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 b-lactam antibiotics are considered the safest bactericides, and upon wide clinical use 
of benzyl penicillin G in 1945, outbreaks of resistance came out. The frequent semi-synthetic 
strategies revealed b-lactam generations that are of broad-spectrum activity. The new agents 
as well as their concomitant use with known inhibitors of b-lactamases potentiate their 
effectiveness versus higher numbers of resistant pathogens. However, the extremely resistant 
pathogens are still representing a burden. Efforts had been continued to find more inhibitors of 
b-lactamases to combine with b-lactams to provide good management of infections by extremely 
resistant microbes. The purpose of this work is to overview the conventional and the recently 
introduced b-lactamases in clinical applications, as well as some reported effective inhibitors 
of b-lactamases. The review pinpoints the inhibitors that can be mixed and/or merged with 
the beta-lactam antibiotics to effectively treat the microbial infections producing resistant-b-
lactamases. ClogP for these drugs and candidate inhibitors is introduced as suggestions to open 
a door for developers to admix derivatives with suitable pharmacokinetics.
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 The strategies for the discovery of new 
â-lactam-antibiotics related to subclasses as 
penicillins, cephalosporins and monobactams 
in addition to carbapenems are not enough 
policies to kill superbugs. Historically, Abraham 
and Chain 1 noticed manifestation of resistance 
against penicillin from some bacterial cultures. 
The resistance involving deactivation by enzymes, 
mentioned later as b-lactamase.2,3 Most of the 
b-lactam-antibiotics are vulnerable to inactivation 
by b-lactamases. The persistent exposure of 

some bacterial strains to a multitude of b-lactam-
antibiotics has led to overproduction and mutation 
of b-lactamases. b-Lactamases are produced by 
many gram-positive and gram-negative strains.2,4 
Many b-lactamases have been reported and two 
systems were introduced to verify their types. 
The first one is Ambler system (1980) which 
utilizes amino acid sequence to define molecular 
phylogenies and grouping b-lactamases into four 
broad classes: A, B, C, and D.4 The second is Karen 
Bush in 1988. Ambler A, C, and D classes are 
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serine b-lactamases (SBLs, Figure 1, Equation 1) 
while class B enzymes are Metallo-b-lactamases 
(MBLs, Figure 1, Equation 2). The Figure 1 simply 
configures the generalized fate of penicillin-b-
lactamase-mediated hydrolysis to ring-opened 
penicilloic acid.1 In continuation of our interest 
in medicinal chemistry area we report this work 
since it complies with our efforts in skeletons of 
specified biological activities and targeting  as well 
as naturally active agents5-25.  This is an updated 
review describing most of b-lactamases, along 
with reports on the ongoing status and information 
concerning the recent inhibitors to date 2021. In 
addition, a demonstration, concerning the strategies 
applied during the process of drug discovery 
to identify new b-lactamase inhibitors is also 
introduced. 
b-Lactamases Hydrolyzing Effects
 As mentioned by WHO in 2019, 
superbug’s infections of the lower respiratory 
system represented the third top reason of 
worldwide deaths (https://www.who.int/data/
gho/data/themes/ mortality-and-global-health-
estimates) and if one adds superbug’s infections 
in other body organs, it will be shifted to the top 
reason of deaths. In addition, a warning alarm 
mentions that mortality resulting from infections 
by resistant microbes will be increased by 2050 and 
will kill more people than cancer do.26 There are 
attempts for production of wide-range-spectrum 
of b-lactamase inhibitors able to inhibit many 
b-lactamases, such as cephalosporinases along 
with serine-based carbapenemase, (Table 1) which 
severely limit therapeutic options by hydrolyzing 
b-lactam entity in b-lactam antibiotics. The 
(Figure 1), simply configures the generalized fate 
of penicillin-b-lactamase-mediated hydrolysis to 
ring-opened penicilloic acid. 1,25-28 
Clinically Useful b-Lactamases Inhibitors
 To date the clinically used inhibitors of 
b-lactamases must be newly classified as follows:
i- Beta (b)-lactam b-lactamase inhibitors 
such as clavulanic acid, sulbactam and tazobactam.
ii- Gamma (ã)-lactam b-lactamase inhibitors 
such as avibactam and relabactam.  
iii- Oxaborinane b-lactamase inhibitors such 
as vaborbactam.
 The combination of b-lactams with 
b-lactamase inhibitors led to effective therapeutic 
properties. The known common combination are 

