
Biomedical & Pharmacology Journal, September 2021. Vol. 14(3), p. 1533-1542

Published by Oriental Scientific Publishing Company © 2021

This is an    Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY).

Synthesis Processing Condition Optimization of
Citrate Stabilized Superparamagnetic Iron Oxide

Nanoparticles using Direct Co-Precipitation Method
 

Mubarika Sekarsari Yusuf, Sutriyo* and Ratika Rahmasari

Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia.
*Corresponding Author E-mail: sutriyo@farmasi.ui.ac.id

https://dx.doi.org/10.13005/bpj/2255

(Received: 19 August 2021; accepted: 24 September 2021)

 Superparamagnetic iron oxide nanoparticles (SPION) are commonly prepared by co-
precipitation, a convenient and high yield producing method. However, this method produces 
large particles and wide size distribution. Thus, this study aims to optimize and determine the 
processing condition during the direct co-precipitation synthesis of citrate stabilized SPION 
(SPION-C). Processing conditions were optimized to achieve the suitable hydrodynamic size and 
zeta potential; measured straight after preparation, at weeks 3, 10, and 30. Characterization of 
optimized SPION and SPION-C was done by Fourier transform infrared spectroscopy (FTIR), 
fluorescence spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy 
(TEM). The optimized processing condition (stirring speed of 9000 rpm, stabilizer concentration 
of    1.006 M, and a 90°C stabilizer adsorption temperature), resulted in suitable SPION-C with 
a hydrodynamic size of 25.94 ± 2 nm, and zeta potential value of -50.8 ± 3.9. Particles with 
an almost sphere morphology with below 20 nm size were shown by TEM. The XRD analysis 
presented magnetite phase with a 2.79 nm core size which indicated the formation of stabilized 
SPION. The maximum excitation and emission wavelength of SPION after stabilization were 
proved to be uninterrupted by fluorescence spectroscopy. Further FTIR results supported the 
successful conjugation of citrate onto SPION. Highly stable and crystalline SPION-C were 
successfully produced through an optimized processing condition using direct co-precipitation. 
The obtained SPION-C conveyed desired nanoparticle size with narrow size distribution and 
stability for 30 weeks of storage at 4°C.
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 Metallic nanoparticles (MNP) have been 
proved useful in the biomedical field and have 
been studied vastly in recent years, specifically 
superparamagnetic iron oxide nanoparticles 
(SPION). These MNP diagnostic agents are 
useful for magnetic resonance imaging (MRI) 1–3. 
Diagnostic agents in delivery systems will aid to 
confirm the precise and successful biodistribution 
of therapeutic agents 4. This unique MNP only 

shows magnetization properties under the influence 
of a magnetic field5, making them instantly 
detectable through MRI to trace drug distribution in 
the human body6. Moreover, they can also become 
an important component in drug delivery and 
targeting systems and nevertheless hyperthermia 
therapy3,4,7,8.
 Despite being biocompatible, the 
biomedical effectiveness of SPION heavily 
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depends on their physical stability. Since SPION 
are lyophobic, in an aqueous environment, they tend 
to aggregate to one another. Thermodynamically, 
these nanoparticles are more stable to interact 
with one another than with water because of their 
incapability to form hydrogen bonds9–11. Ensuring 
the physical stability of synthesized SPION is 
crucial to prevent the growth of its particle size 
and platelet aggregation after administration. 
 Stabilization of SPION has previously 
been accomplished with molecules including 
trisodium citrate dihydrate, oleic acid, and 
polymers. These molecules decrease and prevent 
particle growth and guarantee its physical stability. 
Advantages of trisodium citrate dihydrate as a 
stabilizer include affordable, abundant, and can 
create high dispersible SPION in aqueous solvents.
 The direct co-precipitation method 
for superparamagnetic iron oxide nanoparticle 
synthesis is known to be convenient, uses lower 
temperatures, nonetheless produces high yields. 
Meanwhile, this cost-effective method isn’t free 
from drawbacks; mainly high polydispersity 
and large particle size. For superparamagnetic 
properties, core size of below 20 nm would have 
to be reached, though different works of literature 
have also stated 30 – 50 nm12, or <150 nm for 
magnetic particle imaging13. Besides achieving 
the desired nanoparticle size, the surface coating 
can also prevent oxidation of SPION from the 
environment14.
 To overcome the limitations of the direct 
co-precipitation method, this research focuses on 
optimizing the processing conditions including 
stirring speed, stabilizer concentration, and 
stabilizer adsorption temperature. The stability 
of SPION will be measured by hydrodynamic 
size, polydispersity index, and zeta potential. 
Furthermore, physicochemical characteristics 
from the most preferable processing condition will 
be observed by FTIR, fluorescence spectroscopy, 
XRD, and TEM. The stable SPION-C produced 
is expected to be used directly or conjugated onto 
another molecule.

