Review on Cost of Anti-Glaucoma Formulation Available in India

Tarang R. Bhatt ${ }^{1 *}$ and Dharmesh K. Golwala ${ }^{2}$
${ }^{1}$ Faculty of Pharmaceutical Science, C. U. Shah University, Wadhwan, Surendranagar, Gujarat, India. ${ }^{2}$ Department of Pharmacy, Shankersinh Vaghela Bapu, Institute of Pharmacy, Vasan, Gandhinagar, Gujarat, India.
*Corresponding Author e-mail: tarang.bhatt@gmail.com
https://dx.doi.org/10.13005/bpj/2457

(Received: 20 April 2021; accepted: 17 June 2022)

Abstract

The objective of the present work was to determine cost per annum of various glaucoma formulation to patients and plot changes in trends of cost these formulations over years. Main purpose of this study is to provide patients and health care providers with calculated yearly costs of topical glaucoma medications in India. A price per ml model was used to eradicate difference due to pack size of formulation of different brands. And average prices per ml of all studied brands were used to present data of particular drug formulation. Daily recommended drops were also taken into consideration to obtain cost of formulation to patient per year. And results indicated that cost of glaucoma treatment in India per annum to patient varied from as low as 193.3 INR to as high as 6616.72 INR in year 2015, quite similar to that in 2005 wherein cost per annum to patient varied from 191.55 INR to 5879.12 INR. Beta blockers were reported to be the most economical group of glaucoma medications while prostaglandin analogues and its combinations were reported to be expensive group of glaucoma medications. And the study concluded that cost of glaucoma drug therapy varies from few hundred to several thousand rupees in India. And although price per annum of glaucoma medication in India remains to be significantly less compared to other developed countries, steep rising cost first line drugs like timolol maleate over the years forecasts risings concern to patient in India.

Keywords: Cost of medications; Beta Blocker; Glaucoma; Prostaglandins; Timolol Maleate.

Glaucoma is a chronic, progressive condition that is projected to affect approximately 76 million people worldwide in 2020, with the number expected to rise to almost 112 million in 2040^{1}. Notably, glaucoma is the second leading cause of blindness worldwide and the leading cause of treatable blindness ${ }^{2}$. In 2010, the worldwide percentage of blindness due to glaucoma was 6.6%, and the contribution of glaucoma to blindness in adults aged e" 50 years was 8.5% as
of 2015 , with a global projection of >11 million cases of bilateral blindness by $2020{ }^{3}$. Glaucoma medication plays a significant role in the treatment of patients with glaucoma, leading to increase burden of cost both to individuals, and society. In spite of substantial clinical and economic burden associated with glaucoma, studies evaluating the long-term costs of existing treatments are limited. Thus, cost-effectiveness studies are important because they allow a comparison between
different alternatives in terms of both their costs and their results. These data may be useful in selecting medications for glaucoma therapy.

Glaucoma is a complex disorder that comprises a group of heterogeneous optic neuropathies characterized by a progressive degeneration of the optic nerve head and visual field defects ${ }^{3}$. The cause of glaucoma generally is failure of the eye to maintain an appropriate balance between the amount of internal (intraocular) fluid produced and the amount that drains away. Just as a basketball or football requires air pressure to maintain its shape, the eyeball needs internal fluid pressure to retain its globe-like shape and ability to see.

There are about 67 million patients of glaucoma worldwide, out of which 14 million glaucoma patients in India alone, of whom 6.7 million will become blind in both eyes ${ }^{4}$. Globally, it is estimated that there are 38 million persons who are blind, Glaucoma is the second leading cause of vision loss in the world ${ }^{5}$. When calculated with above figures, almost 10 in 100 people will be suffering from glaucoma and 1 in 1000 will be blinded due to lack of proper treatment of glaucoma. And if such is the scenario, then India will be the most affected than any other countries in world. Effective intervention to prevent blindness from glaucoma is quite difficult, particularly in developing countries, where its early detection and management pose great problems ${ }^{5}$. Thus likely future scenario is therefore that glaucomatous blindness will continue to increase globally ${ }^{5}$.

It has been reported that patients with advanced glaucoma suffer from reduced mobility ${ }^{6}$, and are at higher risk of falling ${ }^{7}$, and are also at an increased risk of causing or being involved in automobile accident ${ }^{8}$. Most patients with glaucoma are unaware of their visual field defects until the disease enters a late stage ${ }^{9}$. Recent evidence suggests that glaucoma affects the entire visual pathway ${ }^{10}$.