Amoxicillin combined with Clavulanic acid (Table 
2, Compound 1) approved by FDA 1984 (https://
www.medicinenet.com/amoxicillinclavulanic 
acid_tablet_875mg125mg/article.htm), Ticarcillin 
with Clavulanic acid, approved 1985, Piperacillin 
combined with Tazobactam (Table 2, Compound 
2) approved by 1993, and Ampicillin combined 
with Sulbactam (Table 2, Compound 3) approved 
1997. All of these combinations are introduced 
and widely used as major drugs for community-
acquired contaminations as well as hospital-
infection. 4 
 Recently, Relebactam (MK 7655, Table 
2, Compound 4) is a bicyclic none b-lactam 
b-lactamase inhibitor, gained FDA approval as 
part of the combination product RecarbrioÇ$ in July 
2019. 29-30 It is currently available in a combination 
product includes Imipenem and Cilastatin to 
treat complicated urinary tract infections (UTIs), 
pyelonephritis, and complicated intra-abdominal 
infections in adults. It is a last-line treatment option. 
 Avibactam (NLX104) (Table 2, Compound 
5) 31-32 is another new none b-lactam b-lactamase 
inhibitor that is available in combination with 
Ceftazidime (AvycazÇ$).33-34 The FDA approved 
this combination in 2015 for the treatment 
of complicated intra-abdominal infections in 
combination with metronidazole, and the treatment 
of complicated urinary tract infections caused 
by resistant-and multi-drug resistant gram-
negative bacterial pathogens. Avibactam is a 
potent and broad-spectrum inhibitor than the 
previously discussed inhibitors such as the widely 
prescribed clavulanic acid. It maintains the ability 
to covalently acylate b-lactamases. 32

 Vaborbactam (Table 2, Compound 6) 
is a b-lactamase inhibitor; a cyclic boronic acid 
derivative approved by FDA 2017 as VabomereÇ$ 
consists of Vaborbactam and Meropenem. Used 
mainly for complicated urinary tract infections 
(UTI) by intravenous administration. Vaborbactam 
is intended for serine beta-lactamases, Ambler class 
A and C enzymes.35-39

b-Lactam Antibiotics and Superbugs Resistance
 b-Lactam bearing drugs are among the 
most used antibiotics. 40-46 Their main mechanism 
is to target and interrupt biosynthesis of cell wall 
via irreversible inhibition of trans-peptidases, and 
what is recognized as penicillin-binding proteins 
(PBPs). PBPs represent a group of enzymes that 
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are included in the final steps of peptidoglycan 
cross-linking of bacterial cell walls. 46-50 Superbugs 
represent a serious global health threat in this 
century. 51-52 Existing drugs become less effective 
against these resistant pathogens even in the 
presence of therapeutic-dose levels of the drugs 
because of their production of b-lactamases that 
irreversibly hydrolyze b-lactam ring. 54-55

The Resistant Superbugs and b-Lactamases 
Classes
 The resistance to antibiotics by superbugs 
gained through chromosomal mutation side-by-
side with horizontal transfer of resistance genes 
by bacterial plasmids. The bacterial families 
bearing resistance are related to: 1- Some Gram-
positive bacteria such as Staphylococcaceae 
(Staphylococcus aureus). 2- Gram-negative 
bacteria such as Enterobacteriaceae (Klebsiella 
pneumonia, Citrobacter, Proteus vulgaris, 
Morganella, Salmonella, Shigella, Escherichia 
coli), Pasteurellaceae (Haemophilus influenza), 
Neisseriaceae (Neisseria gonorrhoeae) , 
P s e u d o m o n a d a c e a e  ( P s e u d o m o n a s 
aeruginosa) and 3- Neither Gram-positive 
nor Gram-negative; acid-fast bacteria such as 
Mycobacteriaceae (Mycobacterium tuberculosis).
 Because of the variety of b-lactamases 
discovered the Ambler system is identified as 
molecular based classes depending on the sequence 
of amino acid. Classes are declared by letters A, 
B, C, and D. The second classification system 
recognized as the Bush that focuses on different 
aspects of b-lactamases, such as enzyme inhibition 
profile, hydrolysis rate, and binding affinity 
categorized as 3 groups based on their substrate 
and inhibitory profiles. Ambler’s system appears 
to be more widely accepted. 56-64 Ambler and Bush 
classification systems and the main enzymes 
involved are outlined in Table 1. 43-66 Enzymes 
are characterized according to the sequencing of 
proteins. 62 Ambler’s classes A, C, and D utilizes 
serine-OH group as nucleophile (Figure 1, 
equation 1) while class B (metallo-b-lactamases) 
involves divalent zinc as metal ions (Figure 1, 
equation 2) for substrate hydrolysis. 43,66 Extended-
Spectrum b-Lactamases (ESBLs) are rapidly 
growing group.65 Examples are class A TEM-type 
b-lactamases (plasmid-mediated) frequently 
encountered in E. coli and K. pneumoniae as well 
as in some strains of Gram-negative bacteria. 61,66 

TEM 1 differs from TEM-2 by single amino acid 
and from TEM-3 by two amino acids. Other TEM-
types differ by 3, 4 or more amino acids different 
from the parent TEM-1 and to-date over 140 TEM-
enzymes were identified.67-69

