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	 Objective of this study is to develop 3D structures of the potential drug target proteins 
in the ascomycte plant pathogen Colletotrichum falcatum that causes ‘red rot disease’ a grave 
disease of sugarcane crop. This study uses online databases such as UniPort, DrugBank, PDB 
and PMDB to retrieve and submit biological information. Online webtools such as SwissModel, 
BLASTp, was used to construct homology models and find similarity, respectively. Total of 72 
protein sequences were identified as potential drug targets and were retrieved form UniProt in 
.fasta file format.  Based on the available template model, total of 52 proteins were successfully 
modelled using Swiss-Model webtool. Among these 52 predicted models, 41 models were 
identified as significant based on Ramachandran plot analysis. The 41 predicted models were 
submitted to PMDB server for public access. This study has created a dataset of 3D homology 
models of drug target proteins that can greatly benefit in selective drug discovery and drug 
development against the investigated pathogen Colletotrichum falcatum. This can greatly 
benefit the pharmaceutical industry in developing agricultural antifungal favouring sugarcane 
cultivation.
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The Red-Rot Disease
	 Saccharum officinarium (sugarcane) is a 
monocotyledonous plant species that belongs to 
the family Graminae and is cultivated in most of 
the tropical and subtropical regions of the world1. 
It is the 2nd most valuable agro-industrial crop 
(cash-crop) in India next to cotton2, 3. It occupies 
around 4.2%(4.36million hectares) of the total area 
under cultivation and contributes 7.5% to the gross 
value of agricultural production of the country1, 
2. Global contributors to sugarcane production 
include Brazil, India, China, Thailand, the US, 

and the UK. India is the 2nd largest producer of 
sugarcane in the world following  Brazil and is 
the largest consumer of sugarcane with an average 
consumption of 19 million MT a year3. Sugarcane 
is economically very important as it stores a 
high concentration of sucrose in its stalk tissues, 
but several biotic and abiotic factors affects this 
sucrose yield. Approximately a hundred diseases 
have been reported globally, with 100 fungi, 10 
bacteria,10 viruses, and 50 nematode species 
known to cause destructive diseases to sugarcane3. 
The most devastating disease of sugarcane is the 
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red rot disease, caused by the fungi Colletotrichum 
falcatum.
Colletotrichum Falcatum
	 It is a facultative saprophyte which 
belongs to the subdivision Ascomycotina3. It causes 
huge loss of 18-31% in sugarcane production. 
According to the GOI study of 2017, various biotic 
stress factors, including red rot disease hampers 
the production of sugarcane in many important 
parts of the country3,4. The pathogen affects the 
economically valuable stalk by entering through 
the nodes5. Meteorological factors, along with soil 
pH and waterlogging play a major, but a compound 
role in aiding the infection mechanism3, 6–9. 
Susceptibility of the cultivar, along with the age of 
stalk tissues and time of infestation, determines the 
symptoms shown by the plant7. Infections decrease 
juice purity and deplete important micro and 
macronutrients like iron, copper, zinc, potassium, 
and phosphorous, but however, increase the content 
of calcium, and nitrogen to a large extent10, 11. Stalk 
weight is reduced by 29% furthermore, sugar 
retrieval capacity is reduced by up to 31%. Affected 
tissues cannot be commercially utilized because 
they lead to deterioration of the product3, 11.
Homology Modeling
	 In this study, the 3D structures of proteins 
of Colletotrichum falcatum, are developed using 
homology modeling technique. These structures are 
necessary to design and develop drugs that could 
aim to stop the spread of this dreadful disease.Lack 
of protein structures has hindered the understanding 
of binding specificities of proteins and ligands, 
which are pre-requisites for drug design and 
development12. Well established and recognized 
databases and tools were employed in this study 
to obtain the computational structures of potential 
drug target proteins. These are very necessary to 
contain this dreadful disease and also reduce the 
monetary burdens incurred on the farmers due to 
this disease. Homology modelling was done using 
the pre-existing fasta sequences of the proteins and 
structure of the protein was predicted based on 
the available templates which were similar to the 
respective query sequence of the protein13,14,15. It 
is of utmost importance that the protein structures 
are available, which would otherwise hinder the 
understanding of binding specificities of the protein 
and ligand leading to low availability of drugs 
to stop the spread of this disease. The structures 

developed in this study could further be exploited to 
design and develop new and efficient drugs which 
would be a boon to the cultivators of this crop.

