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	 Liver fibrosis is considered “a pathological repairing process in liver injuries leading to 
extracellular cell matrix (ECM) accumulation evidencing chronic liver diseases”. Chronic viral 
hepatitis, alcohol consumption, autoimmune diseases as well as non-alcoholic steatohepatitis are 
from the main causes of liver fibrosis (Lee et al., 2015; Mieli-Vergani et al., 2018). Hepatic stellate 
cells (HSCs) exist in the sinus space next to the hepatic epithelial cells as well as endothelial 
cells (Yin et al., 2013). Normally, HSCs are quiescent and mainly participate in fat storage and 
in the metabolism of vitamin A. HSCs are produced during liver injury and then transformed 
into myofibroblasts. The activated HSCs resulted in a sequence of events considered as marks 
fibrosis. The activation of HSCs mostly express alpha smooth muscle actin (a-SMA). Moreover, 
ECM is synthesized and secreted by HSCs that affects markedly the structure and function of 
the liver tissue leading to fibrosis (Tsuchida et al., 2017; Han et al., 2020). Hence, activated 
HSCs are attracting attention as potential targets in liver fibrosis. Many signaling molecules 
are involved in HSCs activation first and foremost, platelet-derived growth factor (PDGF) and 
transforming growth factor-beta (TGF-ß) (Tsuchida et al., 2017; Wang et al., 2020c) as interfering 
the PDGF or TGF-ß signaling pathways is a growing field for liver fibrosis treatment.
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	 The ECM proteins’ - particularly collagen 
type 1, - accumulation distorts the hepatic archi
tecture through the formation of a fibrous wound, 
followed by the expansion of spherical areas of 
cells called nodules then hardening of the tissue. 
A series of events follows resulting in cirrhosis. 
Liver cirrhosis causes hepatocellular dysfunction, 
hepatocellular carcinoma (HCC) and hence, hepatic 
failure (Giannitrapani et al., 2014).
	 Liver fibrosis involves parenchymal, non-
parenchymal liver cells and infiltrating immune 
cells. Cell death activates the inflammatory and 
pro-fibrogenic pathways that triggers fibrosis 

progression, as well as the possibility of reversing 
the process that aids in fibrosis resolution (Lee et 
al., 2015). 
	 H e p a t i c  m a c r o p h a g e s ,  i n j u r e d 
hepatocytes, lymphocytes and endothelial cells 
leads to the induction of HSC. The dead hepatocytes 
release of reactive oxygen species, damage-
associated molecular patterns (DAMPs) which 
stimulate macrophages (Kupffer cells) to release 
proinflammatory biomarkers and  pro-fibrogenic 
markrs, (Yang et al., 2012). 
	 Other pro-inflammatory factors include 
gut-derived pathogen-associated molecular 
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patterns (PAMPs) as well as chemokines like CC-
chemokine ligand-2 CCL2.  CCL2, also known as 
monocyte chemotactic peptide-1 (MCP-1), it is 
considered a member of the beta (C-C) chemokine 
family. It is expressed in many cell types, including 
hepatocytes, stellate cells and inflammatory cells 
(Degre et al., 2012). C-C chemokine receptor type 
2 (CCR2) has been found to be the known receptor 
for CCL2 and it is usually expressed on monocytes, 
T lymphocytes and basophils (Xu et al., 2019).
	 From the factors of chronic wound 
healing is the toll-like receptor 4 (TLR4) activation 
enhancing TGF-β-dependent HSC activation (Liu 
et al., 2014). Moreover, oxidative stress plays a 
very important role in all fibrogenic changes as 
shown by the overexpression of critical genes 
related to inflammation and chronic damage of 
tissues (de Castro Bras et al., 2020).
	 The increased activity of free radicals, 
together with the decreased antioxidant defenses 
result in the occurrence of oxidative stress that 
significantly contributes to fibrogenesis and 
excessive tissue remodeling (de Alwis et al., 2008).
Prevalence Of Liver Fibrosis In Egypt
	 Liver diseases with many types lead to liver 
fibrosis, which leads to further sedimentation of 
extracellular matrix followed by more complicated 
liver conditions that leads to death. According to 
the WHO data in 2018, Liver Disease Deaths in 
Egypt reached 12.40% of total deaths that ranks 
Egypt #1 worldwide (WHO, 2018). This report 
draws the scientists’ attention to explore more new 
solutions to alleviate liver fibrosis.
Nanomedicine
	 Nanomedicine is concerned with 
nanoparticles’(NPs) designing and application  
in order to diagnose and treat diseases (Silva et 
al., 2019; Pucek et al., 2020). Nanomedicine is a 
critical field of nanotechnology research that has 
greatly affected and aided biomedicine through 
the past years. These nano formulations have been 
designed and adjusted as effective therapeutic 
agents to alleviate liver fibrosis targeting specific 
sites (Poilil Surendran et al., 2017). Moreover, 
nanostructures were designed as nano agents for 
contrast enhancement as nanoprobes to diagnose 
liver fibrosis (Sheng et al., 2018).
	 Numerous nanoparticles (NPs) have been 
intensively scouted for diagnosing and curing 

