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 Multimodal images are studied to confirm the presence or classify the brain tumors 
like Glioblastoma. Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are 
the commonly used multimodal images to confirm the tumors. Each of the images represents 
a unique and crucial attribute of the tumor. Experts perform an elaborate manual analysis for 
each of these images and in some cases the conclusions on the tumors can be indecisive. The 
efficiency of analysis is mostly based on the expertise of the experts. Moreover, the multimodal 
images succumb to uncertainty, since they represent diverse information of the tumor. We propose 
a technique to overcome these issues by fusing multimodal images using Non-sub Sampled 
Contourlet Transform. The quality of the fused images can be further improved by performing 
a contrast and edge enhancement technique based on Contrast Limited Adaptive Histogram 
technique and Particle Swarm Optimization. The paper proposes a novel approach that can 
promote the visual quality of the fused images. The proposed technique provides improvement 
in standard deviation, entropy, structural similarity index and unique image quality index of 
the fused images. 

Keywords: Multimodal Image Fusion, Non-sub Sampled Contourlet Transform, Contrast Limited 
Adaptive Histogram Equalization, Particle Swarm Optimization, Non-Local Means Filter.

 Glioblastoma are the fastest growing 
Grade IV malignant tumors found in the brain 
with a survival time of less than a year after their 
detection. The detection of these tumors has always 
been a challenge to doctors. The reasons for delay 
in detection are due to failure to understand the 
early symptoms, lack of awareness, inadequate 
healthcare facilities like imaging, preliminary 
screening for the patients and expertise with 
doctors. An inability to distinguish tumors experts 
is mostly due to incorrect imaging procedures, 
patient’s condition at the time of image acquisition 
and noise may lead to delayed prognosis. For 
this reason, medical imaging is paramount in 

detection, identification, grading and diagnosis 
of the Glioblastoma. Doctors recommend many 
imaging techniques for detection of Glioblastoma 
like Computed Tomography (CT), Magnetic 
Resonance Imaging (MRI) and its variants, 
Fluid Attenuated Inverse Recovery (FLAIR) and 
Positron Emission Tomography (PET)1,2. These 
images are acquired sequentially through different 
scanning machines at different times. Each of the 
modalities is available in different resolution, size 
and provides different information of the brain. For 
example, the structural information of the brain like 
bone structure, tissue symmetries, changes in tissue 
density and space occupying lesions are provided 
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by CT images3. It also shows changes made in the 
nearby skull region due to tumor extension and 
calcification of tumors. Conversely, tumor borders 
and infiltration in the nearby regions are undetected 
in CT images. These can be easily visualized with 
MR (Magnetic Resonance) images, which provide 
structural and functional information of the brain 
along with high contrast and resolution for soft 
tissues like tumors or lesions3. FLAIR images are a 
special type of MRI, which is sensitive to changes 
at the periphery of the cerebral hemispheres. PET 
images assess the tumor growth and spread4. These 
multimodal images are the noninvasive ways to 
detect Glioblastoma. Based on the multimodal 
images, surgical resection or complete removal of 
tumor is made followed by radio chemotherapy4. 
 The medical images acquired have 
poor contrast and are affected with noise due to 
various reasons. Pre-processing is a significant 
process for removing the noise from the images 
with minimum loss of information. Some of the 
pre-processing techniques used are Bilateral 
Filter, Anisotropic Diffusion Filter and Non-local 
means filter5. Further, these images are enhanced 
to obtain improved quality in contrast, entropy 
and structural information. The enhancement is 
achieved by the following techniques – Non-Linear 
Transfer function, Histogram based and Frequency 
Domain6.  A variant of Histogram Equalization 
is the Contrast Limited Adaptive Histogram 
Equalization (CLAHE), proposed by K Zuierveld7, 
is also a block-based contrast enhancement 
technique with focus on local contrast. Unlike 
AHE, CLAHE provides uniform equalization 
with clipping the excess portion of large peaks 
found after the histogram equalization, thereby 
avoiding over-amplification. The excess portion 
removed depends on a parameter called clip limit, 
which is a function of the dynamic range of the 
image and block size. The block size, clip limit 
and the distribution function determine the quality 
of enhancement and must be chosen by the user7. 
Various histogram based enhancement techniques 
are compared and analyzed, CLAHE is observed 
to perform better for MRI brain Images8.
 Even though, CLAHE provides good local 
contrast, it fails to enhance the pixels with low 
gray level intensity. Besides, there is no standard 
for finding the optimal clip limit for a specific 
region of interest in medical images. Generally, 