 Class A, SHV-1 (sulfhydryl SH) is also 
a chromosomally encoded-enzyme detected in K. 
pneumonia isolates, and isolated among samples 
of Enterobacteria.66-71 The gene encoding SHV-1 
incorporated is later included within the plasma 
which facilitated its spread to Enterobacteria 
species.72 SHV-2 differs from SHV-1 by replacement 
of glycine by serine at particular position in the 
active site. 71 SHV-1 b-lactamase has structure 
resemblance with TEM-1.62 SHV-5 and SHV-12 
are among the common types of ESBLs.61 
 Class A, CTX-M-type b-lactamases 
are resistant to cephalosporins and originated in 
Kluyvera species. These enzymes acquire gene 
transfer via plasmid and detected in multiple strains 
of Salmonella enteric, Typhimurium, E. coli, and 
other Enterobacteriaceae.69-73 To date, more than 
172 CTX-M protein variants have been reported 
classed under 6 groups based on their amino acid 
sequencing. They include CTX-M-1, CTX-M-2, 
CTXM-8, CTX-M-9, CTX-M-25 and KLUC 
named after the first group which was detected. 
60-62 It has been proven that the part associated 
with CTX-M b -lactamases is the serine residue at 
position 237.70-72 
 Class A carbapenemases enzymes were 
obtained from Enterobacteriaceace, in which they 
are involved with chromosomal encoding. 72-75 
Carbapenemases represent the most diverse of the 
b-lactamase family that composed from two classes 
the Class A-serine-type and Class-B metallo-b-
lactamases depending on the reactive site of the 
enzymes. They can be categorized under 3 different 
Ambler and 2 different Bush-Jacoby groups.76-78 
The enzymes identified in this Class A-type include 
the chromosomally encoded (NMC-A, SME, and 
IMI-1) and others are the plasmid-encoded (KPC, 
IMI-2, some GES variants). 74-76

 Class C-serine cephalosporinases 
77-79 mentioned as AmpC are isolated from 
Enterobacteriaceae  and identified as two types 
the chromosomal (inducible) Amp and plasmid 
mediated AmpC enzymes.  Plasmid mediated type 
are becoming prevalent  and generated through the 
transfer of chromosomal genes on to plasmids.79-81 
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Table 2. The list of active derivatives as β-lactamase inhibitors

Compound Number,  Chemical Structure cLog P  Reference
cLogP=

Clavulanic acid;  Against class A, C and  Ref. 96-99

Compound 1  D β –lactamases  
cLogP=   
-1.065   

Tazobactam;  Against class A, C and  Ref. 98-110

Compound 2  D β –lactamases 
cLogP=   
-0.65   

Sulbactam;   Against class A, C and  Ref. 98-110

Compound 3   D β –lactamases 
cLogP= 0.314

Relebactam;   Against class A, C and  Ref. 31-33

Compound 4  D β –lactamases 
cLogP= -1.749   

Avibactam;   Against class A, C and D β –lactamases. Ref. 31-33,112

Compound 5  Also, against class B metallo-²-lactamase 
cLogP= -1.628   

Vabor-bactam;  Against class A and C with no . Ref. 35-41,152

Compound 6  inhibitory actions on D or B 
cLogP= 0.525   

SB236050;  Against class B metallo- Ref. 90-101

Compound 7    β-lactamase 
cLogP=   
-0.253   
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SYN 1012;   Against class A, C and D  Ref. 100-104

Compound 8   β –lactamases 
cLogP=-0.041   

BRL 42715;   Against class A, C and D  Ref. 100-104

Compound 9  β –lactamases 
Log P: -0.35   
cLogP= -0.495

Compound 10  Against class A, C and D  Ref. 105-110

Log P: 0.64  β –lactamases 
cLogP= 0.372   

Compound 11  Against class A, C and D  Ref. 105-110

cLogP= 0.551  β –lactamases 

AM-112;   Against class C and D  Ref. 109-113

Compound 12   β –lactamases 
cLogP= -1.894   

LK-157;   Against class A, C and D β –lactamases.  Ref. 112-116

Compound 13   It inhibits AmpC-lactamase with 2,000-  
Log P: -0.37  fold more potency than clavulanic acid.  
cLogP= 0.270

J-110,441;   Against class B metallo- β-lactamases Ref. 115-117

Compound 14    
LogP= 1.42 
cLogP= 3.383   
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Compound 15  Against class B metallo- β-lactamases Ref. 115-117

cLogP= 3.383   

Compound 16  Against class B metallo-β-lactamases Ref. 115-117

cLogP= 4.356   

Compound 17  Against class B metallo-β-lactamases Ref. 115-117

cLogP= 0.727   

SA2-13;   Against class A β-lactamases Ref. 86-88

Compound 18   
Log P: -1.58 
cLogP= 0.471   

BAL29880;  Against Class C and some Class D Ref. 116-118

Compound 19   
cLogP:   
-1.271   

MK-8712;   Against class A β-lactamases Ref. 117-121

Compound 20 
cLogP= -0.11059   

Compound 21  Against class A β-lactamases Ref. 117-121

cLogP=    
-0.67   

Compound 22  Against class C β-lactamases Ref. 120-122

Log P: -0.95   
cLogP: -0.0544   
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Compound 23   Against class A, C and D β –lactamases. Ref. 121-126