hepatic fibrosis such as metal oxide NPs (Sheng 
et al., 2018), lipid NPs (Jimenez Calvente et al., 
2015), polymer NPs (Li et al., 2010), metal NPs 
(Duong et al., 2015), and protein NPs (Melgert et 
al., 2000). 
	 The wide-range composition, size, shape 
and changeable surface properties of NPs makes 
them unique, as controlled drug release, high 
divergence, extended bioavailability, reduction 
of toxic side effects and improvement of the 
pharmacokinetics of drugs (Petros et al., 2010). 
An interesting and beneficial significance of nano 
systems is the possibility to diagnose and treat at 
the same time (Nagorniewicz et al., 2019).
Human diseases and Nanotechnology
	 Medical NPs are designed nano-structures 
from drugs, peptides, proteins, or nucleic acids 
and are loaded in carriers. Hereafter, NPs are 
used to resolve the conflict of barriers that 
conquer the delivery of drugs and imaging labels 
to targets. These barriers may be attributed to 
biological, biophysical, and biomedical problems. 
Transforming the drugs and genes into NPs to target 
specific cells or tissues via coating or attaching 
ligands, may alter the therapeutic hypothesis, thus 
therapeutic agents can reach directly the needed 
site.
	 There are marked benefits to use NPs 
delivery systems as:
(1) Avoiding the degradation of the therapeutic 
agent by being inactivated or being broke down 
until it scopes the site of action; 
(2) optimizing the pharmacological effects that 
result in enhancing drugs’ bioavailability
(3) possibility of integration of hydrophobic and 
hydrophilic molecules;
(4) reduction of drug blood level fluctuations that 
may subject patients to lower risk of noneffective 
or toxic doses
(5) decreasing the side effects and toxicity of drugs 
(6) controlled drug release that is needed in many 
pathological conditions; 
(7) using different routes of administration
(8) due to the high affinity between the site of 
interest and the nano drug, active targeting is 
fulfilled
	 Liver and spleen are considered to be the 
chief organs of accumulation of NPs (Moghimi 
et al., 2001) owing to help them reach the blood 
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and high number of tissue-resident phagocytic cell 
(Giannitrapani et al., 2014; Mohammadpour et al., 
2020). 
Common NPs types recruited to treat liver 
diseases
	 The NPs used in drug delivery and 
biomedical studies is promptly increasing. NPs 
can be categorized into two main categories: 
inorganic and organic NPs and inorganic NPs have 
outstanding properties that made them of great 
interest. 
	 Generally, inorganic NPs constitute a 
metal oxide as titanium oxide and iron oxide, 
or metal central core with a surface protective 
organic layer. This outer layer plays a crucial role 
in preventing the degradation of the inside content 
and permitting the pairing of biomolecules with the 
reactive groups as thiols and amines in order to link 
proteins, peptides, and folic acid.
	 Inorganic NPs have significant attention in 
recent years as they possess many physicochemical 
properties which are attributed to their different size 
and material, as compared to organic NPs. They 
possess unique magnetic, electronic, and optical 
properties which can be customized by regulating 
the size, composition, structure, and shape. Due 
to their inertness, easy functionalization, and 
stability, they have been considered as an attractive 
alternative over organic NPs for imaging specific 
tissues and drug delivery (Ketabat et al., 2019). 
	 Organic Polymeric NPs include numerous 
sorts of nanoparticles for example; liposomes, solid 
lipid nanoparticles (SLN), and nanostructured lipid 
carriers (NLCs) (Figure 1). These biocompatible 
and biodegradable polymeric NPs are now of great 
importance as possible drug delivery preparations 
which can be used as carriers of DNA in gene 
therapy, administered in drug targeting to particular 
organs or tissues, and they can deliver peptides and 
proteins orally.
	 Biodegradable polymers of natural 
origin include chitosan, rosin, gelatin and sodium 
alginate. On the other hand, synthetic polymers 
include “polylactic acid (PLA), polycaprolactones 
(PCL), polycyanoacrylates and polyaminoacid 
conjugates” (Nie et al., 2020; Mohamed et al., 
2021). 
	 The US Food and Drug Administration 
had approved PLA and PLGA biodegradable 
polymeric nanoparticles. Liposomes are synthetic 

sphere-shaped vesicles that contains one or more 
phospholipid bilayers enfolding an aqueous 
compartment. A variety of hydrophobic and 
hydrophilic medications can be encapsulated in 
the dual compartment structure of liposomes where 
hydrophilic drugs inside the internal aqueous core 
shaped by the lipid membrane, while hydrophobic 
drugs can be fused into the bilayer.
	 Liposomal NPs are the simplest form 
of NPs that have several advantages as good 
biocompatibility, easy preparation, increased 
uptake and reduced systemic toxicity (Datta et al., 
2020; Wang et al., 2020a). 
	 Conventional liposomes are immediately 
removed from the blood circulation and 
that is rendered to their high affinity for the 
reticuloendothelial system (RES), that is why they 
are coated with hydrophilic molecules linked to the 
liposomal formulation by a lipid anchor so as to 
prolong liposome circulation over time (Immordino 
et al., 2006). Consequently, the pharmacological 
potency has been improved as well as reduction in 
the used dose.
	 Solid lipid nanoparticles (SLNs), were 
introduced in the 1990s (Muller et al., 2000) and 
they were considered a new carrier system other 
than liposomes, polymeric nanoparticles and 
emulsions. 
	 The solid lipid core can include 
triglycerides, fatty acids, steroids, waxes and 
glyceride mixtures. SLNs have advantages over 
the traditional systems as it avoids some of 
the disadvantages of other types since they are 
produced easily without the usage of organic 
solvents, and they can be synthesized on a large 
scale at low cost (Bondi et al., 2003). Moreover, 
they do not cause biodegradability problems or 
toxicity (Puri et al., 2009; He et al., 2020).
	 NLCs were introduced by late 1990s 
to improve the capabilities of other previous 
SLNs generations (Pardeshi et al., 2012; Lin et 
al., 2021). NLCs are formed by blending liquid 
lipids and solid lipids. Both SLNs and NLCs 
are made of biodegradable, physiological and 
biocompatible lipids and surfactants. NLCs have 
a higher drug loading capacity when compared 
with SLNs. Moreover, NLCs possess lower water 
content, longer physical stability and reduced drug 
expulsion during storage (Pardeshi et al., 2012; 
Aggarwal et al., 2021). 
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Potential Targets Of Liver Fibrosis
	 Choosing the target and the carrier while 
targeting hepatic ailments should be conferring 
to the type of the ailment. The hepatoprotective 
drugs should be directed at the liver cells, while 
in autoimmune and inflammatory conditions, 
drugs should be delivered to the Kupffer cells. 
Moreover, antifibrotic drugs perform their action 
via targeting the hepatic stellate cell. Erroneous 
drugs uptake lead to ineffectiveness as well as 
possible detrimental effects.
	 Triggered HSCs primarily elaborate during 
inflammation, angiogenesis, and fibrogenesis 
responses for the progress of liver fibrosis. 
Approaches to target HSCs may potentially treat 
liver fibrosis due to their involvement in the 
development of the disease. Another strategy 
includes using anti-inflammatory drugs or collagen 
deposition inhibitors.
Hepatic stellate cells (HSCs)
	 Primary modulations in the genetic 
expression as well as phenotypic changes in 
HSCs are the initial stage in the development of 
liver fibrosis. These modulations and changes are 
rendered to cytokine and chemokine stimulation 
(Figure 2).
	 Cytokines secreted by Kupffer cells play 
a chief role in the activation of HSCs (Pradere et 
al., 2013). 
	 When HSCs become activated, they 
release reactive oxygen species (ROS), NF- κβ and 
damage-associated molecular patterns (DAMP) 
which trigger the innate immune response. Thus, 
leukocytes release lipid peroxides and TNF-related 
apoptosis inducing ligand (TRAIL) and other 
ligands (Lan et al., 2020). The activation of the 
HSCs, results in matrix synthesis, proliferation, 
and loss of retinoids and all these changes ends by 
liver fibrosis.    As an alternative of causing injury 
to normal liver cells, those activators enhance 
the inactive HSCs into activated form. Liver 
damage induced by carbon tetrachloride in rodent 
stimulates the  HSC and liver fibrosis mechanism 
(Miao et al., 2019). TGF-β and PDGF are two main 
cytokines that lead to HSC activation followed by 
activation of the cells during the progression of 
liver fibrosis.
Abbreviations
	 “NO, nitric oxide; HSC, hepatic stellate 
cell; CTGF, connective tissue growth factor; TGF-β, 