MATERIALS AND METHODS

Reagents and instruments
 Iron (III) chloride hexahydrate (FeCl3 
• 6H2O), iron (II) chloride tetrahydrate (FeCl2 • 

4H2O), ammonia solution (25%), and trisodium 
citrate dihydrate, were from Merck, Germany. 
Nanoparticles were analyzed by a NANO-ZS 
series Malvern Zetasizer (Malvern Instruments, 
Malvern, UK) particle size analyzer, and a Hitachi 
HT-7700 transmittance electron microscope 
(TEM), Institut Teknologi Bandung. Crystalline 
characteristics were observed using an X-ray 
diffractometer (PANalytical X’Pert), whilst other 
physicochemical properties were observed using an 
FTIR spectrophotometer 8400 S (Shimadzu, Japan); 
and Horiba FluoroMax Hybrid Fluorescence 
Spectroscopy Steady State and Life Time System 
(Integrated Laboratory & Research Center 
Universitas Indonesia). 
Synthesis of citrate stabilized superparamagnetic 
iron oxide nanoparticles
 Citrate stabilized superparamagnetic 
iron oxide nanoparticles were synthesized using 
the direct co-precipitation method based on 
previous literature15,16 with some modifications. 
FeCl3 solution (50 mL, 0.08 M) and FeCl2 solution 
(50 mL, 0.04 M) were prepared separately in 
demineralized water. The prepared solution of 
FeCl3 was poured carefully into the three-neck 
round bottom flask, followed by the solution of 
FeCl2 under a nitrogen atmosphere. Both solutions 
were mixed under vigorous stirring (3000 – 12000 
rpm) using an IKA EUROSTAR 20 high-speed 
digital overhead stirrer. The volume of the mixture 
was then added to 150 mL with continued stirring 
and its temperature was increased to 60oC before 
adding the ammonia solution dropwise until the 
solution reached above pH 9. Instantly, the solution 
turned dark brown to black and the reaction was 
held for 15 minutes at a constant temperature. 
Trisodium citrate dihydrate solution (10 mL, 0.503 
M or 10 mL, 1.006 M) was added to the reaction 
after the product reached 90oC and left for an hour 
while maintaining stable temperature and stirring 
speed. Molar ratio of FeCl3 • 6H2O to FeCl2 • 4H2O 
of all batches was 2:1. Once the optimal speed 
and stabilizer concentration was determined, the 
temperature for stabilizer adsorption was studied.
Particle size,  PDI, and zeta potential 
measurement
 Hydrodynamic particle size, polydispersity 
index (PDI), and zeta (ζ) potential of SPION 
and SPION-C were analyzed by dynamic light 
scattering (DLS) at room temperature. The sample 
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solution was prepared with a concentration of 5 µL/
mL in water.
FTIR analysis
 Chemical functional groups present on the 
synthesized SPION and SPION-C were analyzed 
and confirmed by infrared spectroscopy with 
transmittance (%) measured at a 4000 – 400 cm-1.
Fluorescence spectroscopy
 The excitation and emission spectrum 
of SPION and SPION-C were determined by 
fluorescence spectroscopy. 
XRD analysis
 Crystalline characteristics of SPION and 
SPION-C were observed by X-ray diffraction 
(XRD),  using a Copper K-α (λ = 1.5 A°) radiation 
source with generator settings of 30 mA and 40 
kV, and a 0.02o step size; Bragg angle from 10o 
to 90o. Rietveld refinement was done using the 
PANalytical X’Pert HighScore Plus program.
Morphological analysis
 Individual SPION-C and their core 
size along with their morphological shape were 
analyzed by TEM where a drop of diluted SPION-C 
was placed on a 20 nm Cu: Carbon TEM mesh grid 
and let dry before analysis.
Stability during storage
 The stability study of SPION-C at 4oC 
was to resemble the storage condition of the 
nanoparticles. Particle size, PDI, and zeta potential 
were observed for up to 30 weeks.