cLogP=   
Log P: 1.18   
CLogP: 2.033   

Compound 24   Against class A, C and D  Ref. 121-126

cLogP=  β –lactamases. 
Log P: 0.63   
CLogP: 1.484   

Compound 25   Against class A, C and D  Ref. 121-126

cLogP=  β –lactamases. 
Log P: 0.22   
CLogP: 0.90   

Compound 26  Against both serine and metallo- Ref. 121-126

cLogP:  -lactamases 
-0.044   

Compound 27  Against both serine and metallo- Ref. 121-126

cLogP:  -lactamases 
1.042   

ZBTH2BB;   Against class C β–lactamases Ref. 129-131

Compound 28    
cLogP: 2.625

Compound 29  Against class C β–lactamases Ref. 129-131

cLogP:   
-0.995   

Compound 30  Against class A and C  Ref. 130-134

cLogP:  β–lactamases 
0.624   

Compound 31  Against class A and C  Ref. 130-134

cLogP:  β–lactamases 
0.428   

Compound 32  Against class A and C  Ref. 130-134
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Compound 33  Against class A and C  Ref.130-134

cLogP:  β–lactamases 
2.239   

Compound 34  Against class A and C  Ref. 132-136

cLogP:  β–lactamases 
2.328   

Compound 35  Against class A and C  Ref. 130-135

cLogP:  β–lactamases 
-0.09   

Compound 36  Against class A and C  Ref. 130-135

cLogP:  β–lactamases 
1.158   

D-Captopril;   Against (MBL–Zn(II))  Ref. 134-138

Compound 37    –lactamases  
cLogP: 0.89  More potent than L-captopril. 

L-Captopril;   Against (MBL–Zn(II))  Ref. 134-138

Compound 38    –lactamases  
cLogP: 0.89   

Compound 39  Against metallo-β-lactamase inhibitor Ref. 134-141

cLogP:   
1.417   

L-809, 022,  Against metallo-β-lactamase inhibitor Ref. 140-145

Compound 40  IC50 (cLogP:880 2.923 60 

L-158, 507,  Against metallo-β-lactamase inhibitor Ref. 140-145

Compound 41  IC50 (cLogP: 160 3.422 20 β
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L-809, 559,  Against metallo-β-lactamase inhibitor Ref. 121-148

Compound 42  IC50 (cLogP:44.3991

L-158,678,  Against metallo-β-lactamase inhibitor Ref.  121-148

Compound 43  IC50 (cLogP:3.5 5.1010.4 

L-159, 061,  Against metallo-β-lactamase inhibitor Ref. 121-148

Compound 44  IC50 ( cLogP: 1.9 5.3650.2 
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 Class D-serine such as oxacillinases 
are over 498 OXA b-lactamases have been 
detected and divided into OXA ESBLs and 
carpabenemases detected in P. aeruginosa 
widespread in Enterobacteriaceae, Acinetobacter 
and in K. pneumoniae. They vary in amino acid 
sequence and mentioned as OXA-11, OXA-14, 
OXA-16, OXA-19, OXA-31, etc. (60, 69), OXA-
23, OXA-48, OXA-51, OXA-143 and OXA-48 
which is detected in K. pneumoniae.61-83 Subgroups 
2d, 2de, and 2df are related to molecular class D 
known as oxacillinases.84  
 Class B; metallo-b-lactamases (MBLs) 
also known as metallo-carbapenemase, that 
necessitate zinc ions in their active sites with 
mechanistic differences.72-85 Metallo-b-lactamases 
have been recognized in P. aeruginosa and their 
encoding genes can be either chromosomal 
structure or situated on plasmids that can be spread 
among species. MBLs are subdivided into three 
classes; subclass B1 (includes IMP, VIM and 
NDM variants) and subclass B3 require two zinc 
(II) ions in their active sites. In contrast, subclass 
B2 enzymes utilize only one zinc (II) ion.84-87

Brief Mechanisms of Inhibition of b-Lactamases 
by FDA Approved Drugs
 b-lactamases from classes A, C, and D 

