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	 The texture analysis of medical images is a powerful calculation tool for the 
discrimination between pathological and healthy tissue in different organs in medical images. 
Our paper proposes a novel approach named, GGD-GMM, based on statistical modeling in 
wavelet domain to describe texture images. Firstly, we propose a robust algorithm based on the 
combination of the wavelet transform and Scale Invariant Feature Transform (SIFT). Secondly, 
we implement the aforementioned algorithm and fit the result by using the finite Gamma Mixture 
Model (GMM). The results, obtained for two benchmark datasets, show that our proposed 
algorithm has a good relevance as it provides higher classification accuracy compared to some 
other well known models. Moreover, it displays others advantages relied to Noise-resistant and 
rotation invariant. Our algorithm could be useful for the analysis of several medical issues.

Keywords: Statistical image modeling; Gamma Mixture Model; SIFT;
Uniform Discrete Curvelet Transform; Classification.

	 During the recent years, the texture 
analysis becomes a useful tool to discriminate 
between pathological and healthy tissue in different 
organs in medical images (see Julesz, 1983). In 
the texture analysis, the statistical tools such as 
classification techniques play a more and more 
important role in the analysis of the medical 
images. In fact, many medical issues, such as the 
distinction between normal and abnormal tissue, 
involve the use of automatic algorithm to classify 
and extract image attributes. The techniques of 
classification allow capturing morphological 
properties, properties related to color, texture of 
images, etc. For example, Sutton and Hall (1972) 
lead texture analysis of X-ray images by using the 

classification technique of pulmonary diseases. 
Chen et al. (1989) employ fractal texture analysis 
to classify ultrasound images of the liver. As 
for the diagnosis of bone diseases, particularly 
osteoporosis, some authors lead texture analysis 
on bone radiographs to discriminate between 
osteoporotic patients and controls (see Benhamou 
et al)
	 Most of earliest image processing 
analyses focus only on the magnitude of the 
wavelet describing the image (the real part of 
the complex representation). Nevertheless, 
several recent studies analyze, in addition to the 
magnitude of the wavelet, the phase that contains 
more information about the features of the image. 
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Oppenheim and Lim. (1981) is considered as one of 
the earliest works that begins to include the phase 
in their analysis.
	 Various approaches are recently developed 
for the image processing analysis, particularly for 
analyzing the phase in the wavelet decomposition 
of the image (e.g. Sutton & Hall, 1972) such as 
the Generalized Gaussian Density (GGD) (see 
Chen et al, 1981; Oppenheim & Lim, 1981). 
The phase’s estimation and its fitting involve the 
use of the standard circular distributions, where 
wrapped Cauchy (WC) and Vonn are considered 
two most popular ones (see Mallat et al, 1998). 
Regarding the wrapped Cauchy distribution, it 
is more accurate while it is not good for relative 
phase pdfs with Gaussian shapes (e.g Moulin et al, 
1999). In addition, the Vonn distribution fits well 
with behaviors of relative phases from various real 
images including texture images. 
	 Most current research is based on the 
assumption that certain invariant characteristics 
are common to an entire class of objects. Most 
classification methods characterize objects by their 
global appearance, usually of the entire image. 
These methods are not robust to occlusion or 
variations such as rotation or scale.
	 Moreover, these methods are only 
applicable to rigid objects. Local invariant features 
have become very popular to give solution to the 
limitations of these methods in object detection, 
recognition and classification.
	 Scale Invariant Feature Transform (SIFT) 
is an algorithm that allows to abstract automatically 
the corner points with subpixel resolution. When 
a set of images seem to be similar, for example 
with regard to scale, orientation, etc., simple 
corner detectors are found to be useful (see 
vo et al, 2011). However, the later techniques 
become less preferment when the images look 
different regarding scales and/or orientation. 
In this situation, SIFT algorithm appear more 
performant for the image processing analysis. 
In fact, this algorithm well locates the points of 
the image in the spatial and frequency domains, 
and preserve a relative stability of the abstracted 
point’s features concerning the visual angle, noise, 
affine transformation and some other distinctive 
characteristics.
	 In this work, we demonstrate how SIFT 
algorithm provide better accuracy, when they are 