the average height of the histogram is proportional 
to the clip limit, with user defined normalization 
factor. The clip limit must be computed adaptively 
for every block9. Optimization techniques provide 
a convenient way of determining the CLAHE 
parameters without any manual intervention and 
compute them independentlyfor every image 
block. An optimization technique called Particle 
Swarm Optimization was proposed by Eberhart and 
Kennedy10, which is motivated by nature. It is based 
on how the biological social groupings interact with 
each other to find food or save from predators. It 
is mostly based on swarm intelligence to solve 
the optimization problem. A group of possible 
solutions also called particle form the swarm. An 
optimum particle or solution to the optimization 
problem is determined based on a fitness function. 
Each particle of the swarm is identified with its 
velocity and position, which are updated through 
iterations. The search for best solution terminates 
at the end of the iterations or when the solution 
generates the highest fitness value11. Malik 
Braik and AlaaSheta have implemented the PSO 
algorithm for enhancing general images12. 
 The Multimodal Image fusion of CT and 
MRI images has emerged as latest development 
in medical imaging16. It deals with integration 
of multimodal images, like CT and MRI into a 
single image that assist early detection of tumors. 
Along with generating high quality images, it also 
occupies lesser digital storage6, 13. Some of the 
techniques for fusing the multimodal images are 
Discrete Wavelet Transform (DWT)13-14, Laplacian 
Pyramid (LP)15, Contourlet Transform (CTT)16 and 
Non-sub Sampled Contourlet transform (NSCT)21-

23. The methodology for fusion commence with the 
disintegration of the medical images by the above 
transforms. The low frequency and high frequency 
components are extracted from the medical images, 
fused in accordance with predefined rules and 
integrated back to obtain the fused image. The 
process can be extended to multi-level, by recursive 
decomposition of low frequency sub-images. This 
often leads to redundancy and gradual decline of 
edge information from the high frequency sub-
images. In view of obtaining the finest details of the 
image, the down sampling and up sampling process 
in performed, that usually lead to aliasing and 
blocking effect in fused images. Hence, multimodal 
image fusion is shift variant and redundant17. 
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 The medical images contain many edges 
and curved lines, which can be easily detected by 
Contourlet Transform. However, shift variant and 
redundant characteristic hinder the visual quality 
of the fused image. A slight modification of CTT 
led to Non-Subsampled Contourlet transform 
(NSCT). This transform offers an exceptional 
performance in edge and contour detection. The 
NSCT is a 2-filter bank of low pass and band pass 
filter along with directional filters. It generates a 
large number of low frequency and high frequency 
components due to the absence of up sampling and 
down sampling. Thus, aliasing effect is not seen in 
the fused images. In addition, the directional filters 
decompose high frequency images to next levels. 
Therefore, NSCT provides a very good contrast 
and edge information in the fused images22-23. The 
visual quality of the fused images can be further 
increased by considering the enhanced CT and 
MRI images. The structural information is of great 
importance in the fused MRI and CT images, as 
they indicate the periphery of tumor region. The 
objective of this paper is to provide a new approach 
for integrating multimodal and Multiresolution 
images to assist early detection of brain tumors. 
Proposed Method
 The research work includes three main 
phases a) preprocessing of MRI and CT images, 
b) image enhancement followed by image 
registrationand c) image fusion.  More than 200 
MRI and CT images containing Grade IV tumors 
- Glioblastoma is taken from www.Radiopedia.
org for this work. There are quite a few databases 
available publicly for MRI images, but the 
challenge in our research is to get multimodal 
images for the same patient. Since these are 
acquired at different times and from different 
machines, they must be registered and preprocessed 
before fusing them. The Figure 1 shows the block 
diagram for the fusion process.  
Preprocessing with Non-local Means Filter
 The preprocessing stage deals with 
resizing, converting the images to 8 bit gray scale. 
The Non-Local Means Filter (NLMF) is used for 
eliminating the Gaussian and Rician noise present 
in the CT and MRI images. It should be noted 
that the noisy pixels are usually independent 
and generally associated with other pixels in 
the neighborhood. Noise cancellation occurs on 
averaging of the neighborhood pixels and replacing 

the noisy pixel with the weighted average value that 
is close to its original value.
 The similarity measure for a noisy pixel 
in the neighborhood is compared with a similar 
pixel in the neighborhood based on the Euclidean 
distance .  ó is  the 
standard deviation of the Gaussian kernel.  The 
preference of weights is made on basis of the 
Euclidean distance and computed using Eq. (1), 
with Z(i) as a normalization constant.