follow the same interaction with the b-lactam-
antibiotic and similarly with inhibitors. The 
(Figure 2), represents the initial location at the 
binding sites of enzymes and the FDA-approved 
drugs such as clavulanic acid (representing 
the 4-membered b-Lactamases group such as 
clavulanic acid, sulbactam and tazobactam), 
avibactam (representing 5-membered lactams such 
as avibactam and relebactam) and vaborbactam as 
borane derivative. The main amino acids catalyzing 
the interaction are mention.88 The mechanism 
of interaction is reported elsewhere in which 
the amino acids lining the binding site interact 
and stretch the inhibitor molecule (similar to the 
antibiotics penicillins or cephalosporins) and 
facilitating the nucleophilic attack of ser-70 to 
form covalent bond with the vulnerable group of 
the inhibitor.57-84  
 The interaction of these b-lactamases with 
the inhibitors of different types (Figure 3) lead to 
hanging-up these enzymes through the formation 
of variable types of bonding. 
a. In case of the first group of inhibitors 
namely clavulanic acid, sulbactam and tazobactam 
an irreversible covalent bond (ester) between the 
ser-70 hydroxyl group with the carbonyl of the 
inhibitor 89. Further strong covalent bond may form 
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Fig. 1. A simplified chart of hydrolysis of penicillin by of â-lactamases. Equation 1: Serine â-lactamases (SBLs) 
hydrolysis pathway. Equation 2: Metallo-â-lactamases (MBLs) hydrolysis pathway utilizing two zinc ions

Fig. 2. Simplified initial interaction of â-lactamases of classes A, C and D with the â-lactamase inhibitors

between amino group of lys-73 or ser-130 with 
carbon-6 followed by inhibitor degradation and 
inactivation of the enzyme (Figure 3: A, B, C). 90

b. In case of the second group of inhibitors 
namely avibactam and relebactam a carbamate 
ester can be formed between ser-70 hydroxyl 
group with the carbonyl of theses inhibitors. 
Carbamate esters are less susceptible for hydrolysis  
(Figure 3: D).
c. In case of vaborbactam which represents 
a different type of inhibitors, a strong co-ordinate 
covalent bond is formed between ser-70 hydroxyl 
group with boron of the inhibitor (Figure 3: E). 

 In contrast to serine b-lactamases; MBLs 
are not associated with a covalent bond between 
the b-lactam antibiotic and an amino acid lining the 
active site. The metal-particles in MBLs are two 
zinc(II) ions the first zinc(II) ion coordinates to His-
residues while the second zinc(II) ion coordinated 
with Asp120, His, and Cys-residues. The first zinc 
(II) ion acts as a Lewis acid and decreases the pKa 
value of the bridging water molecule which results 
in the formation of hydroxide ion that initiates the 
nucleophilic attack on the b-lactam antibiotic or 
the inhibitor vulnerable groups.52-91
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Fig. 3. The simplified feature of the inhibited â-lactamases of classes A, C, D with the â-lactamase inhibitors. The 
covalent bonds between amino acids ling active site with inhibitors are colored red

 Another important point is that the amino 
acids lining the MBLs active site and interacting 
with the b-lactam antibiotic differ than those of 
classes A, C and D. Payne et. al. descried the 
interactions between the enzyme and a natural 
tricyclic structure SB236050 (Table 2, Compound 
7) mentioned as MBLs inhibitor and provided 
antibacterial synergy with meropenem on some 
MBLs.92 This compound has inhibitory activity 
versus IMP-1, and CfiA.  Zn (II) coordinated with 
water and Asn193, His99, His101, His162, Zn (II) 
also coordinated with the same water molecule 
Asp103, Cys181, His223, and the inhibitor. 
Structures of FDA-Approved Drugs, Patents 
and Developments of b-lactamase Inhibitors 
to Date
 There is a serious need to search for 

new b-lactamase inhibitors in light of emerging 
of resistant superbug. To conquer this risk, 
scientists could introduce inhibitors to synergize 
the b-lactams effects. Developing inhibitors is a 
difficult aspect because of the different classes of 
b-lactamases. As an example, MBLs and OXA 
b-lactamases create a challenge and represent a 
highly significant problem due to their ability to 
inactivate nearly all b-lactam antibiotics.93-95

 Regardless of the worldwide spread of 
MBLs, their inhibitors have not yet emerged in 
clinical use.94 MBLs inhibitors have been reported, 
but the mechanism of inhibition is unknown 
for many of these inhibitors yet becoming more 
prevalent and problematic. On the other hand, 
the OXA species are extremely diverse with 
other 500 variants; among these species they 
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differ in their hydrolytic activity with the other 
serine-based mechanism, thus a single b-lactam-
b-lactamase inhibitor combination strategy that 
targets all clinically significant b-lactamases seems 
improbable.86-97

 Table 2 outlines the structures of FDA-
approved drugs, codes of registered compounds 
or by numbers for the compounds that reported 
of high activity. The structures, and the references 
that introduce and/or discuss the mechanisms 
of these compounds are also mentioned in this 
table. The cLog P from chemdraw (https://
perkinelmerinformatics.com/products/research/
chemdraw/) for each structure are computed and 
added in (Table 2) is to understand structure’s 
hydrophilicity and hydrophobicity. 
 Clavulanic acid (Table 2, Compound 1) 
was the first b-lactamase inhibitor introduced into 
clinical. It is mixed with amoxicillin (Augmentin 
®), and this allows the effective dose of amoxicillin 
to be decreased.  Mixed with ticarcillin (Timentin) 
to be used (i.v.) to inhibit the enzyme b-lactamase 
and providing prompt effect. The success of 
clavulanic acid stimulated the development of 
semisynthetic penicillinic acid sulfones. It is 
classed as sentry drug because it’s able to make two 
covalent bonds and the molecule will be cleaved 
(Figure 3: B & C).96-99