Although it is noteworthy that no race is exempted from getting glaucoma ${ }^{11}$. But prevalence of glaucoma varies widely across the different ethnic groups and is significantly higher in blacks (4.7%) than in the white population ($1.3 \%)^{12}$. Most common risk factors for glaucoma includes age, race, family history, thin cornea, myopia and oxidative stress ${ }^{13}$. Amongst all other factors family
history of glaucoma is estimated to account for a risk of 1-10 folds among the first-degree relatives of an affected individual ${ }^{14}$. Estimated overall prevalence of glaucoma is 16% in those over the age of 70 amongst blacks compared to 6% and 3% respectively in Caucasians and Asians respectively ${ }^{15}$.

Cost per year ranged widely depending on the class of medication and recommended daily dosing ${ }^{16}$. While other problems like inefficiencies in actual patient usage of drops, wasting, or accidental administration of more than the prescribed dose can increase cost of glaucoma medication of patients. Thus based on wasting due to various reasons in a significant portion of the glaucoma patient population actual cost per day will differ from the calculated cost per day. A spectrum of cost for individual medications highlights the importance of considering the cost effectiveness of glaucoma medical management. Drug efficacy, tolerability, medication response, medical compliance, dosing regimens, and formulary coverage are factors that may justify a decision to prescribe a more costly medication.

Differences in yearly cost exist among topical glaucoma medications ${ }^{17}$. The daily cost of glaucoma medications in China ranged much more wildly than developed countries ${ }^{18}$. It is calculated to cost approximately $£ 380$ per patient per annum ${ }^{19}$, with an estimated $£ 300$ million spent in the UK in 2002 for treatments of glaucoma patients ${ }^{20}$. A cost effectiveness analysis estimates an average annual cost for standard therapy in treatment of glaucoma at USD 398 per patient in France ${ }^{21}$. While another study which performed cost analysis covering Denmark, Germany, Italy, Ireland, and Spain reported annual direct cost of glaucoma medication ranged from $€ 429$ to $€ 523{ }^{22}$. Thus, blindness related glaucoma has a wide impact on the developed European societies in terms of costs.

Direct annual medication cost of glaucoma may be dependent on choice of type and category of drug prescribed by doctor. As average cost of generic timolol in USA ranged from 0.38-0.50 USD per day and beta-blocker products were reported to be about twice as costly, ranging from $0.88-1.11$ per day US dollars. The prostaglandin analogues ranged from US dollars 0.90-1.25 USD per day ${ }^{23}$. Combination therapy can also be deciding cause for cost as it is reported in few studies that combination
therapy of timolol plus dorzolamide was less costly than separate bottles of a topical beta-blocker and a topical carbonic ${ }^{23}$.

Due to lack of accurate and decisive method and inclusion of various tangible factors for determination of daily cost for drugs used in glaucoma, results for cost per day to patient could vary based on method and sampling techniques used. For example according to study carried out in year 2003 average cost of generic timolol in USA ranged from $0.38-0.50$ USD per day ${ }^{23}$. While another study reported daily cost of the beta-adrenergic blockers studied ranged widely, from $\$ 0.43$ to $\$ 1.04{ }^{24}$. Thus, there is a need for harmonious method for determination of daily and annual cost to glaucoma patient.

METHODOLOGY

Various studies throughout the world have used different techniques to obtain prices of different glaucoma drugs within country (Rylander and Vold, 2008) and comparison in-between two countries ${ }^{25}$ and across globe ${ }^{26}$. There is no single
technique to obtain prices of all glaucoma drugs at one place. So, for study we sought prices borne by the patient for various glaucoma interventions. As there is no unanimous data source that captures prices patients pay for ophthalmic medications and other ophthalmic interventions within India, we used various data sources, including prices published by government entities on publicly available websites, academic publications, drugpricing databases, and reference prices books like drug today, drug update, CIMS etc .If we could not locate data from any of these sources, we contacted drug manufacturer to sought prices of drugs over years.