RESULTS AND DISCUSSION

 SPION stabilized by trisodium citrate 
dihydrate has successfully been synthesized 
through direct co-precipitation by optimizing their 
processing conditions (Table 1).

Influence of stirring speed
 The mean of size distribution by number 
of SPION-C from smallest to largest was Batch E, 
C, B, and F (Table. 2). Batches C (6000 rpm) and 
E (9000 rpm) obtained smaller hydrodynamic sizes 
than previous studies of citrate stabilized SPION 
synthesized by co-precipitation which were larger 
than 200 nm17, 100 nm18, and 55 nm19.
 As the hydrodynamic sizes of SPION 
of batch A and batch D were similar (Table. 2), 
our study demonstrates that stirring speed greatly 
influences the success of stabilizer adsorption 
and eventually the SPION-C end particle size. 
Stirring speed effects, the reaction environment 
of SPION-C during the addition and adsorption 
of citrate ions onto SPION. Hence, the surface 
modification of the nanoparticles by the addition of 
a stabilizer drastically suppresses the nanoparticle 
size20.
 Superparamagnetic iron oxide nanoparticle 
synthesis starts with the core formation, followed 
by nucleus growth. The latter needs to be prevented 
at the correct designate to achieve the intended 

Table 1. Processing conditions of SPION and 
SPION-C

Batch Stirring speed  Stabilizer  Stabilizer 
 (rpm) concentration adsorption

A 3000 - -
B 3000 0.503 M 90oC
C 6000 0.503 M 90oC
D 9000 - -
E 9000 0.503 M 90oC
F 12000 0.503 M 90oC
G 9000 1.006 M 90oC
H 9000 1.006 M 60oC

Table 2. Influence of stirring speed on SPION and SPION-C

Batch Stirring  Stabilizer  SizeI ± SDII PDI ± SDII ζ potential ± SDII  

 speed (rpm) concentration (nm)  (mV)

A 3000 - 1357.07 ± 583 - -24.3 ± 1.1
B 3000 10 mL, 0.503 M 39.95 ± 16 0.243 ± 0.02 -48.63 ± 3.0
C 6000 10 mL, 0.503 M 36.56 ± 8 0.339 ± 0.05 -37.1 ± 6.5
D 9000 - 854.97 ± 169 - -30.8 ± 0.6
E 9000 10 mL, 0.503 M 25.58 ± 7 0.346 ± 0.01 -41.67 ± 2.1
F 12000 10 mL, 0.503 M 161.27 ± 33 - -38.17 ± 1.8

ISize distribution by number
IISD standard deviation (n=3)
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Tabel 3. Influence of stabilizer concentration on SPION-C

Batch Stirring speed  Stabilizer  SizeI ± SDII  PDI ± SDII ζ potential ± SDII 

 (rpm) concentration (nm)  (mV)

E 9000 0.503 M 25.58 ± 7 0.346 ± 0.01 -41.67 ± 2.1
G 9000 1.006 M 25.94 ± 2 0.312 ± 0.09 -50.8 ± 3.9

ISize distribution by number
IISD standard deviation (n=3)