 Penicillinic acid Sulfones as FDA- 
approved drugs are synthetized penicillanic acid 
derivatives. The sulfur atom is made as sulfonyl 
group to increase its electron withdrawal effect 
on C-5 to be similar in its electrophilicity and 
reactivity with nucleophies at the binding site to 
that of clavulanic acid for its inhibition mechanism 
(Figure 3: B& C). 
 Sulbactam (Table 2, Compound 2) is a 
penicillanic acid sulfone of broader spectrum but 
slightly less potent than clavulanic acid. It is mixed 
with ampicillin as capsules, pills or (i.v.) injectables 
(https://go.drugbank.com/drugs/DB09324 ). 
 Tazobactam (Table 2, Compound 3) is 
another penicillanic acid sulfone b-lactamase 
inhibitor of equal potency with clavulanic acid 
but much broader. The combination piperacillin-
tazobactam acquires activity against TEM-type 
ESBL’s, in which the enzymes are more susceptible 
to piperacillin-tazobactam than SHV type ESBL’s. 
Moreover, such combination provides a 10-fold 

high activity against CTX-M when compared with 
calvulanic acid 98-100.
 Relebactam (Table 2, Compound 4) is a 
bicyclic system bearing a five-membered lactam 
ring bearing an electrophilic carbonyl-carbon that 
forms ester when attacked by the nucleophile of the 
active site. The ester in this case is a stable urethane 
(carbamate ester).             
 Avibactam (Table 2, Compound 5) has the 
same bicyclic system of relebactam bearing a five-
membered lactam ring with no piperidine moiety 
on the amide side chain. The acylation mechanisms 
are reported elsewhere and enzyme binding with 
either avibactam or relebactan is represented in 
Figure 3: D.31-33 
 Vaborbactam (Table 2, Compound 6) 
is a b-lactamase inhibitor; a cyclic boronic acid 
derivative approved by FDA 2017 as VabomereÇ$ 
consists of Vaborbactam and Meropenem. Used 
mainly for complicated urinary tract infections 
(UTI) by intravenous administration. Vaborbactam 
is intended for serine beta-lactamases, Ambler class 
A and C enzymes in Figure 3: E.35-37

Candidates and Active Derivatives as 
b-Lactamase Inhibitors 
 The following monographs collect the 
effective derivatives under common structural titles 
and verification names:
Chaeto-Chromones 
 These were isolated from crude extract 
of fungus Chaetomium indicum (CBS. 860.68).90-

101 Group of potent inhibitors versus metallo-beta 
lactamases are mentioned from those polyketides 
SB236050 (Compound 7, Table 2) had been 
investigated at the active site of a metallo-beta 
lactamase enzyme in crystal structure.90-92

Four-Membered-Ring Bearing Scaffolds as 
Inhibitors
 SYN 1012 and BRL 42715 (Compounds 8 
and 9, Table 2) are methylidene-penem derivatives 
possessing strong inhibition of serine b-lactamases 
of class A, C and D enzymes.100-102 These agents 
having increased cell permeability and acting by 
a different mechanism than clavulanic acid.101-105 

Penems (Compounds 10 and 11, Table 2) are 
other methylidene penems related to compound 9 
and aimed mainly to improve stability in solution 
and increase lipophilicity. The compounds have 
proven to be potent inhibitors of class A, C, and 
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D b-lactamases.104-108 The two compounds are 
effective inhibitors of class D OXA-1 b-lactamases. 
107-110

AM-112 (Compound 12, Table 2) 
 It is a derivative of clavulanic acid. This 
compound was unstable however it gives a lead 
zwitterion compound which has a potent inhibition 
property against class C and D b-lactamases.109-113

LK-157 (Compound 13, Table 2) 
 It is a fused tricyclic bearing carbapenem 
structure. It significantly inhibits AmpC-lactamase 
with 2,000-fold more potency than clavulanic acid 
and about 28-fold more active than tazobactam.114 
The introduction of a methoxy group at C-4 
position shows affinity towards both Class A and 
Class C.113 Ethylidene entity at C-6 was intended 
to maintain stability of the b-lactamase inhibitor/b-
lactamase complex, in addition it was speculated 
that the hydrophobic rings at position C-3 and C-4 
intended to block water molecule from penetrating 
the acyl-enzyme complex and thus preventing 
enzyme recovery.114-116 
b-Methylcarbapenems (Compound 14-17, 
Table 2) 
 These are carbapenem derivatives that 
contain a methyl group at C-1 and substituents 
at C-2 that are important in this scaffold for the 
inhibition of class B metallo-b–lactamases. Among 
these derivatives; J-110,441 (Compound 14, Table 
2) was the most potent inhibitor of class B metallo- 
b-lactamases (IC50 of 0.1 mM).115-117 
SA2-13 (Compound 18, Table 2)
 It is a tazobactam-related derivative 
b-lactamase inhibitor. It is developed to increase 
the lifetime of the trans-enamine intermediate 
compared to tazobactam when interacting with 
the enzyme. SA2-13: SHV-1 intermediate has a 
10-fold lower de-acylation rate than tazobactam: 
SHV-1 intermediate.86-88 
BAL29880 (Compound 19, Table 2)
 It has a chelating property to be combined 
with MBL-resistant monobactam antibiotic that 
is affected by cephalosporinases class C type 
AmpC and ESBLs. BAL29880 inhibits AmpC 
furthermore, clavulanic acid blocks the activity of 
other class A b-lactamases including ESBLs.116-118