Cost in maximum retail price (MRP) in India of 11 molecule and its 29 different formulation based on strength \& combination divided into 7 groups of antiglaucoma formulation as were studied over time span from 10 years from 2005 to 2015 to obtain cost per year of therapy of glaucoma medication to patients and change in cost of therapy over these 10 years. Drugs, formulations, strengths that were not available initial in year 2005 but where available during later years were

Table 1. List of all equation used for calculating cost \& differences in cost of various antiglaucoma formulation

Equation 1 Price per ml of Brand (INR/ml)

Equation 2 Average Price per ml of Formulations (INR/ml)

Equation 3 Rate difference of glaucoma formulations over years
Equation 4 Glaucoma medication per day use (ml)

Equation 5 Glaucoma medication Cost per day (INR)
Equation 6 Glaucoma medication Cost per Annum (INR)
Equation 7 - Difference in cost per annum of Glaucoma medication over years

[^0]Table 2. Average Price per ml of Formulations (INR/ml) $1^{\text {st }}$ Year

No	Drug category	Drug percentage in w / v	Brand (year)	Pack	Price in INR(Year)	Price in INR per ml	Average rate per ml in INR
1	Para sympathomimetic (Cholinomimetic)	Pilocarpine-0.5\%	Carpine	1 ml	15.00 (2005)	15.00	15.00
2		Pilocarpine-2\%	Carpo Miotic	5 ml	32.00 (2005)	6.40	5.53
			Locarp	5 ml	25.00 (2005)	5.00	
			Pilagan	5 ml	32.66 (2005)	6.53	
			Pilocar	5 ml	32.00 (2005)	6.40	
			Pilodrops	5 ml	19.95 (2005)	3.99	
			Pilomax	5 ml	20.00 (2005)	4.00	
			Pilopress	5 ml	32.00 (2005)	6.40	
3		Pilocarpine gel 0.5\%	LocarpOpthalmic Gel	5 gm	85.94 (2005)	17.19	17.19
4	Non selective alphaagonist	Dipivefrine $\mathrm{HCl}-1 \%$	Propine	5 ml	50.65 (2005)	10.13	10.13
5	BETA BLOCKER	Timolol maleate-0.25\%	Glucomol	5 ml	17.05 (2005)	3.41	3.276
			Iotim	5 ml	15.85 (2005)	3.17	
			Lopres	5 ml	15.55 (2005)	3.11	
			Oclean	5 ml	17.00 (2005)	3.40	
			Oculan	5 ml	13.50 (2005)	2.70	
			Ocupress	5 ml	17.00 (2005)	3.40	
			Ocutim	5 ml	16.40 (2005)	3.28	
			Teemol	5 ml	12.90 (2005)	2.58	
			Teoptic	5 ml	15.60 (2005)	3.12	
			Timolen	5 ml	16.00 (2005)	3.20	
			Timolet	5 ml	19.00 (2005)	3.80	
			Timolo	5 ml	20.00 (2005)	4.00	
			Timopress	5 mla	17.10 (2005)	3.42	
6		Timolol maleate-0.5\%	Glucotim	5 ml	28.00 (2005)	5.60	5.21
			Nyolol	5 ml	29.50 (2005)	5.90	
			Teemol	10 ml	30.00 (2005)	3.00	
			Timdus	10 ml	31.00 (2005)	3.10	
			Timolet P	5 ml	45.00 (2005)	9.00	
			Gluchek	5 ml	25.00 (2005)	5.00	
			Glunil	5 ml	24.50 (2005)	4.90	
7		Timolol maleate unit dose 0.5\%	Iotim Unims	6X0.3ml	23.15 (2005)	12.86	12.86

