53. 
Moreover, PC has been shown to reduce paraquat-
induced lung damage in rats. In addition, in 
lipopolysaccharide-stimulated macrophages, PC, 
a selective cyclooxygenase-2 inhibitor, promotes 
apoptosis.These findings corroborate the findings in 
this study which showed reductions in macrophages 
and desquamated cells when Spirulina and DBP 
were given together. Furthermore, other studies 
revealed that Spirulina inhibited the release of 
histamine from mast cells. Indeed, analysis of 
blood samples of volunteers before and after 



920Al-MAAthidy et al., Biomed. & Pharmacol. J,  Vol. 16(2), 915-926 (2023)

Fig. 3. Electron microscopy showing DBP-treated rat lung. a & b: show alveolar lesions. Collapsed alveoli are 
bordered by evidently vacuolated pneumocyte type II (P2) with empty lamellated structure, numerous activated 

macrophages with vacuolated cytoplasm (foam cells) and congestion of blood vessels (V). c & d: show thick 
interalveolar septa due to mononuclear cellular infiltration (‘!) and congestion of the blood vessels (V). Note type 

II pneumocytes filled with empty lamellated structure (P2).  

oral administration of Spirulina platensis has 
shown that it has anti-inflammatory and antiviral 
properties42,43. orrespondingly, in managing patients 
with allergic rhinitis, Spirulina administration 
resulted in considerably ameliorated physical 
manifestations and symptoms such as nasal 
congestion, nasal discharge, sneezing, and 
itching54-63. Phthalate-mediated pulmonary lesions 
may precipitate fibrotic changes. Phthalates 
produce these delecterious changes in epithelial 
cells through complex molecular mechanisms 
mediated by oxidative insults which ultimately 
result in apoptotic lesions, generation of pro-fibrosis 
cytokines, and massive deposits of extracellular 

matrix. The end results of these processes is the 
establishment of pulmonary fibrosis. These are 
in agreement with the results obtained in this 
study, as is evident in presence of desquamated 
and exfoliated cells in the lumen of the alveoli, as 
well as increases in collagen fibers. Other study 
proposed that autophagy is an upstream event 
triggering lysosomal membrane permeabilization 
that would lead to apoptosis through the lysosomal-
mitochondria pathway as described by others40. 
On the other hand, in vitro, an aqueous extract of 
Spirulina reduced HIV-1 multiplication in human 
T-cells, peripheral blood mononuclear cells, 
and Langerhans cells. Consequently, employing 
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Fig. 4. Electron micrographs of rat lung in group II (DBP-treated rats). a & b: show thick interalveolar septa due 
to mononuclear cellular infiltration. Note type II pneumocytes filled with empty lamellated structure (P2), and 

cellular debris and desquamated cells in the lumen of the alveoli (‘!). c & d: show thick interalveolar septae due 
to mononuclear cellular infiltration (‘!) and congestion of the blood vessels. Note type II pneumocytes filled with 

empty lamellated structure (P2) and a significant increase in collagen deposition (‘!).

herbs and algae products with proven antiviral 
capabilities in combating specific viruses could 
be done through immunomodulation, even after 
the illness has been established63-65. These findings 
are consistent with those obtained in this study, 
as evidenced in reduction in cellular infiltration 
when Spirulina and DBP were given together. Of 
course, before any conclusions can be formed, 
these potential results must be further investigated 
in animal models and humans.
 It has been suggested by many researchers 
that the antioxidant and immuno-modulatory 

properties of Spirulina may have a tumor-
destructive implication, thereby making it play 
a role in cancer prevention64-66. The anti-tumor 
potential of Spirulina are thought to be derived 
from â-carotene, a potent antioxidant. Nevertheless, 
the link between carotene contents and cancer 
cannot be proved because the pathogeneisis of 
cancer is typically complex. Currently, many 
studies have demonstrated the safety of Spirulina 
supplements, with few adverse effects, but its full 
potential as a medication is unknown.
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Fig. 5 a & b. Electron micrograph of group III rat lung (protected group) revealed considerable degree of 
preservation of the alveolar architecture evident in decreased alveolar alterations, apart from low degree of 

swelling of inter-alveolar septae by cell influx associated with mild congestion of blood vessels. Several alveoli 
were swollen and bordered with more or less normal types I and II pneumocytes. The inter-alveolar septae 

appeared mildly thickened due to collagen fibers and few cellular infiltrations. The numbers of macrophages and 
septal cells were less than that in group II.

CONCLUSION

 Phthalates have a large scale of 
applications, and their usage is an extensive source 
of environmental pollution. Exposure to phthalates 
has been linked to poor pulmonary health, including 
lung fibrosis. Spirulina has a potential beneficial 
effect in mitigating the toxic effects of phthalates 
on the pulmonary alveoli. Thus, it is critical to 
educate the public on the dangers of phthalates 
so as to enhance their well-being. Therefore, the 
public must recognize the sources and pathways of 
phthalate exposure so that they significantly avoid 
them, particularly in those liable to exposure.
Ethical registration
 The animal study protocol was approved 
by the Institutional Ethics Committee Faculty of 
Medicine, University of Mutah (protocol code 
T342 and 30.08.2021).
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