transforming growth factor β; PDGF, platelet-
derived growth factor; VEGF, vascular endothelial 
growth factor; MMP, matrix metalloproteinase; 
TIMP, tissue inhibitor of metalloproteinase” 
Transforming Growth Factor Beta (TGF-β)
	 Transforming Growth Factor Beta 
(TGF-β) is: “one of the most potent cytokines to 
induce fibrogenesis as it activates HSCs”. It has 
been found that different miRNAs are indulged 
in the events of liver fibrosis and they control 
many critical steps in its development. From 
the intracellular pivotal effectors that has been 
discussed in affecting TGF-β are the SMAD 
proteins. (Hellerbrand et al., 1999; Li et al., 2018).
	 Concerning liver fibrosis SMAD2 and 
SMAD7 are hepatoprotective while SMAD3 and 
SMAD4 are profibrotic proteins. The interference 
in the pathway of SMAD3 blocks the epithelial 
myofibroblast transition and stops the expression 
of collagen type 1. Moreover, SMAD4 enhances 
the responsive promoter effect of SMAD3 resulting 
in intensifying liver fibrosis. 
	 On the other hand SMAD7 inhibits 
SMAD3 fibrogenesis so it is an evidence now 
that various miRNAs participate in the hepatic 
fibrotic disease and hence targeting TGF-β/SMAD 
signaling could be an attractive crucial target 
in alleviating liver fibrosis (Zhang et al., 2020) 
(Figure 3). 
	 The mitogen-activated protein kinase 
(MAPK) pathway is also affected by the TGF-β, 
with extracellular signal-regulated kinase (ERK) 
and c-jun N-terminal kinase (JNK) changes 
(Hanafusa et al., 1999). Alpha smooth muscle 
actin (a-SMA), proteoglycans, as well as collagen 
with its two types; types I and III are upregulated 
through induced transcription after their activation 
(Breitkopf et al., 2006). 
	 The level of both a-SMA as well as the 
levels of collagen I and III are from the important 
markers that indicate HSCs activation and the 
degree of liver fibrosis so as to follow up and 
monitor the case. The elevation of such markers 
indicates the aggravation of the liver fibrosis 
(Tomasek et al., 2002; Schuster-Gaul et al., 2020).  
	 Cells can receive external signals and 
respond appropriately via the MAPK pathway 
mainly throughout the epithelial-mesenchymal 
transition (EMT) (Gui et al., 2012) EMT is an 
important process during the development of the 
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embryo, fibrosis, and tumor progression in which 
the epithelial cells attain mesenchymal, fibroblast-
like properties and display low intercellular 
adhesion and increased motility. 
	 TGF-b  signaling is the preliminary 
pathway to trigger EMT, and its relationship with 
the Smad family is well considered. Previous 
studied showed that the MAPK and TGF-b 
signaling pathways relate together and exert a 
synergistic effect on the release of growth factors 
and cytokines that endorse EMT” (Gui et al., 2012).
Platelet-Derived Growth Factor (PDGF)
	 From the most important roles of 
mitogen PDGF and its receptor  PDGF receptor-b 
(PDGFRb) is acting on HSCs leading to their 
proliferation and migration  (Wong et al., 1994; 
Kostallari et al., 2018).
	 Patients suffering from chronic liver 
diseases can be monitored and followed up 
by checking the inflammatory extent of their 
case which is a reflection and it is linked to the 
expression of PDGF (Zuo et al., 2019). It I to be 
noted that in spite of the expression of PDGFRb 
mRNA expression is found to be in both quiescent 
and activated HSCs, only protein production was 
limited to the activated HSCs cells (Henderson et 
al., 2013). 
Vascular Endothelial Growth Factor (VEGF)
	 The vascular endothelial growth factor 
(VEGF) was documented as vascular permeability 

factor that is formed by fibroblasts and it is well-
thought as a signal protein responsible for  the 
initiation and stimulation of blood vessels.  They 
are involved with other mediators in both the de 
novo  formation of the embryonic  circulatory 
system and angiogenesis (Yang et al., 2014).
	 In liver fibrogenesis, VEGF stimulates 
the cell proliferation of HSCs, which includes 
angiogenesis in the distorted liver tissue. VEGF 
has a multifaceted role in fibrogenesis, liver tissue 
repair and reversal of fibrosis (Kantari-Mimoun 
et al., 2015). VEGF also controls the migration of 
monocytes,  penetrability of liver sinusoidal and 
scar-associated macrophage function, which are 
considered a fibrotic resolution and tissue repair 
processes (Yang et al., 2014).
Connective Tissue Growth Factor (CTGF)
	 Huang et al., 2012 stated that “the 
connective tissue growth factor (CTGF) is 
markedly expressed in the liver suffering from 
fibrosis when it is compared to the normal liver and 
that  it is a potent fibrogenic cytokine that is similar 
to PDGF and it contributes to the accumulation 
of ECM resulting in a series of hepatic fibrogenic 
actions” (Huang et al., 2012). CTGF sensitizes 
HSCs that mainly produces it. CTGF is considered 
to be one of the main critical effectors that pushes 
the production of collagen and its expression is 
associated with the severity and degree of liver 
fibrosis (Chen et al., 2015; Choi et al., 2020).

Fig. 1. Kinds of nanoparticles: inorganic nanoparticles, liposomes and 
solid lipid nanoparticles (Giannitrapani et al., 2014).
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Fig. 2. The activation of hepatic stellate cell (HSC). Initiation and perpetuation stages are the first pathways 
to activate the HSCs.  Reactive oxygen species starts the initiation of events. Then HSCs modifies themselves 

to myofibroblasts. Then perpetuation follows leading to the change of the behavior of HSCs rendering the 
proliferation, contractility changes, chemotaxis, fibrogenesis as well as inflammatory signaling (Bai et al., 2020).