8		Timolol maleate gfs 0.5\%	Timolet-Gfs	3 ml	60.00 (2005)	20.00	20.00
9		Betaxolol-0.5\%	Glucoptic	5 ml	30.00 (2005)	6.00	5.95
			Iobet	5 ml	30.90 (2005)	6.18	
			Nopres	5 ml	30.00 (2005)	6.00	
			Optipress	5 ml	29.25 (2005)	5.85	
			Betapress	5 ml	29.00 (2005)	5.80	
			Ocubeta	5 ml	29.33 (2005)	5.87	
1		Betaxolol-0.25\%	Optipres-S	5 ml	29.25 (2005)	5.85	5.83
			Bulol	5 ml	29.05 (2005)	5.81	
1		Levobunolol-0.5\%	Betagan	5 ml	53.00 (2005)	10.60	10.20
			Levob	5 ml	49.00 (2005)	9.80	
12	Carbonic anhydrase	Dorzolamide-2\%	Dortas	3 ml	180.00 (2005)	60.00	49.52
	inhibitor (CAI)		Dorzox	5 ml	195.25 (2005)	39.05	
13	Alpha 2 agonist	Brimonidine-0.2\%	BrimodinDps	5 ml	100.25 (2005)	20.05	26.35
			Alphagan	10 ml	300.04 (2005)	30.00	
			Iobrim	5 ml	145.00 (2005)	29.00	
14		Brimonidine-0.15\%	Brimodin P	5 ml	120.00 (2005)	24.00	24.00
15		Brimonidine-0.10\%	Brimochek	5 ml	140.00 (2010)	28.00	27.30
			Brimosun-Ls	5 ml	133.00 (2010)	26.60	
16		Apraclonidine-0.5\%	Alfadrops	5 ml	40.00 (2005)	8.00	8.00
17		Apraclonidine-1\%	Alfadrops Ds	2 ml	40.25 (2005)	20.12	20.12
18	Prostaglandin	Latanoprost-0.005\%	9pm Eye Drops	2.5 ml	320.75 (2005)	128.30	121.20
	Analogue		Latoprost	2.5 ml	285.50 (2005)	114.20	
			Xalatan	2.5 ml	N.A. (2005)	-	
19		Bimatoprost-0.03\%	Lumigan	3 ml	595.00 (2005)	198.33	198.3
20		Travoprost-0.004\%	Lupitros	3 ml	150.00 (2012)	50.00	75.33
			Travo	3 ml	302.00 (2012)	100.67	
21	Beta blocker + Cholinomimetic	Timolol 0.5\% + pilocarpine 2%	Timolet Plus	5 ml	75.00 (2005)	15.00	15.00
22	Beta blocker + Alpha 2 agonist	Timolol 0.5% + brimonidine tartrate 0.15%	Betabrim	5 ml	150.00 (2008)	30.00	30.00
23	Beta blocker + Carbonic anhydrase	Dorzolamide 2\%+timolol maleate 0.5%.	Misopt	5 ml	220.00 (2007)	44.00	44.50
	inhibitor (CAI) inhibitor (CAI)		Ocudor-T	5 ml	225.00 (2007)	45.00	
24	Beta blocker +	Latanoprost 0.005\% ${ }^{+}$	Laprost Plus	3 ml	220.00 (2008)	73.33	100.67
	Prostaglandin	timolol 0.5\%	Latim	2.5 ml	N.A. (2008)	-	
			Latocom	2.5 ml	320.00 (2008)	128.00	

Table 3. Average Price per ml of Formulations (INR/ml) 2 ${ }^{\text {nd }}$ Year

No	Drug category	Drug percentage in w/v	Brand (year)	Pack	Price in INR(Year)	Price in INR per ml	Average Rate per mlin INR
1	Para sympathomimetic (Cholinomimetic)	Pilocarpine-0.5\%	Carpine	1 ml	15.00 (2015)	15.00	15.00
2		Pilocarpine-2\%	Locarp	5 ml	25.00 (2015)	5.00	6.05
			Pilagan	5 ml	32.66 (2015)	6.53	
			Pilocar	5 ml	51.95 (2015)	10.39	
			Pilodrops	5 ml	19.95 (2015)	3.99	
			Pilomax	5 ml	20.00 (2015)	4.00	
			Pilopress	5 ml	32.00 (2015)	6.40	
3		Pilocarpine gel 0.5\%	LocarpOpthalmic Gel	5 gm	89.52 (2015)	17.90	17.90
4	Non selective alpha agnoist	Dipivefrine hcl-1\%	Propine	5 ml	50.65 (2015)	10.13	10.13
5	BETA BLOCKER	Timolol maleate-0.25\%	Glucomol	5 ml	17.05 (2015)	3.41	3.31
			Iotim	5 ml	19.90 (2015)	3.98	
			Oclean	5 ml	17.00 (2015)	3.40	
			Oculan	5 ml	13.50 (2015)	2.70	
			Ocupress	5 ml	17.03 (2015)	3.41	
			Ocutim	5 ml	16.40 (2015)	3.28	
			Teoptic	5 ml	15.60 (2015)	3.12	
			Timolen	5 ml	16.00 (2015)	3.20	
6		Timolol maleate-0.5\%	Glucotim	5 ml	28.00 (2015)	5.60	8.45
			Nyolol	5 ml	34.10 (2015)	6.82	
			Timolet	5 ml	61.00 (2015)	12.20	
			Timdus	10 ml	31.00 (2015)	3.10	
			Timolet P	5 ml	48.20 (2015)	9.64	
			Lopres	5 ml	56.00 (2015)	11.20	
			Glucotim -La	5 ml	45.00 (2015)	9.00	
			Timoblu	5 ml	42.00 (2015)	8.40	
			Optilax	10 ml	22.00 (2015)	2.20	
			Tily	5 ml	40.00 (2015)	8.00	
			Timolet-Od	5 ml	84.00 (2015)	16.80	
7		Timolol maleate unit dose 0.5\%	Iotim Unims	6X0.3ml	23.15 (2015)	12.86	12.86
8		Timolol maleate gfs 0.5\%	Timolet-Gfs	3 ml	82.00 (2015)	27.33	27.33
9		Betaxolol-0.5\%	Iobet	5 ml	38.80 (2015)	7.76	6.47
			Nopres	5 ml	30.00 (2015)	6.00	
			Optipres	5 ml	34.50 (2015)	6.90	
			Ocupres-B	5 ml	29.05 (2015)	5.81	
			Ocubeta	5 ml	29.33 (2015)	5.87	
10		Betaxolol-0.25\%	Optipres-S	5 ml	29.25 (2015)	${ }_{5}^{5.85}$	5.83
11		Levobunolol-0.5\%	Betagan	5 ml	53.00 (2015)	10.60	10.20
	Carbonic anhydrase inhibitor (CAI)		Levob	5 ml	49.00 (2015)	9.80	
12		Dorzolamide-2\%	Dortas	3 ml	195.00 (2015)	65.00	51.89
			Monosopt	5 ml	246.00 (2015)	49.20	
			Ocudor	5 ml	195.25 (2015)	39.05	
			Dorzox	5 ml	271.50 (2015)	54.30	