 ...(1)

 The values of weights, w (i, j) lie in the 
range of 0 and 1. And sum of the all the weights is 
unity. The exponential decay of eq.2 is controlled 
by a smoothing kernel h. The area of the function 
shrinks or expands based on the values of h. 
Smaller values of h lead to suppressing the noise 
and large values of h lead to blurring. The range 
of values for weights are mostly dependent on the 
similarity between the neighboring pixels i and j. 
For a discrete noisy image, V = {V (j)| j å I}, 0 d” 
I d” 255, represents a neighborhood of the noisy 
pixel. The denoised image pixel NL (i) is computed 
as a product of weight and the pixel intensities V 
(j) in the image as shown in eq.(1.2) 

 ...(2)

 The Non-local Means filter contains 
a remarkable self normalizing feature due to 
a quick decay of the exponential function that 
depends on the Euclidean distance, that eventually 
lead to zero when the neighborhood of pixels 
diminish for a denoised image. Additionally, 
the NLMF compares the pixel intensity along 
with the structural relationship like edges in the 
vicinity of the pixels. High Peak Signal Nosie 
Ratio, low Mean Square Error and high Structural 
similarity index is achieved with this technique 
as it considers the intensity of all the pixels in the 
image to filter the noisy pixel, and hence the name 
non-local. Conversely, due to its complexity, the 
computational burden is its major shortcoming5. 
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Image Enhancement 
 The image enhancement usually deals with 
contrast enhancement, to distinguish tumorous and 
non-tumorous regions in the CT and MRI images. 
But, with contrast enhancement, the edges in the 
images are greatly affected; hence there is a need to 
enhance the contrast of the images by not affecting 
the edges in the image. Histogram equalization is 
a popular technique for enhancement, but fails to 
enhance the very low intensity pixels. Contrast 
Limited Adaptive Equalization (CLAHE) is mostly 
used, since it enhances the low intensity pixels by 
adding the excess of high intensity pixel values 
based on a predefined clip-limit value. The clip-
limit value is usually an average of histogram 
values. The enhancement technique implemented 
is a 2-fold one - first the image is enhanced by 
CLAHE based on a predefined clip limit, secondly, 
a nature inspired algorithm like Particle Swarm 
Optimization (PSO) is used to choose the clip limit 
automatically. An objective function is computed 
to determine the optimal clip limit value. The 
normalized clip limit is mostly in the range of 0 to 
0.01. The objective function given by Eq. (3)

 
...(3)

 The possible values for clip limit are 
visualized as a swarm of particles. Each particle is 
represented in terms of its velocity and position. For 
any particle ‘i’, the position and velocity indicates 

its location in the swarm and it direction of descent 
or ascent respectively. To begin with random 
values are assumed for velocity and position of the 
particle, which is recursively, updated with every 
iteration using Eq. (4) and Eq. (5).  

 ...(4)

 
...(5)

 vi(t)  and xi(t) represent the velocity and 
position for an particle i for iteration t. Eq.(1.4)  
comprises of three components – first component 
representing the initial velocity of the particle, 
the second component represents the particle’s 
decision based on its own experience and the third 
component indicates the particle’s decision based 
on swarm’s experience. In every iteration, the 
image is enhanced using CLAHE with the selected 
clip limit (each particle). The fitness function is 
computed using Eq. (3).This process is repeated for 
all the particles to get the best fit (clip limit). The 
clip limit that maximizes the fitness function can be 
accessed from the swarm based on its position and 
velocity and is represented as ‘pbest’ or pi(t). This 
denotes the best local solution for that iteration. 
The enhancement process is repeated for all the 
iterations to get ‘pbest’ or pi(t) for each iteration.  
In case the ‘pbest’ value in the current iteration is 
greater than the previous one, then  the ‘pbest’ is 
updated with a new ‘pbest’ and ‘gbest’, otherwise 

Fig. 1. Proposed Block Diagram for Multimodal Image Fusion
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Fig. 2. NSCT decomposition