Fig. 1. Effect of stirring speed on the particle size of SPION-C
(Red) Batch B/3000 rpm; (Black) Batch C/6000 rpm; (Green) Batch E/9000 rpm (Blue) Batch F/12000 rpm

size for nanoparticles to obtain superparamagnetic 
properties. Nuclei or crystal growth is inhibited 
by the adsorption of citrate ions on the surface 
of SPION which stabilizes and prevents these 
particles from aggregation20. Amid this step, the 
rate of inhibition by the stabilizer will influence the 
resulting hydrodynamic size of the nanoparticles. 
After the black precipitate formation at basic 
conditions, the stabilizer solution should be rapidly 
distributed throughout the SPION solution. 
 An increase of stirring speed from 
3000 rpm to 9000 rpm improved nanoparticle 
hydrodynamic size from thousands of nanometers 
to below 30 nm, as shown by batch B and E (Table 
2). Essentially, the purpose of stirring is to create 
a homogenous solution. Stirring speed influences 
fluid flow, where within the fluids are the residing 
nanoparticles, and therefore different stirring 
speeds will cause the SPION and TCD to migrate 
and interact with each other at different rates21. 
Nonetheless, in our case, at very high speeds 
(12000 rpm), parameters of SPION-C were found 

to be less preferable. Agglomeration leading to 
higher hydrodynamic size initiated by the immense 
interaction of particles is believed to be the reason. 
Smaller SPION-C might also have aggregated, 
forming larger clusters leading to an increase in 
hydrodynamic size and poor polydispersity due to 
various cluster sizes22, but similar æ potential for all 
SPION-C batches. Our findings show that different 
stirring speeds influence the hydrodynamic size 
of the SPION-C, and at very high speeds, their 
polydispersity indexes.
 All SPION showed negative ζ potential 
ranging from 23.23 mV to 31.3 mV, and ζ potential 
of SPION-C for batches B, C, E, and F ranged from 
-30.6 mV to – 52.0 mV (B > E > F > C) as seen in 
Table. 2, meaning that all SPION-C have moderate 
(31 – 40 mV) to fairly good (41 – 60 mV) colloidal 
stability23. The increase in ζ potential of SPION 
after stabilization was up to 28.8 mV, surpassing 
previous literature10,25. Without stabilization, 
SPION acquired less stability shown by their 
lower ζ potential. Visually, SPION would sediment 
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Table 4. Influence of stabilizer adsorption temperature on SPION-C

Variation SizeI ± SDII  ζ potential ± SDII                       Sedimentation time
 (nm) (mV) Initial 1 hour 2 hours 3 hours

SPION, no citrate  854.97 ± 169 -30.8 ± 0.6    
adsorption (Batch D)

SPION-C, adsorption  278.33 ± 109 -43.2 ± 1.7    
at 60oC (Batch H)

SPION-C, adsorption  25.94 ± 2 -50.8 ± 3.9    
at 90oC (Batch G)

ISize distribution by number
IISD standard deviation (n=3)

Fig. 2. FTIR spectrum of SPION, trisodium citrate dihydrate, and SPION-C

substantially faster than SPION-C for all process 
conditions. After approximately 15 minutes12, a 
clear borderline between the sediment (SPION) 
and the solvent can be distinguished, whereas 
the SPION-C still presented a black homogenous 
solution (Table 4). 
 Citrate posses’ three carboxylate functional 
groups where at least one will face outwards 
on the SPION-C’s surface upon adsorption 
which accounts for their negative and higher æ 
potential compared to SPION23,24. The citrate ions 
create steric hindrance to prevent SPION from 
interacting with each other12. Such steric hindrance 
is categorized as electro kinetic stabilization 
originating from anionic carboxyl groups. Besides 
fabrication of hydrophilic SPION, the free carboxyl 
group facing out to the solvent will aid SPION to be 