fitted by Gamma Mixture Model, at the image 
description level. We show also how this algorithm 
can describe the characteristics of a typical image 
through a small number of parameters. This 
allows to speed up the processing analysis of the 
studied image by the algorithm. Moreover, we 
examine the accuracy of the classification related 
to our approach and compare it to the accuracy of 
GGD-Vonn and GGD-WC presented in (see vo & 
Oriaintara, 2010; vo et al, 2011).
	 The remainder of the paper is organized 
as follows. Section 2 presents the theoretical 
background of our methodology. Section 3 presents 
and discusses the experimental results. Finally, 
Section 4 provides the conclusion and implications 
of our paper.
Computational details 
Basic theory of SIFT algorithm, calculation of 
points of interest and descriptors
	 Developed by David Lowe in 2004, 
the scale-invariant feature transform (SIFT) is a 
method to transform an image into a set of feature 
vectors that are invariant by Usual geometrical 
transformations (rotation, homothety) (see Lowe, 
2004). It is used for extracting distinctive invariant 
feature from images to serve reliable matching 
between different views of a scene or an object.
	 Two main s teps are  required to 
implementation of the Lowe method. Firstly, it is 
necessary to extract the characteristics of an object 
and to calculate its descriptors. In other words it 
is detects the characteristics that are most likely to 
represent this object, to define and to discriminate 
it by comparing it with others. Secondly, it is 
necessary to set up a matching procedure. This is 
the eventual goal of the method.
	 We will see the following main steps to 
transform an image into a set of descriptor vectors. 
	 Scale-space extrema detection: Using a 
Gaussian difference function, we start with a search 
on all scales and image locations to identify the 
potential points of interest that are invariant to scale 
and orientation. In oder words, we can be obtained 
the candidate keypoints by locate the extrma from 
Difference of Gaussian (DoG) pyramid.
	 Keypoint localization: In the interest 
to obtain stable keypoints; three processes are 
applied in this step: By using the 3rd order Taylor 
polynomial, the first process is done to find the 
accurate location of keypoints. The second process 
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is focused on elimination the keypoints with low 
contrast. In the last process, the keypoints which 
are in the edge will be eliminated by using the 
principal curvature.
	 Orientation assignment: to each keypoint 
location, based on local image gradient directions, 
one or more orientations are assigned, see Fig 3.
	 The orientation assignment to points 
of interest: The calculation of the orientation 
histograms according to the neighborhood is used 
to justify the invariance of the descriptors with 
respect to the rotation.
	 Calculation of the descriptors: The 
Generation of the descriptor vectors associated 
with each point of interest requires the calculation 
of the Keypoint descriptor at each point in the 
window, orientation and gradient magnitude. For 
each sub region based on gradient magnitude 
an orientation histogram which represents eight 
cardinal directions are calculated.   
	 Four sample sub-images, the Bark, 
Bubbles, Wood and lathear are from Brodatz 
databases as in Fig. 5.
	 Figure 6 shows the histogram of Invariant 
scale feature transform descriptors ( SIFT) offor 
four different images extract from the Brodatz 
database. As can be seen, this distribution has a 
particular shape, and can be interpreted through a 
statistical model. Since this distribution exhibits a 
mixture Gamma distribution and used to describe 
SIFT descriptor features.
Gamma model 
	 The gamma distribution is a continuous 
distribution whose support is the set of strictly 
positive reels. With the classical parameterization, 
this distribution denoted f(a,b) admits for 
measurement,