Fig. 3.  Image fusion using NSCT

the ‘pbest’ from previous iteration is retained as 
‘pbest’ and ‘gbest’. The ‘gbest’ or g(t) in Eq.(4)  
is the global solution for the enhancement process 
obtained at the end of all the iterations. When 
’pbest’ appears equal ‘gbest’ over a predefined 
number of iterations the enhancement process 
terminates.    
Initialize the particle swarm (clip limit)
For each iteration 
For each particle 
Enhance the image using CLAHE
Compute the fitness value (Eq. (3))
 If the fitness value is greater than the 
previous fitness value (pbest) 
Set current value as the new pbest (gbest)
 End 
Choose the particle with the best fitness value 
among all the pbest (gbest)
 For each particle 
Calculate particle velocity (Eq. (4)
Calculate the particle position (Eq. (5))

 End
Continue while maximum iterations are attained. 
 End 
Report the gbest and pbest  
 A balance between ‘pbest’ and ‘gbest’ is 
achieved by inertia weight represented as w, c1 
and c2 -  the positive acceleration constants and 
r1 and r2 are random values in the range of [0,1].  
The, an optimal value for the clip limit is obtained 
by PSO algorithm based on maximum value of the 
fitness function. Figure 2 shows the pseudo code for 
proposed CLAHE-Particle Swarm Optimization 
(CPSO) algorithm with Uniform distribution 
function19. 
Image Registration
 The CT and MRI images are obtained 
from different machines and at different times. 
Hence, they must be registered with each other for 
uniform scaling, rotation or skewness. An intensity 
based registration is performed, where in the CT 
image is treated as a reference image and the MRI 
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Table 1. Evaluation Parameters for Fusion Process

Table 2.  Results for 5 Datasets

STD      Entropy
Dataset Fused P1 P2 Proposed Fused P1 P2 Proposed
D1 74.42 80.23 77.42 81.91 5.299 5.7196 5.54 6.07
D2 78.29 80.19 79.18 83.17 5.6008 6.19 6.11 6.33
D3 73.77 81.88 81.499 85.811 6.1211 6.7315 6.67 6.4
D4 77.49 79.722 79.66 80.96 6.19 6.79 6.612 6.36
D5 69.74 78.84 69.5 81.89 5.6357 6.1051 5.6315 6.4
PSNR       SSIM
Dataset Fused P1 P2 Proposed Fused P1 P2 Proposed
D1 30.32 20.92 25.99 24.88 0.535 0.5734 0.7624 0.85
D2 25.8 21.45 23.77 19.66 0.6444 0.5911 0.6563 0.84
D3 23.66 18.32 18.75 20.35 0.4951 0.636 0.6588 0.72
D4 10.36 21.34 22.77 15.83 0.8156 0.6623 0.7247 0.74
D5 23.74 19.53 23.85 23.33 0.5728 0.5906 0.62 0.73
UIQI      MSE
Dataset Fused P1 P2 Proposed P1 P2 Proposed  
D1 0.4928 0.4747 0.4325 0.75 5.18E+02 163.66 211.38  
D2 0.6213 0.4653 0.587 0.74  465.56 272.78 701.84  
D3 0.4283 0.657 0.6404 0.7 956.23 865.58 599.84  
D4 0.6734 0.5307 0.6925 0.83 477.53 343.39 1.69E+03  
D5 0.5447 0.6882 0.622 0.77 723.37 267.58 301.62  

image is a moving image. The optimizer is chosen 
to transform the moving image in terms of scaling, 
rotation or shifting and evaluate a similarity metric 
like mean square error or mutual information for 
the 2 images. This process is repeated for a large 
number of iterations or for a predefined similarity 
metric value18-19. 

Non-Sub sampled  Contourlet Transform 
(NSCT)
 The multi-scale and multi-direction 
characteristic of NSCT is due to it is 2-stage 
filter bank as illustrated in the Figure 3. The non-
existence of the up-sampling and down sampling 
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Fig. 5. Dataset D1-D5 (a) CT (b) MRI (c) NSCT (d) P1 (e) P2 (f) Proposed

is the uniqueness of this transform, enables shift 
invariance and evades pseudo Gibbs phenomenon 
in the fused images20. Laplacian Pyramid forms 
the first stage of the transform,   referred as Non 
Subsampled Pyramid (NSP) due to absence of 
samplers. This stage offers the multi-scale property 
of the transform. Non Subsampled Direction 
Filter Bank (NSDFB) – the second stage of NSCT 
provides the directionality feature. This stage 
decomposes the image in k+1 sub-image, with k 
represent 2kdirectional images and ‘1’ represents 
one low frequency image at each level21. Matlab 
provides NSCT toolbox; the “pyrexc” and “vk” 
are the low pass filter and directional filter 
respectively. The decomposition of each source 
image is performed up to four levels and in 4, 8,8,16 

directions at each corresponding level22-23.
 The CT and MRI images are represented as A 
and B. NSCT decomposition of the A and B generates 
the low frequency and high frequency images ,
,  and ,  respectively. The high frequency  
coefficients  and 

 are derived from 
high frequency images, as in Eq.(6) and (7). 
L i k e w i s e ,   a n d  

 represent the low 
frequency coefficients decomposed from low 
frequency images A and B respectively shown in 
eq.(8) and eq.(9)  
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...(6)