Materials and Methods

NCBI Database
	 This database was used to screen the 
amount of pre-existing information available on 
the chosen organism of interest. A simple search 
with the organism’s name revealed the amount of 
available data in different databases (https://www.
ncbi.nlm.nih.gov/).
Sequence Retrieval
	 The UniProtknowledgebase (www.
uniprot.org)-a centralised, reliable and publically 
accessable collection of non–reductant protein 
sequences16, was used to retrieve the amino acid 
sequences required for this study. The organism’s 
name was used   as the search criteria. The best 
sequences were sorted based on the length of the 
amino acid chain and were downloaded in.fasta 
file format. Repetitive sequences were all omitted 
to prevent ambiguity, and downloaded sequences 
were all stored along with their respective accession 
IDs.
Sequence Alignment
	 The query sequences or amino acid 
sequences retrieved from UNIPROT were all 
compared using the BLASTp server (www.uniprot.
org), an online tool that compares the query 
sequence with pre-existing protein sequences in the 
Protein Data Bank in order to obtain the percentage 
similarity17,14,18. The first BLAST was carried out to 
get similarity values with pre-existing sequences of 
the non-reductant database, followed by a second 
BLAST to get similarity values with the sequences 
present in the Protein Data Bank (www.rcsb.
org). The similarity estimations thus obtained in 
percentages were noted down for further reference.
Structure Prediction
	 The 3D structure of the selected drug 
target proteins were predicted through homology 
modelling technique, using the online tool SWISS-
MODEL (https://swissmodel.expasy.org/). This 
tool uses respective amino acid sequences of the 
protein as well as the templates available in the 
protein databank to predict the 3D structure of the 
protein19,20. Sequences retrieved from UNIPROT 
were uploaded in .fasta file format and the predicted 
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3D models were retrieved in .pdb file format. The 
quality of the models developed was dependent 
on the availability and percentage similarity of the 
templates.
	 The models hence developed were 
analyzed using the Ramachandran plots. These are 
graphical plots that represent protein structures in 
terms of torsion angles andhence play a significant 
role in confirming the predicted structure’s 
accuracy21. The best models were downloaded in 
.pdb after the analysis was complete.
Model Analysis
	 Qualitative analysis of the reliability 
of the predicted model was performed via the 
Ramachandran plot provided by the SWISS-
MODEL as an in-built feature. The degree angles 
of all the residues were expected to be within the 
Most-Favoured regions of the Ramachandran 
plot, that determines the quality of the predicted 
structure. The residues that are outside of this 
favoured region are considered to be unfavourable 
prediction or outliers. These outliers reduce the 
confidence score of the predicted model.
Model Submission
	 The 3D models thus predicted with good 
quality Ramachandran plot (confidence score) were 
then submitted to public database Protein Model 
Data Base [PMDB] (https://bioinformatics.cineca.
it/PMDB/)  which is a resource that stores manually 
built protein models that are published in scientific 
literature22. All the models were uploaded in .pdb 

file formats and each entry was given a unique 
PMDBID for future reference.