	 ...(2.1)
	 Note that  this  law is sometimes 
parameterized not by the parameter, but 
according to its inverse. In this paper, the classical 
parameterization will always correspond to the 
parameterization by the pair (a,b) introduced 
in equation (1.1) above. When the parameter 
b is a parametric set, the families are a natural 
exponential family.
Gamma mixture model
	 In this section a probabilistic formalization 

is proposed to resolve the problem based on a 
special case of mixed model.
	 Let be a set of 
samples, the density function for the finite mixture 
gamma distributions takes the following form

	 ...(2.2)

	
...(2.3)

where

	 Here ,  k  denotes  the  number  of 
components in the mixture.  
are the proportions that satisfy the conditions

k . 
 denote the shape of the i-th component of the 

mixture distribution and  their scale parameters. 
Where  is the Euler gamma function defined 
as  .
	 The EM (Expectation-Maximization) 
Algorithm will allow us to find the parameters of 
this mixture Gamma distribution, starting from 
random values and adjusting them progressively 
until the likelihood of this model is maximum.
EM algorithm
	 The algorithm Expectation-Maximization 
(EM) is a general method for finding the estimated 
maximum likelihood of a given set of parameters 
of a distribution from a sample. Using the general 
representation of log-likelihood function given in 
McLachlan and Peel, the finite mixture gamma 
model is given as follows

...(2.4)

	
...(2.5)
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Fig.1. a Landscape image. b Landscape after zoom. c Feature extraction and marked 
matching results. Correspondences are linked with green lines

Fig. 2. Scheme of the proposed feature extraction 
approach

	 Denote by  the parameter space, i.e.

	 The EM algorithm is used to estimate 
the gamma mixture parameters in the following 
manner.
	 Let be a sequence of i.i.d random 
variables with distribution . We can 
associate with (  as 
follows: Conditioned on ,  has gamma 
distribution with parameters ( . We call  
(  the augmented data, its 
likelihood is given by 

	
...(2.6)

	 Insted of finding the optimal likelihood 
estimate, the EM algorithm optimizes the 
conditional logarithmic likelihood 

...(2.7)
That is 

	 ...(2.8)

The computation gives 

...(2.9)
where 

	
...(2.10)
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Fig. 3. Construction of SIFT descriptor [9] a Image pyramid. b Extrema detection for DOG pyramid. c Creation of 
keypoint descriptor

Fig. 4. The representation of dominant direction assignment by the process of SIFT descriptor

	 ...(2.11)

	 ...(2.12)

Next, we proceed to update α. Note that

	
...(2.13)

...(2.14)
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Fig. 5. Four subimages. a Bark. b Bubbles c.Wood b. Lathear with the size of 128 ×128 from the Brodatz database

	 W h e r e .  S i n c e 

 has no closed-form expression, 
we do not have the optimal updating scheme for 
á aviable. So, we can update  in its gradient 
direction

	 ...(2.15)
	 Where is a step size that will be specified 
later and 

	 ...(2.16)

...(2.17)

Uniform discrete curvelet transform
	 For many applicat ions in image 
communication such as coding (see Vo & Oraintara, 
2010), quality measures (e.g Nguyen & Chauris, 

2008) image retrieval, denoising (see Mikolajczyk 
& Schmid, 2005; Luo et al, 2007) and motion 
estimation (see Cover & Hart, 1967), the complex 
wavelet transform has main advantages compared 
with the discrete wavelet transform (DWT) as the 
good directional selectivity and the shift invariant 
property (e.g Meeker  et al, 1998; Selesnick  et 
al,2005 ).
	 The transform is named the uniform 
discrete curvelet transform (UDCT) (see Nguyen & 
Oraintara, 2008), this is due to the positioning on a 
uniform lattice at each resolution the centers of the 
curvelet functions. At each resolution, the UDCT 
basis functions are located on a uniform integer 
grid. The decomposition has four directional scales, 
with N= 6 at each scale. In general, the UDCT 
can have 3×2n directional subbands where
. Compared with the existing transforms, the new 
discrete transform has several advantages, such as 
ease of implementation, hierarchical data structure 
and lower redundancy ratio. Therefore, the reader 
is referred to Nguyen and Chauris (2008) for more 
information of the detailed construction of the 
UDCT.
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Fig. 6. SIFT descriptors histogram for the textured image : a Bark. b Bubbles. c Wood. d lathear  extract from the 
Brodatz database