MK-8712 (Compound 20 and 21, Table 2)
 The first has better AmpC inhibitory 
activity and shows synergistic effects with 
imipenem than the latter.119-121 

Ro 48-1220 (Compound 22, Table 2)
 (Z)-2 b- acrylonitrile penam sulfone is 
a potent inhibitor. Comparing its inhibition with 
tazobactam, Ro 48-1220 was 15 times more 
effective against class C b-lactamases. In another 
study, the inhibitor enhanced the activity of 
ceftriaxone and ceftazidime against producers of 
TEM-1 type class A -lactamases.122 
6-Substituted penam sulfones (Compound 23-
27, Table 2)
 These are nM to low M inhibitors of serine  
–lactamases.88 Changing the stereochemistry and 
functional groups on the C-6 position of penam 
sulfones can affect the selectivity of inhibition to 
the different classes of -lactamases.121-124   
 The compounds 23-25 (Table 2) providing 
IC50 = 1.6, 0.7 and 0.6 M versus TEM-1, respectively 
and were found to be potent inhibitors of class A  
-lactamases. The other compounds having C-6-
hydroxy-akyl and mercapto-alkyl penam sulfones 
and the compounds 26 and 27, (Table 2) were 
designed to act as chelators for metals in MBLs. 
Modification of the hydroxymethyl group by a 
mercaptomethyl group results in broader spectrum 
of inhibition, targeting both serine and metallo--
lactamases.122-126

Non -Lactam -Lactamase Inhibitors
Boronic Acid Analogs 
 Boron atom has three electrons in its 
valence shell. Covalent bonding favor only six 
surrounding electrons and thus it represents a 
favored electrophilic center (as monobasic Lewis 
acid of boron). To reach octet it must receive 
electrons from attacking nucleophiles. Boronic 
acid b-lactamases inhibitors are one of the most 
promising classes of b-lactamase inhibitors in 
development.125-129 They have been explored as 
serine b-lactamases inhibitors of mainly class A 
and C b-lactamases. 
 Boronic acids act as competitive inhibitors, 
forming a tetrahedral intermediate by binding to the 
catalytic serine residues of the enzymes through a 
coordinate covalent bond. The enzyme: inhibitor 
complex resembles the tetrahedral structure of 
the high-energy intermediate formed during the 
mechanism of b-lactam hydrolysis (Figure 3: E).130

ZBTH2BB (Compound 28, Table 2) 
 It is the benzothiophene-2-boronic acid, 
a potent nanomolar non-b-lactam inhibitor for 
class C b-lactamases with a Ki of 27 nM. Another 
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compound, 1-amido-2-(meta-carboxyphenyl) 
ethane boronic acid (Compound 29, Table 2) 
possess features to make it closer to b-lactams 
antibiotics during hydrolysis.131

Phosphonate Derivatives
 Among non- b-lactam inhibitors, 
phosphonates showed good inhibition against 
serine b-lactamases. They inhibit the enzyme 
by acylation and phosphylration of the active 
site serine-70 residue and formation of a stable 
tetrahedral phosphonyl-enzyme complex.132

 Phosphonate monoesters bearing phenyl 
rings (Compound 30 and 31, Table 2) have shown 
inhibition against class A and C b-lactamases. In 
addition, compound 30 has a weak antibacterial 
activity as demonstrated by its inhibition of the 
D-ala-D-ala trans peptidases in Streptomyces 
R61. Compound 32 (Table 2) was found to inhibit 
class C enzymes.130-134 The acyl phosphonate 
Compound 33 (Table 2) showed irreversible 
inhibition of b-lactamases. Adding proper 
hydrophobic substituents on diacyl phosphonates 
Compound 34 (Table 2) can increase the potency 
of inhibition, achieving an inhibition constant in 
the piconanomolar range.132-136 Other analogs like, 
cyclic phosphonates (Compound 35 & 36, Table 
2), The acyl phosphonates showed irreversible 
inhibition of b-lactamases. Adding proper 
hydrophobic substituents on diacyl phosphonates 
can increase the potency of inhibition, achieving 
an inhibition constant in the piconanomolar range. 
130-135