conjugated or functionalized to another molecule, 
for example, a drug, carrier, or fluorescent dye. 
Influence of stabilizer concentration
 Comparing batch E to G, twice as much 
stabilizer concentration resulted in a narrower 
polydispersity index (0.346 to 0.312) and better 
stability (-41.7 mV to -50.8 mV) of SPION-C. The 
availability of the stabilizer was more precise as it 
had better coverage on the surface of the SPION. 
Moreover, as its concentration was higher, the 
time for it to be distributed in the solution was fast 
enough to prevent larger nanoparticle growth.
Influence of stabilizer adsorption temperature
 Two different temperatures for citrate 
adsorption experimented were at 60oC and 90oC. It 
was shown that the temperature affects the reaction 
temperature during stabilizer addition and highly 
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Fig. 3. Fluorescence spectroscopy of SPION and SPION-C

Fig. 4. XRD intensity peaks of SPION and SPION-C

determines the success of citrate adsorption onto 
the SPION surface (Table 4.) Over the SPION 
growth phase, an elevated temperature is required 
to aid citrate adsorption onto the nanoparticles’ 
surface, as higher temperatures accelerate the 
chemical adsorption process22. SPION-C produced 
with the lower temperature sedimented at a higher 
velocity. This can be explained by failure the of the 
citrates’ carboxyl groups to be adsorbed completely 

onto the SPION surface. Therefore, on its surface 
areas where citrate isn’t available, SPION can 
interact with each other, meaning less stabilization 
and leading to particle growth12. After 3 hours 
there was a clear difference between batch D, G, 
H, and being the most stable, was batch G. Visual 
results are also reinforced by the particle size and 
æ potential where the partially stabilized SPION 
(batch H) have a larger particle size and lower 
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Table 5. Stability of SPION-C

Storage SizeI ± SDII(nm) PDI ± SDII ζ potential ± SDII  (mV)

Initial 25.94 ± 2 0.312 ± 0.09 -50.8 ± 3.9
Week 3 19.82 ± 7 0.339 ± 0.03 -42.2 ± 4.2
Week 10 21.29 ± 6 0.306 ± 0.01 -41.3 ± 2.3
Week 30 23.98 ± 2 0.276 ± 0.08 -39.5 1.6
Range 11.95 – 28.64 nm 0.212 – 0.372 -37.8 – -54.8

ISize distribution by number
IISD standard deviation (n=3)

Fig. 5. TEM images of SPION-C magnified x30000 (left) and x200000 (right)

æ potential than fully stabilized SPION (batch 
G), however a smaller particle size and higher æ 
potential than SPION (batch D). 
FTIR analysis 
 The fingerprint of iron oxide (Fe-
O) from SPION is noticeable at 584.45 cm-1 
(Fig. 1) where stated in previous literature 
corresponds to magnetite. The appearance of new 
bands at 1200 cm-1, 900 cm-1, and 850 cm-1 on 
SPION-C proves the presence of citrate on the 
nanoparticles. The chemical bond is believed to 
happen between carboxyl groups from trisodium 
citrate dihydrate and hydroxyls of iron oxides 
through esterification12,26.
 Strong broad bands stretching from 3500 
– 2500 cm-1 correspond to the vibrational stretching 
of -CH and -OH of carboxylate functional groups 
of SPION-C which are also found on the trisodium 
citrate dihydrate (TCD) spectrum but have slightly 
shifted to a higher wavelength. The vibrational 
asymmetric stretching of SPION-C at 1589.40 
cm-1 assigns to carbonyl (C=O), and at 1200 cm-1 