Wrapped Cauchy distribution
	 The wrapped Cauchy is a unimodal and 
symmetric distribution, obtained from wrapping 
of the Cauchy distribution with density around 
the unit circle. The distribution (WC) closely 
resembles a Von Mises distribution for many values 
of   (see Mardia & Jupp, 2000; Jammalamadaka & 
SenGupta, 2001) and it has the probability density 
function defined by    

...(2.18) 
                                        

	 where , -p <  < p is the location 
parameter and is the scale parameter. 

When, , the wrapped Cauchy distribution 
tends towards the uniform distribution.
Vonn distribution
	 Vo n n  d i s t r i b u t i o n  o f  r e l a t i v e 
phases at a spatial location (i,j) is defined 
as the difference of phase of two adjacent 
complex wavelet coefficients [11], e.g., 

 	
...(2.19)

	 Where z(i,j) is the coefficient at position 
(i,j). It is noted that to treat the circularity of the 
phases for complex coefficient z, Lz it is necessary 
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Fig. 7. Scheme of the proposed feature extraction 
approach (extracted characteristic)

Fig. 8. Wood (128×128), mixture gamma distributions 
fitted  the histogram (using 256 bins) 

 0.13), ( , (
.

Fig. 9. Lathear (128×128), mixture gamma 
distributions fitted the histogram (using 256 bins)

 0.06), ( , 
(

to returns the angle of phase in radians. The angles 
lie between ±p.
	 The Vonn density distribution of relative 
phase è is defined by

...(2.20)

where 

 

and 
	 The Vonn distribution is unimodal and is 
symmetrical about ( is the mean direction 
and   is the correlation parameter). The Vonn 
distribution parameters can be estimate by using 
the maximum-likelihood estimator (ML).
	 Let q1 , q2 ,……, qn be a set of observations 
from a Vonn distribution and ( ) are the two 
parameters, with q1 , q2 ,……, qn  are i.i.d .This 
likelihood function is given by

=

...(2.21)
	 Where  and  are parameters to be 
estimated as follows

	
...(2.22)

	 Differentiating log (L) and equating to 
zero, we obtain the likelihood equations 

	
...(2.23)
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Table 1. Classification accuracy achieved with state of art feature and ours

	                                   SVM(Rate of Accurately)	                          KNN(Rate of Accurately)
	                                SVM-CrossVal	                                               KNN-KFold
	 Bodatz 	 Vistex 	 Bodatz 	 Vistex 
	 database	 database	 database	 database

GGD-WC	 88.07	 85.64	 87.12	 85.03
GGD-Vonn	 91.15	 85.82	 89.85	 86.19
GGD-GMM	 96.03	 93.16	 95.83	 94.47

Fig. 10.  Knn classification results, according to the values of k (Number of nearest neighbors), using the 
proposed GGD-GMM

...(2.24)
	 we can be solved numerically These 
equations to find the parameters   and . nevertheless, 
ì can be also estimed by the mean direction

	 ...(2.25)
	 To oversimplify the estimation problem, 
we propound to estimate ì using mean direction 
and  the Newton Raphson iterative method to find 
solution of the equation g(l) =0 with µ = µ.
	 Substitute µ into 19, the Newton iteration 
can be stated as  

	 ...(2.26)
We derive g(λ) and g(λ) [ 22]. They are given by 

...(2.27)

...(2.28)
Where 
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	 We propose using the correlation 
coefficient as a good initial value for the root of 
g(λ)  as follows :

	 ...(2.29)
	 Where the covariance of complex wavelet 
coefficients in a subband is 

	 ...(2.30)
	 With the initial value  as in(27),our 
ML estimator converges with a few number of 
iterations.
The search scheme of our method and the state of 
art feature is summarized in Fig. 7.