25.28
33.76
27.44
8.05
20.00
114.85
126.17
119.10
27.33
113.30

13	Alpha 2 agonist	Brimonidine-0.2\%
14		Brimonidine-0.15\%
15		Brimonidine-0.10\%
$\begin{aligned} & 16 \\ & 17 \end{aligned}$		Apraclonidine-0.5\% Apraclonidine-1\%
18	Prostaglandin Analogue	Latanoprost-0.005\%
19		Bimatoprost-0.03\%
20		Travoprost-0.004\%
21	Beta blocker + Cholinomimetic	Timolol 0.5\% + pilocarpine 2\%
22	Beta blocker + Alpha 2 agonist	Timolol 0.5% + brimonidine tartrate 0.15%
23	Beta blocker + Carbonic anhydrase inhibitor (CAI)	Dorzolamide 2\%+timolol maleate 0.5%.
24	Beta blocker + Prostaglandin	Latanoprost $0.005 \%+$ timolol 0.5\%

Table 4. Rate difference of glaucoma formulations over years

No	Drug category	Drug percentage in w / v	Average Rate perml in INR (1 ${ }^{\text {st }}$ Year)	Average Rate per ml in INR (2 ${ }^{\text {nd }}$ Year)	Ratedifference over years in INR
1	Para sympathomimetic	Pilocarpine 0.5\%	15 (2005)	15 (2015)	0.00
2	(Cholinomimetic)	Pilocarpine 2\%	5.531 (2005)	6.052 (2015)	0.52
3		Pilocarpine Gel 0.5\%	17.19 (2005)	17.904 (2015)	0.71
4	Non selective alpha agnoist	Dipivefrine $\mathrm{Hcl} 1 \%$	10.13 (2005)	10.13 (2015)	0.00
5	Beta Blocker	Timolol Maleate 0.25\%	3.276 (2005)	3.31 (2015)	0.04
6		Timolol Maleate 0.5\%	5.214 (2005)	8.45 (2015)	3.24
7		Timolol Maleate Unit Dose 0.5\%	12.86 (2005)	12.86 (2015)	0.00
8		Timolol Maleate Gel forming solution 0.5\%	20 (2005)	27.33 (2015)	7.33
9		Betaxolol 0.5\%	5.949 (2005)	6.467 (2015)	0.52
10		Betaxolol 0.25\%	5.83 (2005)	5.83 (2015)	0.00
11		Levobunolol 0.5\%	10.2 (2005)	10.2 (2015)	0.00
12	Carbonic anhydrase inhibitor (CAI)	Dorzolamide 2\%	49.52 (2005)	51.88 (2015)	2.36
13	Alpha 2 agonist	Brimonidine-2\%	26.35 (2005)	25.28 (2015)	-1.07
14		Brimonidine 0.15\%	24 (2005)	33.75 (2015)	9.75
15		Brimonidine 0.10\%	27.3 (2010)	27.44 (2015)	0.14
16		Apraclonidine 0.5\%	8.00 (2005)	8.05 (2015)	0.05
17		Apraclonidine 1\%	20.12 (2005)	20 (2015)	-0.12
18	Prostaglandin Analogue	Latanoprost-0.05\%	121.2 (2005)	114.84 (2015)	-6.40
19		Bimatoprost 0.03\%	198.3 (2005)	126.17 (2015)	-72.16
20		Travoprost 0.004\%	75.33 (2012)	119.1 (2015)	43.77
21	Beta blocker + Prostaglandin	Latanoprost 0.05\%+Timolol maleate 0.5\%	100.6 (2008)	113.29 (2015)	12.63
22	Beta blocker + Carbonic anhydrase inhibitor (CAI)	Dorzolamide 2\%+Timolol Maleate 0.5\%.	44.5 (2007)	56.83 (2015)	12.33
23	Beta blocker + Cholinomimetic	Timolol 0.5\% Pilocarpine 2\%	15 (2005)	21.58 (2015)	6.58
24	Beta blocker + Alpha 2 agonist	Timolol 0.5% + Brimonidine 0.15\%	30 (2008)	37.33 (2015)	7.33