Hedgehog Pathway
	 Omenetti et al. 2011, indicated that: “The 
hedgehog (Hh) pathway is an important system 
in the regulation of progenitor cells’ fate in liver 
fibrosis and smoothened homolog (SMO) is released 
and activated by the upregulation of Hh ligands and 
it drives the epithelial regeneration by promoting 
mesenchymal-to-epithelial transitions of the 
myofibroblasts originated from HSCs” (Omenetti 
et al., 2011).    Various studies documented that 
interfering or targeting the Hh pathway can hinder 
the liver fibrosis (Greenbaum et al., 2011). The 
Hh pathway could possess the possible targets of 
fibrotic treatment (Yan et al., 2020; Deng et al., 
2021) 
Toll-Like Receptor
	 “Toll-Like Receptor Dietary or free 
cholesterol in the liver activates HSCs leading 
to worsening of liver fibrosis”. The elevated 
intracellular cholesterol level in HSCs leads 
to the signaling of Toll-like Receptor (TLR) 4 
(Zhang et al., 2021a) leading to the sensitization 

of HSC to TGF-b-activation (Tomita et al., 2014) 
and that is why cholesterol-lowering drugs could 
help alleviate the fibrosis by slowing down the 
free cholesterol accumulation (Van Rooyen et al., 
2013).
Nanomedicine For Liver Fibrosis Therapy
NPs as Therapeutic Agents
	 The inorganic NPs own a distinct 
properties that made them as superior medications 
for targeting  the liver fibrosis (Anselmo et 
al., 2015; Tee et al., 2019). Peng et al., 2018 
reported that “titanium dioxide NPs (TiO2 NPs) 
and silicon dioxide NPs (SiO2 NPs) can prevent 
the expression of collagen I and a-SMA as well 
as facilitating the degradation of collagen I 
via upregulating the matrix metalloproteinases 
(MMPs) and downregulating the tissue inhibitors of 
metalloproteinases (TIMPs), leading to the possible 
antifibrotic activities of these NPs” (Peng et al., 
2018).
	 These NPs also possess an anti-migratory 
and anti-adhesive effects via regulating gene 
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Fig. 3.  Events of the HSC activation. Hepatic cells in contact with the hepatic stellate cells (HSCs) and 
surrounding them including damaged hepatocytes, macrophages, epithelial cells, Kupffer cells, and natural 

killer/natural kill T cells secretes divergent effectors that either stimulate or inhibit HSCs activation. The HSC 
activation response is also shown. Abbreviations: “α-SMA, alpha smooth muscle actin; CTCF, connective tissue 

growth factor; DAMP, damage associated molecular patterns; ECM, extracellular matrix;  CCL2, C-C motif 
chemokine 2; EMP, extracellular matrix proteins; ERK, extracellular signal-regulated kinase; MCP1, monocyte 
chemoattractant protein 1; ET1, endothelin 1; HSC, hepatic stellate cell; IFNg, interferon gamma; IGF1, insulin-

like growth factor 1; IL-6, interleukin 6; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; 
MMP, matrix metalloproteinase; ncRNA, noncoding ribonucleic acid; Hh, hedgehog;  ROS, reactive oxygen 
species; NF-kb, nuclear factor kappa-light-chain-enhancer of activated B cells; NOS, nitric oxide synthase; 
PDGF, platelet-derived growth factor; TGFb, transforming growth factor beta; VEGF, vascular endothelial 

growth factor” (Chan et al., 2020).

expression of the epithelial mesenchymal transition 
(EMT) and work on the reversal of TGF-b-
activated HSCs to the inactive state (Figure 4). 
	 The anti-inflammatory effect of  Cerium 
oxide NPs causes the decrease  of liver steatosis, 
liver fibrosis and portal hypertension (Oro et 
al., 2016). Oral administration of trimanganese 
tetraoxide Mn3O4 NPs showed an mitigation of 
CCl4 induced liver fibrosis (Adhikari et al., 2016). 
	 Some studies indicated that Zinc oxide 
(ZnO) NPs reduced liver fibrosis induced by 
dimethylnitrosamine through more than one 
mechanism, namely, reducing oxidative stress, 
lipid peroxidation, and inflammation (Rani et al., 
2018). 

	 Further types of inorganic NPs are used to 
ameliorate liver fibrosis other than metal oxide NPs. 
Gold NPs reduced liver fibrosis methamphetamine- 
and ethanol-induced liver injury in rats via 
hindering Kupffer cells and HSCs activities (de 
Carvalho et al., 2018). This mechanism includes 
the regulation of phosphatidylinositol 3-kinase/
Akt (AKT/PI3K) and MAPK signaling pathways 
by gold NPs, thus reducing both pro-inflammatory 
cytokine release and oxidative stress. Besides, 
Bai et al., 2020 stated that “vitamin E-modified 
selenium NPs can reduce liver fibrosis by 
ameliorating of the oxidative stress” (Bai et al., 
2020a). 
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Fig. 4. “Model for TiO2 NPs and SiO2 NPs ameliorated fibrosis, adhesion and migration of HSCs. TiO2 NPs 
and SiO2 NPs can suppress the expression of α-SMA and deposition of Col-I induced by TGF-β. ECM was 

degraded by upregulating MMP-13 and downregulating TIMP-1. Therefore, adhesion of LX-2 cells was reduced. 
Furthermore, NPs stimulated the expression of E-Cad and reduced the expression of N-Cad, and, therefore, 

aggravated the migratory phenotype. Reproduced with permission from (Peng et al., 2018). Copyright American 
Chemical Society, 2018”.