Experimental results and Discussion 
	 To validate the performance of our 
proposed GGD-GMM method, we conduct the 
experiment on two set of texture images, the 
Brodatz and Vistex Database and we select 40 
image textures from the Vistex databases used in 
(e.g Do & Vetterli, 2002a; Do & Vetterli, 2002 b) 
for our experiments. Each of these 512×512 images 
is divided into sixteen 128×128 non-overlapping 
sub-images, thus creating a database of 640 texture 
samples. To expand the Brodatz database, each 
image was divided into sixteen 128 × 128 non-
overlapping sub-images, there by forming 1248 
texture samples. For each image in the database, 
the UDCT curvelet transform is applied with four 
scales and six orientations angles per scale (0°, 30°, 
60°, 90°, 120° and 150°). This database preserves a 
rich textural and possesses a wide variety content. 
Hence, it becomes relevant for the evaluation of 
texture based content-based image retrieval (CBIR) 
algorithms.
	 The experimental process began with 
testing how well Mixture Gamma model fit phase 
features derived from the SIFT transform. The 
dataset available through the Brodatz and Vistex 
Database was used for evaluation of accuracy and 
precision of the proposed approach. We compare 
our proposed Method with GGD-Vonn and GGD-
WC feature using the UDCT curvelet transform.
	 The Fig.8 and Fig.9 show the histograms 
of Invariant scale feature transform descriptors 

for two different images. The tested images are 
Wood and Lather. Clearly, the proposed mixture 
gamma model fit well the data. In addition, the 
estimated parameters are different for both images. 
This suggests the use of these parameters for 
discriminating the different database images.                            
	 The GGD parameters of the real 
coefficients in each subband will be estimated by 
Do and Vetterli (2002). A feature based on a real 
part model using the GGD as well as an imaginary 
part using the (WC) for fitted the relative phase 
model is named GGD-WC. For GGD-Vonn, the 
image is analyzed using the same decomposition, 
except that the finest scale is fitted here to the Vonn 
distribution. In this new approach, the standard 
vector is based on GGD and the Scale invariant 
feature transform fitted with Gamma mixture 
distribution that we will call GGD-GMM. 
	 The goal of this study was twofold: first, 
to assess the ability of parametric models to provide 
interesting features texture analysis, secondly 
to select the most appropriate model to describe 
texture images. 
	 The Fig.10 shows that  the  best 
classification accuracy for the k-nearest neighbors 
classification algorithm is giving by the value k=4.
	 We compare our approach with two well-
known classifiers, i.e., KNN and SVM. One can 
see from Table 1 that the proposed approach GGD-
GMM outperforms the state-of-the-art methods in 
both databases, Brodatz and Vistex. Besides, in the 
experiments, the proposed features GGD-GMM 
increase significantly the overall accuracy rate 
up to 96.03%. On the other hand GGD-WC and 
GGD-Vonn achieve respectively an accuracy rate 
of 88.07% and 91.15% for the SVM classification 
algorithm.

CONCLUSION

	 In this study, we introduced a SIFT 
algorithm fitted by the GMM (GGD-GMM) to 
describe the characteristics of texture image by 
only a small number of parameters. This allow 
to speed up the processing image analysis. By 
using Brodatz and Vistex dataset, our experiments 
showed that our algorithm provide more accurate 
classification results than  GGD-Vonn and GGD-
WC methods. In fact the accuracy rate of GGD-
GMM
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	 Our  con t r i bu t i on  conce rns  t he 
establishment of a complete system of classification 
of images making it possible to classify in a 
satisfactory manner, in the light of medical 
experts, the images of healthy and pathological 
patients. These images being difficult to analyze, 
we above all sought to set up a generic approach 
so as not to be dependent on the content of the 
image. This system is based on local extraction 
and rich characterization of image information and 
a classification approach by one of the methods 
SVM, CNN.
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