Table 5. Difference in cost per annum of Glaucoma medication over years
$\left.\begin{array}{lllllllll}\hline \text { No. } & \text { Category } & \begin{array}{c}\text { Anti-Glaucoma } \\ \text { formulation }\end{array} & \begin{array}{c}\text { Number of } \\ \text { drops per } \\ \text { day }\end{array} \\ \text { (Recommended } \\ \text { daily dose) }\end{array}\right)$

 Betaxolol 0.25%
Levobunolol 0.5%
Dorzolamide 2\%
Brimonidine 0.2%
Brimonidine 0.15\%
Brimonidine 0.10\%
Apraclonidine 0.5\%
Apraclonidine 1\%
Latanoprost 0.005\%
Bimatoprost 0.03\%
Travoprost 0.004\%
Latanoprost 0.005\%+
Timolol 0.05\%
Dorzolamide 2\% +
Timolol Maleate 0.5%.
Timolol $0.5 \%+$
Pilocarpine 2\%
Timolol 0.5\%
Brimonidine 0.15% Carbonic anhydrase
inhibitor (CAI)
Alpha 2 agonist

also taken into account and its cost and difference of cost of therapy to patient was considered with respect to year it was first available to 2015. Formulation of which at least 4 years of data were available where considered part of study.

A price per ml model was used to eradicate difference due to pack size of formulation of different brands. And average prices per ml of all studied brands were used to present data of particular drug formulation. Daily recommended drops was taken into consideration to obtain cost of formulation to patient per year. Following equation were considered for study. Table 1 enlist all the essential equation to calculate price and differentiate of various formulation.

RESULTS

All the results of study were represented in terms of tables obtained using calculation mentioned in table 1 . While table 2 and table 3 represents average price per ml of 24 different formulations in year 2005 and year 2015 respectively. Results represented in table 2 and table 3 are particular important of discards variation in price due to pack size of an formulation. Table 4 represents variation in cost of anti-glaucoma formulations over span of 10 years, while table 5 represents change in cost of anti-glaucoma formulations per annum to patients over span of 10 years.

DISCUSSION

Apart from being first line choice of drug for glaucoma, different studies around the globe has suggested beta blockers to be the most economic drug therapy to patients ${ }^{27}$. As recorded in this studycost of glaucoma treatment in India per annum to patient varied from as low as 193.3INR to as high as 6616.72 INR in year 2015, quite similar to that in 2005 , and the cost per annum to varied from 191.55 to 5879.12 INR. Beta blockers were reported to be the most economical group of glaucoma medications while prostaglandin analogues and its combinations were reported to be expensive group of glaucoma medications. Except timolol gel forming solution, all other beta blockers were reported to cost below 752 INR per annum to patients. While in case of prostaglandin analogues latanoprost cost per annum of was
the most economical prostaglandin in year 2005 until introduction of travoprost in year 2012, but over just four years travoprost recorded substantial rise in its cost making latanoprost again most economical prostaglandin by year 2015. Irrespective of any scenario prostaglandins and its combination remained to be most expensive glaucoma medication therapy.

An unlikely noteworthy point was recorded in para-sympathomimetic group of glaucoma medication, that an higher concentration of pilocarpine (2%) in solution formulation recorded less than half the price per annum to patients compared to its lower concentration pilocarpine (0.5%) solution formulation, this trend remained constant throughout years of 2005 to 2015. Similar one instance was also recorded in Alpha 2 agonist group of medication in year 2015 where in cost per annum of Brimonidine (0.2%) was slightly less than both its counter parts of Brimonidine (0.15%) and brimonidine (0.1%). While as expected in terms of combination therapy, combination of two most economical groups of beta blockers and para-sympathomimetic presented the most cost-effective therapy while combination of prostaglandins as described above provided to be most expensive glaucoma medication therapy. And remaining other combinations provided median cost in-between highest and lowest costing combinations.