	 It is prominent that the dynamic targeting 
is imperative for the targeting the distorted tissues 
as well as avoiding the normal tissues, thus, 
increasing the efficacy of these drugs and limiting 
their detrimental effects. Hence, “Active targeting 
is a way to increase the quantity of drug brought to 
the target cell when compared to free drug or nano 
drugs passively targeted”.
NPs as Drug Transporters without Targeting 
Ligand for the Treatment of Liver Fibrosis
	 The liver is the central metabolic and 
excretory organ in the body and NPs are used as 
drug carriers due to their dimensions which can 
accumulate and target liver cells for the treatment 
of liver fibrosis. 
Lipid-based NPs
	 Lipid-based NPs are the most significant 
vehicles due to their good biocompatibility and 
low toxicity (Bottger et al., 2020). Reebye et al., 
2018 reported that: “CCAAT/enhancer-binding 
protein alpha (CEBPA), a master transcriptional 

factor in the liver can reduce fibrosis and restore 
liver function via resetting the hepatocyte natural 
gene regulatory mechanism. They also stated that 
the small activating RNA oligonucleotide therapy 
(CEBPA-51) formulated in liposome NPs can 
upregulate CEBPA expression, thus ameliorating 
the fibrosis” (Reebye et al., 2018). 
	 In another study, authors reported 
a deplet ion in inflammatory cytokines, 
a-SMA and collagen after administration of  
nanostructured  lipid  curcumin  carriers   (Cur-
mNLCs), on the other hand the hepatocyte growth 
factors (HGF) and Matrix metalloproteinase-2 
(MMP2) were significantly elevated (El-Ratel et 
al., 2020; Mohammed et al., 2021). 
Polymer-based NPs
	 Polymer-based NPs have been used as 
drug carriers for liver fibrosis treatment. Leber et 
al., 2017, mentioned that the ketal cross-linked 
cationic nanohydrogel particles were synthesized to 
deliver Cy5-labeled anti-col1á1 siRNA, leading to 
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Fig. 5. Schematic illustration of hepatic stellate cell targeting using a PEGylated
liposome decorated with a hepatocyte-specific targeting ligand (Reddy et al., 2011)

carrier enhancement increase accumulation in the 
fibrotic tissues and so preventing the progression 
of fibrosis. Dfgguop[(Leber et al., 2017; Kaps et 
al., 2020).
	 PLGA and eudragit were used as drug 
carriers. Phyllanthin was carried by PLGA to 
reduce the biochemical markers of liver fibrosis 
and the researchers found that it significantly 
depleted various liver enzymes mainly, aspartate 
aminotransferase and   alanine   aminotransferase 
and much more interesting, was the reduction in the 
collagen deposition (Krithika et al., 2015; You et 
al., 2021). Other studies showed that administering 
of silymarin which was carried by eudragit NPs 
for the liver fibrosis handling had marked effects 
manifested by declining the expression of TGF-b, 
TNF-a, TIMP-1 and Cytokeratin 19 (CK-19). In 
addition, nano formulations were found to rise 
MMP-2 expression and the MMP-2/TIMP-1 ratio 
(Younis et al., 2016).
Inorganic NPs
	 Silica-based NPs are used as drug carriers 
due to their porous structure. “Salvianolic acid B 
(SAB) loaded rhodamine B covalently grafted 
mesoporous silica NPs (SAB@MSNs-RhB) were 
prepared for liver fibrosis therapy” (He et al., 2010; 
Tao et al., 2021).
	 The SAB@MSNs-RhB formulation 
revealed improved cellular uptake, enhanced 

efficacy and continual drug release in hepatic 
fibrosis. Mesoporous silica NPs reduces the 
secretion of inflammatory cytokines via inhibition 
of TnC expression, as well as hepatocyte migration 
(Vivero-Escoto et al., 2019). Hesperetin loaded 
on PEGylated gold NPs showed significan 
antioxidant, anti-inflammatory and anti-
proliferative when compared to hesperetin 
alone in hepatocarcinogenesis  induced by 
diethylnitrosamine in rats (Krishnan et al., 2017).
Protein-based NPs
	 Due to the biocompatibility and low 
immunogenicity of protein-based NPs, they were 
the most suitable drug carriers to be studied in the 
treatment of liver fibrosis (Hawkins et al., 2008; 
Jimenez-Rosado et al., 2021). Curcumin-loaded 
zein nanospheres exerted a significant potency high 
effectiveness in decreasing the hepatic collagen I 
gene expression, TGF-b and as MMP2 inhibitor 
(Algandaby et al., 2016).
	 Moreover, a study proved that berberine 
entrapped in glucose-modified albumin NPs 
compared with free berberine repressed the growth 
of the human hepatic stellate cell line LX-2 and 
hence, abridged liver fibrosis more efficiently in 
vivo (Guo et al., 2019; Bai et al., 2020b). 
	 Liver fibrosis is attenuated using free 
dexamethasone treatment. Human serum albumin-
dexamethasone NPs have been developed to 
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Fig. 6. Extracellular matrix-penetrating polymeric micelles for liver fibrosis therapy. (A) Schematic illustration of 
the preparation of four different polymeric micelles. (B) Schematic illustration of the proposed destiny of the four 
different polymeric micelles in vivo. The CRM/NIL is able to penetrate the collagen barrier and target activated 
HSCs. Internalization of CRM/NIL allows the release of NIL, which reduces expression of the metallopeptidase 

inhibitor, TIMP-1, which in turn enhances collagen I degradation, thereby exerting therapeutic action against 
liver fibrosis (Fan et al., 2020)”

transport dexamethasone to the cells playing a 
crucial role in the pathogenesis of liver fibrosis, 
namely non-parenchymal hepatic cells. Such 
modification leads to significant inhibition of 
TNF-a that attenuated liver fibrosis (Melgert et 
al., 2000).
NPs as Drug Transporters with Targeting 
Ligands for the Treatment of Liver Fibrosis
	 Actually, the random drug delivery 
systems used in attenuating liver fibrosis are of 
low clinical effectiveness specially when compared 
to the target designed ones. The most efficient 
systems that can be used as a way to deliver drugs 
to a certain place are the nano formulations. Many 
studies in recent years showed advanced way of 
using nanoparticles in targeting hepatic fibrotic 
cells to alleviate liver fibrosis. It is to be noted as a 
rule that: “various receptor types that are expressed/
over-expressed on HSCs have been targeted using 
the suitable targeting ligands that are conjugated at 

the surface of liposomes” (Figure 5) (Azzam et al., 
2020; Hong et al., 2020; Kurniawan et al., 2020; 
Wang et al., 2020b; Zhang et al., 2021b).
	 “A drug-carrier construct basically 
consists of at least three elements: a carrier (or core 
molecule), a homing device, and a drug”.
Targeting high-affinity membrane receptor for 
retinol binding protein (rRBP)
	 HSCs, precisely being retinoid storing 
cells in the liver, express retinol binding protein 
(rRBP) receptors that plays an important role 
in binding and taking-up vitamin A (VA). Thus, 
vitamin A-conjugated liposomes that are loaded 
with “siRNA against gp46 (the rat homolog of 
human heat shock protein 47)” that is involved 
in inhibition of collagen secretion, were injected 
intravenously into the fibrotic livers in rats. 
	 Extensive decrease of collagen secretion 
and lessening in fibrosis was revealed after such 
drug treatment. It is to be noted that in normal 
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Fig. 7. Possible nanoparticle-based antifibrotic targets with various receptors and ligands activated during HSC 
activation