 
...(7)

 
...(8)

 
...(9)

 The fused low frequency and high 
frequency coefficients at level j are computed as 
eq. (10) and eq.(11)

  ...(10)

 ...(11)
 The NSCT based fusion technique 
consumes more CPU time due to its complexity and 
large number of coefficients [17, 18]. Furthermore, 
the challenge also lies in favor of choosing the 
number of decomposition levels and the fusion 
rules. In fact there is no evidence for the best 
possible number for the decomposition levels 
and is established on the experimentation, nature 
of images and visual quality of images  Figure 
4 illustrates a single level decomposition and 
recomposition of  CT and MRI images using NSCT. 
Experiment and Results  
 All experiments are carried on Matlab 
2020 with dataset of following arrangement (i) 
images with contrast agent (ii) images without 
contrast agent and (iii) delayed images with 
contrast agent. A combination of CT and MRI T1 
image, CT and MRI T2 and CT and MRI FLAIR 
image is tested and results are documented. The 
datasets are available on open access radiology 
resources [25, 26]. The performance of the new 
approach is evaluated based on the parameters 
listed in Table 1.
 The CT and MRI images are fused using 
NSCT fusion and enhanced using the built-in 
function for CLAHE (adapthisteq), the results are 

recorded under P1.  The performance of the fused 
and enhanced image is compared with images 
enhanced by CLAHE-PSO technique, under P2. 
The new approach deals with enhancing the CT 
and MRI images prior to integrating them, using 
CLAHE-PSO technique. The enhanced CT and 
MRI images are later fused and its visual quality 
is evaluated (Proposed). Since the CT and MRI 
images are enhanced prior to integrating them 
by means of NSCT, the low frequency and high 
frequency coefficients are better-off than the 
original CT and MRI images. This is the novel 
approach in our paper.
 The results for 5 Datasets is shown in Table 
2. Fig.5 displays the CT, MRI images, the fused 
images, image obtained by P1 and P2 techniques 
and the proposed technique. The contrast of 
fused images is measured by Standard Deviation 
(SD). The parameter assists in differentiation 
of the soft tissues and tumors. The contrast is 
largely improved with the proposed technique.
The information content of the fused image is 
measured by Entropy. The NLMF, CLAHE with 
PSO and NSCT have greatly contributed towards 
the entropy of the fused image. The Structural 
Similarity Index Metric (SSIM)  is a measure of 
the structural similiarity between the source image 
and enhanced image, which has shown improvent 
too. It lies in the range of 0 and 1. High structural 
similiarity id indicated by unity or close to unity 
value, measured by comparing source image and 
fused image. Coefficient correlation, illumination 
and contrast of enhanced image and source image 
is made in term of UIQI. Figure 5 shows results 
for 5 Datasets. Table 2 tabulate the results for the 
various parameters. The proposed approach shows 
improvement in the results. 
 The only concern, we found with the new 
approach is reduction in PSNR, which is the ratio 
of the maximum pixel intensity to Mean Square 
Error(MSE). MSE is a measure of similiarity 
between the orginial image and the enhanced 
image. The proposed technique presents improved 
results for standard deviation, entropy, SSIM 
and  UIQI. However, the PSNR and MSE values 
are not very promising and need attention. Our 
approach has shown a significant advance of 10.9 
% and 9.68% for standard deviation and entropy 
for fused image. A considerable improvement in 
SSIM and UIQI is also observed with an 30.9% 
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and 39.8% advancement in comparison to the other 
techniques.

CoNCLuSIoN

 A novel approach for combining CT and 
MRI images is proposed. By fusing enhanced 
CT and MRI images, the visual quality is greatly 
increased. The block size of 8x8 provides good 
results along with uniform distribution. The clip 
limit in range of 0-0.01 is adaptively chosen 
by PSO algorithm. Further, tumors can be 
conveniently segmented and classified efficiently, 
from the fused images.  Experiments show superior 
results for contrast, structural information and 
entropy. Further, the technique can be applied for 
combining CT-PET images and MRI-PET images. 
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