Change is cost per annum of Glaucoma therapy from 2005 and 2015 in India

Study recorded increase in cost per annum to patients of seven formulations by more than 20 percent in 10 years of 2005 to 2015. Amongst them timolol maleate solution (0.5%) recorded highest of 62.19 percent rise in price per annum to patient which was followed by $58.10,43.87,40.63,36.65$, and 27.71 for travoprost, combination of timolol \& pilocarpine, brimonidine (0.15%), timolol maleate gel forming solution, combination of dorzolamide \& timolol Maleate and combination of Timolol \& Brimonidine respectively. And overall, three formulation recorded rise in its cost by between 5 to 20 percent which include Pilocarpine (2%), combination of Latanoprost \&Timolol, and Betaxolol (0.5%). And five other formulation like Dorzolamide, Pilocarpine Gel, Timolol Maleate (0.25%), Apraclonidine (0.5%), and Brimonidine (0.10%) recorded rise in its annual cost to patients
of less than 5 percent in between those 10 years.
While majority of formulation recorded increase in cost per annum, formulation like Pilocarpine (0.5%), Dipivefrine, Timolol Maleate Unit Dose, Betaxolol (0.25%), and Levobunolol reported no change in price per annum to patients in India from year 2005 to 2015. And surprisingly four formulation reported fall in its price per annum over years which included Apraclonidine, Brimonidine (0.2\%), Latanoprost and Bimatoprost. Amongst them Bimatoprost recorded highest - 36.38 percent fall in price per annum to patient which was followed by -5.28 percent of Latanoprost, -4.06 percent of Brimonidine (0.2%), while Apraclonidine (1%) recorded only marginal fall of -0.60 percent in its price over these ten years.

When calculated by category of glaucoma formulation, betablockers are responsible for 39.21 percent rise in overall cost of glaucoma medication over 10 years of study, followed by 34.74 percentage of combination therapy. As a result, beta blockers and combination therapy are collective responsible for 73.95 percent of total of all increase in price to patient by per for glaucoma medication. While alpha 2 agonist category drug formulations were responsible for 13.42 , other categories like para-sympathomimetic, Carbonic anhydrase inhibitors, Prostaglandin Analogue resulted for 12.63 percent responsible for overall increase in price of glaucoma medication.

CONCLUSION

Cost of glaucoma drug therapy varies from few hundred to several thousand rupees in India. Beta blockers were documented to be most economical therapy of glaucoma patient in India, while prostaglandins and its combinations were documented to be most expensive. Although price per annum of glaucoma medication in India remains to be significantly less compared to other developed countries, steep rising cost first line drugs like timolol maleate over the years forecasts risings concern to patient in India. As almost all the formulation for treatment of glaucoma remains to be either in solution or suspension form, it is suggested to develop other formulation of same drugs into other dosage forms like ointment, gels, and emulsions which could be provide better reduction in IOP at lower concentration than
existing formulation. More focus should be given to cost effective formulation to restrict the continuous rising cost of glaucoma drug therapy in India.

Funding

No competing financial interests exist.

Conflict of interests

The authors declare no conflict of interest.

REFERENCES

1. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. (2014).
2. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;
3. Quigley H, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. British Journal of Ophthalmology. (2006).
4. Rathore KS, Nema RK, Sisodia SS. Timolol maleate a gold standard drug in glaucoma used as ocular films and inserts: An overview. International Journal of Pharmaceutical Sciences Review and Research. (2010).
5. Thylefors B, Negrel AD, Pararajasegaram R, Dadzie KY. Global data on blindness. Bull World Health Organ. (1995).
6. Wade M. Glaucoma-related vision loss may increase risk for auto accidents: Study results show need for mandatory visual field testing for drivers. Insight. (2013).
7. Kotecha A, Richardson G, Chopra R, Fahy RTA, Garway-Heath DF, Rubin GS. Balance control in glaucoma. Investig Ophthalmol Vis Sci. (2012).
8. McGwin G, Xie A, Mays A, Joiner W, DeCarlo DK, Hall TA, et al. Visual field defects and the risk of motor vehicle collisions among patients with glaucoma. Investig Ophthalmol Vis Sci. (2005).
9. Hoste AM. New insights into the subjective perception of visual field defects. Bulletin de la Société belge d'ophtalmologie. (2003).
10. Gupta N, Yücel YH. Brain changes in glaucoma. European journal of ophthalmology. (2003).
11. Sivalingam E. Glaucoma: an overview. Journal of ophthalmic nursing \& technology. (1996).
12. Kwon YH, Fingert JH, Kuehn MH, Alward WLM. Mechanism of Disease: Primary openangle glaucoma. N Engl J Med. (2009).
13. Leske MC, Wu SY, Hennis A, Honkanen R, Nemesure B. Risk Factors for Incident Openangle Glaucoma. The Barbados Eye Studies. Ophthalmology (2008).
14. Green CM, Kearns LS, Wu J, Barbour JM,