Fig. 8. Variable sources of natural biopolymers to be used in nanomedicine applications. Natural
biopolymers are found in higher plants, microorganisms animals, and algae (Patra et al., 2018)

physiological conditions, VA storage cells play 
pivotal roles in vitamin A homoeostasis regulation. 
On the other hand, in pathological conditions, such 
as liver fibrosis or cirrhosis, HSCs VA storage 
cells lose vitamin A and instead, synthesize a 

large number of components of extracellular 
matrix including proteoglycan, collagen, adhesive 
glycoproteins and glycosaminoglycan. The 
morphology of HSCs changes from the star-shaped 
stellate cells to that of fibroblasts or myofibroblasts 
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(Senoo et al., 2010). Thus, targeting hepatic HSCs 
(VA storage cells) with nanoparticles is a crucial 
target in liver fibrosis therapy.  
	 In one study, VA-coupled liposomes were 
fabricated to deliver imatinib. Interestingly, hepatic 
accumulation of imatinib increased by 13.5-fold 
when compared with free imatinib (El-Mezayen 
et al., 2017). The nano formulations depleted 
the expression of phosphorylated PDGFR-b and 
moreover, depleted the expression of profibrotic 
mediators such as TGF-a, hydroxyproline, and 
MMP2.
	 El-Mezayen et al., 2018 showed that: “the 
nano formulations VA-coupled liposomes used to 
deliver valsartan which is an angiotensin II receptor 
antagonist significantly increased the expression of 
hepatic Mas-receptor and PPAR-b. Moreover, it 
potently normalized the fibrogenic mediators’ level 
by improving the permeability and bioavaiability 
of valsartan” (El-Mezayen et al., 2018).
	 A study used retinol binding protein 
receptor and “collagenase I co-decorated polymeric 
micelles” based on “PLGA-b-poly (ethylene 
glycol)-maleimide (PLGA-PEG-Mal)” (named 
CRM) as HSC-targeting nanodrug delivery systems 
for treatment of liver fibrosis (Fan et al., 2020). In 

this experiment, the decoration of collagenase I 
enabled the nanocarrier penetration to the fibrotic 
tissue. In parallel to this outcome, CRMs potently 
degraded pericellular collagen I and successfully 
accumulated in the fibrotic liver hence, targeting 
activated HSCs (Fan et al., 2020).
	 A second-generation tyrosine kinase 
inhibitor, nilotinib (NIL) was loaded on CRM 
forming CRM/NIL. Such formulation was 
administered for the treatment of liver fibrosis and 
it exhibited outstanding antifibrotic effect (Fan et 
al., 2020) (Figure 7). 
	 In addition, polymeric micelles (PVMs) 
designed with PLGA-polyspermine-PEG-VA were 
prepared to target HSCs and transport the silibinin 
and genetic drug siCol1a1 to the hepatic fibrotic 
tissue (Qiao et al., 2018). It significantly depleted 
collagen I and attenuated liver fibrosis (Luo et 
al., 2019). Other than polymeric micelles, other 
polymeric nano formulations have been designed 
for drug, nucleic acid and other therapeutic moieties 
delivery to particular sites for the treatment of liver 
fibrosis. 
	 Hassan et al. reported that “chitosan 
NPs loaded with atorvastatin and JQ1 (a 
thienotriazolodiazepine) could ameliorate the 

Fig. 9. Examples of natural compounds extracted from plants that are being formulated as 
nano formulations used in alleviating liver fibrosis (Patra et al., 2018).
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cytokine-induced activation of HSCs and hence, 
reverse fibrotic response in rodent models and 
further conjugated with retinol leading to targeting 
and preventing HSC activation” (Hassan et al., 
2019).
Targeting retinoic acid receptor
	 Chondroitin sulfate micelles that are 
coupled with retinoic acid and doxorubicin had a 
specific action as they were taken up by activated 
HSCs selectively and not by normal hepatocytes 
(Luo et al., 2019). These micelles specifically 
gathered in the Golgi apparatus and triggered 
the destruction of the Golgi structure, as a result, 
collagen I production was depleted and this 
manifested antifibrotic effects in fibrotic rats (Luo 
et al., 2019).
Targeting PDGFRb on HSCs
	 A study was accomplished to explore the 
effects of a new TRAIL (TNF related apoptosis 
inducing ligand) formula that can target activated 
HSCs to alleviate liver fibrosis and explore the 
underlying mechanism. 
	 Li et al., in 2020 stated that: “Platelet-
derived growth factor receptor â (PDGFRb) was 
co-expressed with TRAIL receptor 2 (DR5) in the 
activated HSCs and that the ZPDGFRb affibody 
with high affinity for PDGFRb could bind the 
activated HSCs and, thus, accumulate in the fibrotic 
liver (Figure 8). 
	 ZPDGFRb  was fused to hTRAIL to 
produce the fusion protein Z-hTRAIL. Compared 
to hTRAIL, Z-hTRAIL showed greater in vitro 
cell binding and apoptosis-induction in aHSCs. In 
addition, Z-hTRAIL induced apoptosis of activated 
HSCs but spared other normal liver cells. In vivo, 
Z-hTRAIL accumulated preferentially in fibrotic 
livers and exerted greater effects than hTRAIL in 
inducing activated HSCs apoptosis and reducing 
extracellular matrix (ECM) deposition. These 
results demonstrated that the antihepatofibrotic 
effect of hTRAIL was improved by PDGFRb-
targeted delivery (Li et al., 2020)”.
	 The cyclic peptide pPB can predominantly 
recognize PDGFRb on the HSCs surface. Li et 
al., 2019 stated that pPB-modified liposomes was 
administered as a way to deliver recombinant 
human tumor necrosis factor-related apoptosis-
inducing ligand (rhTRAIL) to the activated HSC 
membrane, showed prolonging rhTRAIL presence 