Results and Discussions

Drug Target Selection
	 A bibliographical search of the organism 
Colletotrichum falcatum in NCBI website, showed 
that, there are no known protein structures of 
the organism, but there are about 600 protein 
sequences reported. Hence, this organism was 
ideal for construction of computational protein 
models. Preliminary screening of the 600 protein 
sequences, suggested that non-enzymatic protein 
components such as ribosomal subunits were 
predominantly reported. Hence, these ribosomal 
and non-enzymatic proteins were eliminated for 
the homology model development, resulting in a 
total of 125 protein sequences for further analysis. 
These 125 protein sequences were then analysed 
in the DrugBank database (www.drugbank.ca)  to 
confirm if they are previously reported as a possible 
drug targets. Among these 125 protein sequences, 
72 sequences were identified as potential drug 
targets based on literature proof of mechanism of 
action of known antibiotics.
Building Homology Model
	 The selected 72 protein sequences were 
retrieved from the uniprot database (www.uniprot.
org) and saved as fasta file format (.fasta) then 
subjected for BLASTp also known as Protein 

Fig.1. Ramachandran plot analysis of; [A]: Least preferred model with lowest confidence score of 79.3% (Coronative 
insensitive protein homolog-1); [B]: Most preferred model with highest confidence score of 100% (WRKY 
transcription factor 37)
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Fig.2. Structural analysis of the most preferred homology model with 100% of the residues with the most favoured 
region (WRKY transcription factor 37)

Blast (https://blast.ncbi.nlm.nih.gov/) to search 
within Protein Data Bank (www.rcsb.org) to 
identify the templates for homology modelling. 
Protein structures with more than 80% sequence 
similarity were chosen as ideal template. Only 
12 sequences had a similarity of more than 80%. 
The other sequences had more than 1 template 
used for homology modelling, with less than 80% 
sequence similarity. All the 72 protein sequences 
with appropriate template models were subjected 

for homology model construction using the Swiss-
Model web server tool (https://swissmodel.expasy.
org/). Homology protein models were built for 52 
sequences successfully.
Ramachandran Plot Validation
	 The Swiss-Model tool, has developed 
a maximum of 5 different models for each of 
the query sequences. The best of the 5 models 
were selected based on the Ramachandran Plot 
analysis, that was integrated with the server. The 
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Table 1. Summary of PMDB entries for Colletotrichum falcatum

Sl. No	 Drug Target Name	 UniProt ID	 Confident Score	 PMDB ID

1	 Chitin synthase	 J7HAD5	 91.89	 PM0082471
2	 Beta-tubulin(142)	 Q8J1X0	 95.16	 PM0082472
3	 Elongation factor 2	 A0A1B3B2L9	 91.43	 PM0082473
4	 Dirigent protein	 A0A1B3B2N1	 96.97	 PM0082474
5	 EPL1 protein(212)	 A0A1C9II66	 98.25	 PM0082310
6	 NAC transcription factor C	 A0A059VE62	 95.65	 PM0082475
7	 NAC transcription factor J	 A0A059VK69	 91.49	 PM0082476
8	 NAC transcription factor M	 A0A059VPC0	 92.68	 PM0082477
9	 Glycosyl hydrolase family 10	 A0A1C9II18	 98.68	 PM0082478
10	 WRKY transcription factor 37	 A0A059VP87	 100	 PM0082479
11	 Elongation factor 1 alpha	 A0A1B3B2J0	 97.22	 PM0082480
12	 Translation elongation factor 1 alpha	 A0A1B3B2K3	 94.74	 PM0082481
13	 BZIP transcription factor 25	 A0A059VP32	 99.64	 PM0082482
14	 BZIP transcription factor 9	 A0A059VJB5	 100	 PM0082483
15	 BZIP transcription factor 15	 A0A059VP28	 100	 PM0082484
16	 BZIP transcription factor 18	 A0A059VK55	 100	 PM0082491
17	 BZIP transcription factor 29	 A0A059VE58	 95.65	 PM0082492
18	 BZIP transcription factor 4	 A0A059VE50	 98	 PM0082493
19	 BZIP transcription factor 24	 A0A059VP99	 96.23	 PM0082494
20	 BZIP transcription factor 14	 A0A059VP93	 92.31	 PM0082495
21	 TLP transcription factor A	 A0A059VJE2	 91.11	 PM0082497
22	 TLP transcription factor K	 A0A059VK79	 98.96	 PM0082498
23	 TLP transcription factor M	 A0A059VJE8	 93.62	 PM0082499
24	 TLP transcription factor L	 A0A059VE75	 93.62	 PM0082500
25	 MYB transcription factor 83	 A0A059VP36	 93.27	 PM0082501
26	 MYB transcription factor 82	 A0A059VPA7	 96.2	 PM0082502
27	 MYB transcription factor 78	 A0A059VJC5	 90.54	 PM0082503
28	 Class VII chitinase	 A0A1B3B2M2	 98.68	 PM0082504
29	 Chitinase B	 A0A1B3B2K5	 95.89	 PM0082505
30	 RNA -dependent RNA polymerase	 A0A3Q9NNK8	 92.64	 PM0082309
31	 Putative heat shock protein (90)	 A0A1B3B2M4	 91.43	 PM0082506
32	 Respiratory burst oxidase-like protein H	 A0A1B3B2N7	 98.44	 PM0082507
33	 NDR1/HIN1-like protein	 A0A1B3B2P4	 100	 PM0082508
34	 Type I polyketide synthase	 C9WLC4	 93.83	 PM0082509
35	 Respiratory burst oxidase-like protein B	 A0A1B3B2N2	 95.45	 PM0082510
36	 Putative ethylene response sensor	 A0A1B3B2N0	 100	 PM0082511
37	 Beta-1,3-glucanase D	 A0A1B3B2K9	 97.06	 PM0082512
38	 EPL1-like protein	 A0A1C9II08	 96	 PM0082513
39	 Salicylate hydroxylase 1	 A0A1C9IIB1	 95.45	 PM0082514
40	 Bys1 family protein	 A0A1C9II96	 97.14	 PM0082515
41	 Respiratory burst oxidase-like protein C	 A0A1B3B2N8	 97.25	 PM0082516