Wilkinson RM, Ring MA, et al. How significant is a family history of glaucoma? Experience from the glaucoma inheritance study in Tasmania. Clin Exp Ophthalmol. (2007).
15. Rudnicka AR, Mt.-Isa S, Owen CG, Cook DG, Ashby D. Variations in primary open-angle glaucoma prevalence by age, gender, and race: A Bayesian meta-analysis. Investig Ophthalmol Vis Sci. (2006).
16. Banga H, Gupta A, Singh G. Volumetric and cost evaluation study of glaucoma medical therapy. Int J Appl Basic Med Res. (2015).
17. Vold SD, Riggs WL, Jackimiec J. Cost analysis of glaucoma medications: A 3-year review. J Glaucoma. (2002).
18. Gao Y, Wu L, Li A. Daily cost of glaucoma medications in China. J Glaucoma. (2007).
19. Traverso CE, Walt JG, Kelly SP, Hommer AH, Bron AM, Denis P, et al. Direct costs of glaucoma and severity of the disease: A multinational long term study of resource utilisation in Europe. Br J Ophthalmol. (2005).
20. Rouland JF, Berdeaux G, LafumaA. The economic burden of glaucoma and ocular hypertension: Implications for patient management: A review. Drugs and Aging. (2005).
21. Kobelt G, Jönsson L. Modeling cost of treatment
with new topical treatments for glaucoma: Results from france and the United Kingdom. International Journal of Technology Assessment in Health Care. (1999).
22. Poulsen PB, Buchholz P, Walt JG, Christensen TL, Thygesen J. Cost analysis of glaucoma-related-blindness in Europe. Int Congr Ser. (2005)
23. Fiscella RG, Green A, Patuszynski DH, Wilensky J. Medical therapy cost considerations for glaucoma. Am J Ophthalmol. (2003).
24. Ikeda H, Sato E, Kitaura T, Fukuchi H, Kimura Y, Kihira K. Daily cost of ophthalmic solutions for treating glaucoma in Japan. Jpn J Ophthalmol. (2001).
25. Schlenker MB, Trope GE, Buys YM. Comparison of United States and Canadian glaucoma medication costs and price change from 2006 to 2013. J Ophthalmol. (2015).
26. Zhao PY, Rahmathullah R, Robin AL, Stein JD. Comparison of prices of glaucoma medications, laser trabeculoplasty, and incisional glaucoma surgery in 20 countries. Investig Ophthalmol Vis Sci. (2017).
27. Yadav A, Patel V. Drug use in primary open angle glaucoma: A prospective study at a tertiary care teaching hospital. Indian J Pharmacol. (2013).

[^0]: Price per ml of a brand $=($ Maximum retail price of Formulation in INR/pack size in ml)
 For example, price of Levobunolol - 0.5% for Betagan (Allergan) for
 5 ml is 53 INR than its Price per $\mathrm{ml}=53 / 5=10.6 \mathrm{INR} / \mathrm{ml}$
 Average price per ml of a formulation $=($ Sum price of all brands (INR/ml)/Sum of total brands)
 For example, price per ml of Levobunol 0.5% brand one is $10.6 \mathrm{INR} / \mathrm{ml}$ and for brand two is $9.8 \mathrm{INR} / \mathrm{ml}$ than Average price per ml of a Levobunol $0.5 \%=(10.6+9.8) / 2=10.2 \mathrm{INR} / \mathrm{ml}$.
 ((Average Price per ml of Formulations of 2nd year - Average Price per ml of Formulations of 1st year) $* 100$ / Average Price per ml of Formulations of 1st year)
 Per day use $(\mathrm{ml})=$ (daily recommended dose in number*average drop size of eye drops) But Average Drop size for ophthalmic solution is 0.04 ml So, Per day use $(\mathrm{ml})=($ daily recommended dose*0.04)
 Glaucoma medication Cost per day (INR) = Glaucoma medication per day use (ml)*rate per ml (INR)

 Cost per year $(\mathrm{INR})=$ - Glaucoma medication cost per day (INR)*365
 Where 365 represents total number of days in 1 year.
 Difference in cost per annum in percentage $=(($ Cost per Annum (INR) of year 2015- Cost per Annum (INR) of year 2005)/
 Cost per Annum (INR) of year 2005*100