and circulation in vivo and hence, alleviating 
fibrosis” (Li et al., 2019a). 
	 Recently, pPB coupled to albumin was 
used to deliver the Rho-kinase inhibitor Y27632 
to HSC leading to beneficial effects in vivo (Klein 
et al., 2019). The same peptide was used to deliver 
lipid nanoparticles containing siRNA to HSC (Jia et 
al., 2018). In addition, a cyclic-RGD-based peptide 
was coupled to liposomes for the delivery of the 
hedgehog inhibitor vismodegib (Li et al., 2019b). 
This latter construct was quite effective in reducing 
fibrosis in two experimental animal models of liver 
fibrosis in mice”.
Targeting CXCR4 
	 “In recent years, another receptor 
recognizing peptide binding to the CXCR4 receptor 
has been developed (Sung et al., 2018) which was 
coupled to polymeric biodegradable nanoparticles 
to create a carrier that allowed the simultaneous 
delivery of sorafenib and the MEK inhibitor 
selumetinib to HSC (Sung et al., 2018).   
	 This combination therapy displayed 
significant antifibrotic effects in a mouse model. 
The CXCR4 receptor was also used for the targeting 
of pirfenidone to HSC (Ullah et al., 2019). In this 
latter case however, the nanoparticles (liposomes) 
were not functionalized with receptor recognizing 
peptides but with the CXCR4 antagonist AMD3100 
(plerixafor). The effect of pirfenidone, one of 
the few FDA-approved drugs against fibrosis, 
combined with blocking of the chemokine receptor 
CXCR4 may lead to synergistic effects and is 
another example of a successful combination 
therapy”.
	 Vascular endothelial growth factor 
(VEGF) is a critical signaling protein that aids 
in the development of new blood vessels. VEGF 
participate in the mechanism that returns the blood 
supply to cells and tissues after being poorly 
oxygenated blood (Cameron et al., 2020).
	 It had been proven that in rat liver fibrosis 
models, treatment with drugs that neutralize VEGF 
produced by hepatocytes, can markedly alleviate 
liver fibrosis (Siddiqui et al., 2020). Liu et al., 
stated that “AMD3100-conjugated liposomes 
successfully delivered therapeutic VEGF siRNAs 
to activate CXCR4-overexpressed HSCs. The 
nano formulations interestingly, downregulated 
the expression of VEGF, decreased the mean 
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vessel density, and normalized the hepatic vascular 
structure in the mice livers suffering from CCl4-
induced liver fibrosis. In addition, AMD3100 
conjugated liposomes suppressed the proliferation 
and activation of HSCs showing antifibrotic 
effects”. 
Targeting mannose 6-phosphate (M6P)/insulin-
like growth factor-II receptor
	 “Other than peptides and a receptor 
antagonist, sugar moieties have been used as 
homing devices as well” (Figure 8). 
	 In fibrotic liver, mannose 6-phosphate 
(M6P)/insulin-like growth factor-II receptor is 
overexpressed in HSCs rendering it as an attractive 
targeting issue. Pairing of M6P-modified albumin 
to hesperidin-loaded liposomes showed marked 
improvement in the efficacy of chemical drugs and 
attenuated liver fibrosis (Morsy et al., 2018).
Targeting phosphatidylserine (PS)
	 Wang et al. concluded that: “Scavenger 
receptors expressed on liver endothelial cells and 
Kupffer cells have also been targeted using nano 
formulations. For instance, phosphatidylserine 
(PS), which acts as a specific recognition signal 
for the phagocytosis of apoptotic cells, can target 
macrophages. Wang et al. showed that PS-modified 
lipid carriers containing curcumin (Cur– mNLCs) 
exhibited enhanced retention time, bioavailability, 
and delivery effeciency of payload, as well as 
reduced liver damage and fibrosis in vivo” (Wang 
et al., 2018).
Targeting Integrins
	 Integrins are main receptor that clings the 
extracellular matrix proteins as laminins, collagens 
as well as fibronectin. Type VI collagen is dispersed 
in HSCs and they express integrins. Hence, 
targeting collagen VI integrins plays an important 
role in alleviating hepatic fibrosis (Beljaars et 
al., 2000). Du et al., 2007 suggested that: “RGD-
coupled liposomes have efficiently delivered the 
encapsulated interferon (IFN)a-1 to the fibrotic 
liver in rat, achieving a considerable anti-fibrotic 
activity” (Du et al., 2007). Other studies followed 
the same path to alleviate different fibrotic tissues 
(Chung et al., 2016).
Targeting galactosyl receptor
	 The galactosyl receptor that is expressed 
on the hepatocytes plays a role in the internalization 
of molecular asialoglycoproteins and small 
particles. Knowing that, liposomes decorated with 