points the C-O single bond of the adsorbed citrates. 
Crowded peaks between 1600 – 1200 of  TCD have 
shifted after TCD conjugation to SPION as seen in 
SPION-C27. Analyzing the FTIR spectrum confirms 
that citrate has been successfully coated onto the 
surface of SPION.
Fluorescence spectroscopy
 Both SPION and SPION-C had excitation 
maximum at ë 467 nm and emission maximum 
at ë 554 – 555 nm. The emission peak of Fe3O4 
previously reported was identified near 560 nm28. 
No shift in maximum wavelengths was found 
which demonstrates the perseverance of magnetite 
after stabilization with citrate. 
XRD analysis
 X-ray diffractograms of SPION and 
SPION-C show crystalline peaks representing 
magnetite. The 2θ positions of 18.35o, 30.26o, 
35.56o, 43.31o, 53.74o, 57.30o, and 62.74o were for 
SPION and 18.21o, 30.07o, 35.34o, 43.07o, 53.31o, 
56.83o, 62.41o for SPION-C confirming hkl values 
(111), (220), (311), (400), (422), (511), and (440) 
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(ICSD 98-015-8742). Intensity weakening of peaks 
resembling magnetite is due to the citrate coating 
on the surface29. Our diffractograms show no (210), 
(300), (213), or (110) peaks known to indicate 
the presence of maghemite30–32. Nonetheless, the 
oxidized phase of magnetite is hard to distinguish 
using XRD owing to the similarity of lattice type 
and constant24. The magnetite phase of SPION 
was found to have a cubic crystal structure with 
an Fd-3m space group, and a cubic cell lattice 
parameter of 8.37 Å, in accordance with reported 
studies. Furthermore, citrate stabilization proved 
to decrease the crystalline size of SPION and 
SPION-C from 6.03 nm to 2.79 nm. This can 
also be supported by broader peaks in SPION-C 
indicating the decrease in crystalline size9,33.
Morphological analysis
 The morphology of SPION-C is almost 
spherical shaped (Fig. 6), and that they exist in 
clusters or agglomerates due to agglomeration 
during processing. Based on the TEM results, it 
is visually distinguishable between the SPION 
core and its citrate coating with particle sizes 
below 20 nm. This critical size provides the 
mean for SPION-C to possess superparamagnetic 
properties. When compared results from dynamic 
light scattering (DLS), a larger particle size 
compared to TEM results was generated because 
DLS measures the hydrodynamic diameter and 
will put into account the solvent layer where the 
citrate molecules penetrate in the solvent playing 
a role in the hydration of the SPION-C34. The DV10 
of SPION-C show that the DLS method was able 
to detect nanoparticles below 20 nm, though due to 
the formation of agglomerates during fabrication 
and the possibility of aggregation of SPION-C in 
aqueous media, the Z-avg shifted to higher values, 
whereas TEM facilitates the visualization of the 
individual core size of each nanoparticle35.
Stability of SPION-C
 During storage, the SPION-C produced 
with the optimized processing condition showed 
great colloidal stability. The pH of the environment 
surrounding the nanoparticles will affect its 
æ potential and hence determine its colloidal 
stability10,24. In this study, the use of trisodium 
citrate dihydrate (TCD) contributed to the end 
solution of all SPION-C batches having a pH 
ranging from 6.74 – 7.33 which helped maintain 
the æ potential of the nanoparticles. The physical 

stability of the nanoparticle was also ensured by size 
and PDI during the storage period. These results 
prove that our method has succeeded in creating 
highly stable citrate stabilized superparamagnetic 
iron oxide nanoparticles as shown in Table 5.

CONCLUSION

 S u p e r p a r a m a g n e t i c  i r o n  o x i d e 
nanoparticles stabilized by trisodium citrate 
dihydrate have been produced using the 
direct co-precipitation method. The optimized 
processing condition was 9000 rpm stirring 
speed, accompanied by 1.006 M of stabilizer and 
stabilizer adsorption at 90oC. Characterization of 
nanoparticles below 20 nm which is critical for 
biomedical use, was confirmed by DLS, FTIR, 
fluorescence spectroscopy, XRD, and TEM. 
Furthermore, stability of SPION-C during storage 
had been achieved. The optimized SPION-C can be 
further conjugated to a carrier or even to the desired 
therapeutic agent without additional modification.
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