Thiol Derivatives (Captopril)
 Captopril is a well-known antihypertensive 
agent  that  inhibi ts  the  z inc-containing 
angiotensin-converting enzyme in humans 
to treat hypertension.134-135 It has also shown 
effective inhibition against all classes of metallo- 
-lactamases, which include classes of B1, B2 and 
B3 enzymes. Both diastereoisomers of captopril 
are capable of inhibiting these enzymes. However, 
the D-diastereoisomers (Compound 37, Table 2) 
is more potent in inhibiting some MBLs than the 
L- diastereoisomers (Compound 38, Table 2). The 
thiol group is important for binding. Lengthening 
of carboxylate group decreases the activity against 
the enzymes via complex formation (MBL-Zn(II)-
inhibitor). The sulfhydryl group bridges the two 
active site zinc ions, displacing the nucleophilic 

water molecule that act as the nucleophile to attack 
the carbonyl carbon on  -lactam antibiotics.134-138

Thiomendalic acid (Compound 39) 
 It is a simple thiol-containing compound 
able to inhibit different subclasses of MBLs, 
demonstrating that potent inhibitors are possible 
to design. Against the dizinc BcII enzyme 
thiomandelic acid provided Ki value of 0.09 µM 
for the R-isomer and 1.28 µM for the S-isomer, 
respectively. Varying the functional groups at the 
para-position of benzene bearing analogues didn’t 
provide more promising derivatives. The inhibitory 
activity of thiomandelic acid was found to be highly 
dependent on the thiol group, which chelates the 
two Zn (II) atoms in the active site of MBLs.134-141

Biphenyl tetrazoles
 The inhibitory activity of biphenyl 
tetrazoles through screening and molecular 
modeling studies of metallo-b-lactamase structure 
from imipenem-resistant B. fragilis had been 
realized. Biphenyl moiety form hydrogen bonds 
with the NH of Asn176 and His145, along with the 
NH2 of Lys187, enhancing the binding affinity to 
the enzyme. However, changing the position of the 
tetrazole ring from the ortho- to the meta- or para-
position, relative to the biphenyl rings, has resulted 
in a drastic loss of the inhibitory activity against the 
enzyme. L-809, 022 (Compound 40, Table 2) have 
shown to be a weak inhibitor of the MBL enzyme 
of B. fragilis, however, the added methyl group in 
L-158, 507 (Compound 41) improved the potency 
of the compound by 5-folds. 140-145

 Conjugation of the biphenyl system with 
substituted heterocyclic aromatic rings increased 
the potency.140-146 For example, replacement of 
the methyl group in the parent compound with 
a Z-methyl-benzimidazole moiety provided 
L-809, 559 (Compound 42, Table 2) of 40-fold 
increase in potency. The addition of the substituted 
imidazo[4,5-b] pyridinyl entity gave L-158,678 
(Compound 43, Table 2) of 50-fold increase in 
inhibition over the parent compound. L-159, 
061 (Compound 44, Table 2) with R= Z-butyl-
6-hydroxylquinazolinone, showed the highest 
potency with a 100-fold greater activity than the 
parent compound. 121,140-148 
Proposed selections of proper inhibitors for 
admixing with b-lactams
 The (Table 2), includes CLogP parameter 
obtained from chemdraw ultra. The number of 
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candidates proved potent inhibitory activity to 
metallo-b-lactamases are 16 candidates, each 
representing the top of a series of compounds. Six 
of those are b–lactam-bearing derivatives. The 
CLogP of these 6 derivatives drop in hydrophobic 
area ranging from 0 to 3.4. The generally approved 
b-lactamase inhibitors that are in clinical use are 
of balanced hydrophilicity and hydrophobicity 
having CLogP range -1.75 to 0.53.147-151 All of 
those admixtures are active versus classes A, 
C and D b-lactamase. On this basis, we can 
consider the mentioned physicochemical figure 
for the selection of b-lactamase inhibitors. The 
presence of polar groups is important to chelate 
one metal ion, at least, in the active site of metallo-
b-lactamase (Figure 1, equation 2). However, the 
hydrophobicity also is of high importance in case 
of metallo-b-lactamase.152  
 In addition, it might be effective also if 
we mix broad-spectrum b-lactams with suitable 
amounts of the earlier generations such as 
phenoxymethyl-penicillin (Pen V). Pen V is a good 
substrate for b-lactamases and thus acts as suicidal 
inhibitor allowing the broad-spectrum b-lactams to 
be effective versus super bugs.153-155

CoNCLUSIoN

 The impact of antimicrobials has brought 
upon benefits to medicine. However, harms include 
the b-lactamase enzymes that are resistant to either 
one or multiple antibiotics; as a result, limiting their 
use as single agents. In this review, we revisited 
the classification systems used to categorize these 
enzymes; in addition, we collected the various 
scaffolds of b-lactamase inhibitory activities. Most 
of the candidates mentioned mainly focused on 
targeting broader classes of b-lactamases against 
all types. 
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