“p-aminophenyl a-D-galactopyranoside”, which 
binds to galactosyl receptor, are used as transporters 
to target HSCs with quercetin.
	 Such “quercetin-loaded galactosylated 
liposomes” were accumulated 1.7 fold more in 
the rat liver than non-galactosylated liposomal 
quercetin and 3.4-fold more than the free quercetin 
leading to considerable hepatoprotection as 
it markedly prevented the depletion of native 
antioxidant levels and it  inhibited the collagen 
production  that is responsible for fibrogenesis 
as well (Mandal et al., 2007). A recent study too 
used Galactosyl Nanoparticles to  Target HSCs 
Hepatocellular Carcinoma (Liao et al., 2021).
Nanomedicine In Liver Fibrosis Theranostics
	 “Theranostics”, a hybrid word of 
“therapeutics” and “diagnostics”, is accomplished 
by integrating diagnostic and therapeutic functions 
into a single nanoplatform. Theranostics has been 
presented as a new and revolutionary therapeutic 
perception in several types of diseases as liver 
fibrosis (Gou et al., 2018).    
	 This new path allows concurrent diagnosis 
and treatment response by using tailored medicine 
with high specificity and accuracy.
	 One of the hallmarks of activated HSC 
is their increased expression of integrin avb3 on 
their surface (Schuppan et al., 2018). In one study, 
Zhang et al., 2019 stated that: “Hepatitis B core 
protein nanocages coated with RGD-targeting 
ligands overloaded with querecitin (RGD–HBc/
QR) showed selectivity to activated HSCs by 
targeting integrin ávâ3 which efficiently repressed 
the proliferation and activation of HSCs (Zhang et 
al., 2019) and that by encapsulating a quercetin–
gadolinium complex and/or labeling it with near 
infrared (NIR) fluorescent probes (Cy5.5), the 
resulted nano formulations (RGD–HBc/QGd) 
showed great potential as (Magnetic resonance 
imaging) MRI contrast agents and NIR fluorescent 
agents for liver fibrosis diagnosis in vivo”. 
	 Another study reported that “relaxin-
conjugated PEGylated superparamagnetic iron 
oxide NPs” (RLX-SPIONs) exhibited specific 
binding and uptake in TGF-b-activated HSCs, as 
well as strongly lessened cirrhosis and showed 
improved contrast in MRI (Nagorniewicz et al., 
2019). Micelles attached with inorganic agents 
were also established for theranostics to alleviate 
liver fibrosis (Liu et al., 2021).
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	 “Next to small chemical entities with 
antifibrotic effects, that have been coupled and 
incorporated in many of the above reviewed 
drug carriers, biological products like antisense 
oligonucleotides, siRNA, miRNA, and cytokines 
can be powerful tools to modify fibrosis. The 
therapeutic applications of siRNA have become 
clear in recent years, and many different miRNA 
and siRNA molecules (Omar et al., 2018) have 
been tested in experimental animal models of 
fibrosis. Delivery is the key issue for siRNA and 
miRNA molecules. Although cytokines play a key 
role in vivo in regulating fibrogenesis and are active 
in the picomolar range, their pleiotropic activities 
have strongly limited their therapeutical use. This 
may be solved using targeting strategies (Bansal 
et al., 2014)”.
Natural Products Used In Nanomedicine As 
Antifibrotic Agents
	 Scientific communities are now focusing 
on the studies related to natural nano bioactive 
compounds to produce pioneering efficient active 
ingredients with minor side effects than synthetic 
prevailing molecules. 
	 Application of nanotechnology systems 
using natural components in the medical field 
has been widely considered in the last few 
years (Ramana et al., 2014; Shah et al., 2020; 
Dehghani Tafti et al., 2021). There is evidence 
that the association of nono systems with natural 
compounds may help to reduce the progress of 
drug resistance and hence these systems play an 
important role in developing formulations that are 
target specific, potent and of little side effects for 
the treatment of liver fibrosis. It is to be renowned 
that natural components can either be used as the 
polymer which is the drug carrier (Figure 9) or as 
the therapeutic component.
Egyptian Experience
	 Various Egyptian research groups are 
involved in the advancement of nanocarriers for 
applications of drug-delivery including the usage 
of nanocarriers to improve the effectiveness of 
different pharmaceutical formulations including 
oral, nasal, parenteral, transdermal.. etc. 
	 Hussein et al., 2017 compared the 
therapeutic potential of nano-encapsulated and 
nano-emulsion of a natural constituent, carvacrol, 
on thioacetamide-induced liver fibrosis in rats. 
The nano formulations of carvacrol succeeded to 

ameliorate thioacetamide-induced liver fibrosis 
(Hussein et al., 2017).
	 Khattab et al., developed and characterized 
self-nanoemulsifying formulation of coenzyeme 
Q10 (CoQ10)  to investigate its biochemical and 
physiological effect on liver cirrhosis in CoQ10 
rats and they compared it with CoQ10 powder. The 
team demonstrated that CoQ10 nano formulation 
attenuated thioacetamide-induced liver fibrosis 
mainly through inhibiting collagen production 
(Khattab et al., 2017).
	 El-Mezayen et al., 2017 prepared a novel 
vitamin A-coupled imatinib-loaded liposomes 
regarding VA-coupling efficiency as well as 
imatinib entrapment resulting in significant anti-
fibrotic effects with reduced cytotoxicity compared 
to conventional imatinib (El-Mezayen et al., 2017).
	 El-Mezayen et al., 2018 stated that: 
“vitamin A stores in hepatic stellate cells were 
targeted to deliver valsartan to HSCs to treat 
liver fibrosis and encapsulation of valsartan into 
vitamin A-coupled liposomes targeted HSCs, 
caused a significant activation of hepatic nuclear 
PPAR-g receptors in HSCs confirming the powerful 
antifibrotic activity of valsartan liposomes” (El-
Mezayen et al., 2018).
	 Infection by  Schistosoma mansoni is 
an endemic pathogen in Egypt and it is often 
progressed to severe hepatic disorders as liver 
fibrosis or necrosis. Two studies have been done 
depending on the improvement of the efficiency of 
praziquantel through nanotechnology ideas. 
	 The first team intended to elevate the 
therapeutic outcome of the main antischistosomal 
drug worldwide, praziquantel through including it 
into a novel carrier which is solid lipid nanoparticles 
(SLNs). Such modulation enhanced praziquantel 
bioavailability and antischistosomal efficacy and 
hence alleviated liver fibrosis which is a common 
result of such case (Radwan et al., 2019).
	 The second Egyptian team of researchers 
intended to study the anti-schistosomal activity 
of curcumin as well as “curcumin loaded gold-
nanoparticles (Cur-GNPs)” in the presence of 
praziquantel. They found that the curcumin 
in combination with praziquantel altered the 
biochemical, and immunological damage and 
hence, alleviated liver fibrosis (Mokbel et al., 
2020).
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Conclusions and future perspectives
	 This review outlines the nanotechnology 
strategies that are used to progress novel specific 
and accurate systems for alleviating liver fibrosis. 
This field of nanomedicine systems continues to be 
increasingly growing and developing so as to aid in 
both the diagnosis and treatment of liver fibrosis. 
	 Variable categories of inorganic and 
organic NPs have been widely inspected, including 
“metal oxide NPs, liposomes, metal NPs, protein 
NPs, polymer NPs and organic–inorganic hybrid 
NPs”. Each category has its rewards and drawbacks. 
However inorganic NPs are found to be efficient 
with comparatively low synthesizing expenses, 
but their functionality and design elasticity are 
limited. On the other hand, organic NPs have wide 
functionalities as well as broad design flexibility 
but they are unstable and they are of high cost. 
	 Many studies in recent years showed 
advanced way of using nanoparticles in targeting 
hepatic fibrotic cells to alleviate liver fibrosis as 
numerous receptor types that are expressed on 
HSCs have been targeted by means of the suitable 
targeting ligands that are conjugated at the surface 
of liposomes
	 Recommendations to be considered to 
advance the medical application of nanomedicine 
systems in the future:
1. Developing stimuli-responsive nano systems, 
that can smartly respond to both endogenous 
or exogenous stimuli and release the needed 
therapeutic load at targeting sites.
2. Exploring advanced targeted therapies is a 
priority. 
3. Employing clever nanomedicine structures 
that syndicate multiple functionalities, including 
prolonged blood retention, targeted delivery, 
responsiveness to stimuli, improved tissue 
penetration and disease progressive monitoring. 
4. Regular assessment of long-term toxicity, 
pha rmacok ine t i c s  o f  t he  sys t ems  and 
immunogenicity. 
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