ramachandran plot of all developed models were 
examined, and the model which has majority 
percentage of the residues within the most 
preferred regions of the graph were considered as 
the ideal / final model. The percentage of residues 
within the most favoured regions was also used 
as the confidence percentage score. The graphical 
representation of the ramachandran plot of least 
preferred model and best preferred models with 

lowest and highest confidence score are shown in 
Figure.1(A) & Figure.1(B). The structure analysis 
of a constructed homology model for WRKY 
transcription factor 37 protein is represented 
graphically in Figure.2.
Submission to PMDB
	 A total of 52 homology models were 
developed in the Swiss-Model online tool. 
However, ramachandran plot analysis showed that 
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only 41 protein models exhibited more than 90% 
residues within the most favoured regions. Hence, 
these 41 sequences were submitted in the Protein 
Model Data Base (https://bioinformatics.cineca.it/
PMDB/) for public access and further research. A 
summary of all the 41 protein 3D models submitted 
to the PMDB database with their PMDB ID, along 
with drug target name, Uniprot ID and confidence 
score of the model are tabulated in Table.1.

Conclusion

	 The objective of this study was to prepare 
3-D models of proteins present in Colletotrichum 
falcatum that is a major pathogen responsible for 
the red rot disease in sugarcane crops. The protein 
structures of this ascomycete were successfully 
developed and analyzed using the swiss-model 
workspace. A similar study by Divya et.al (2018) 
was performed on a less studied organism P.marinus 
an endoparasitic pathogen, and other Perkinsus spp. 
that are responsible for causing devastating losses 
in the cultivation of shellfish and mollusk species 
worldwide , where the authors developed and 
submitted 3D structures of drug target proteins of 
the organism based on homology modelling23.
	 These developed structures could be 
further exploited to either develop new antifungal 
drugs or to revise the pre-existing ones. This is 
an important aspect of computer-aided, in-silico 
drug designing approach which gained significant 
momentum in the recent years24. Furthermore 
active sites of the molecule can be found out aiding 
in docking studies that would help in studying the 
interactions between the protein and the ligand. A 
Study by Daisy et.al (2013) involving the in-silico 
drug designing approach for biotin protein ligase 
of  Mycobacterium tuberculosis, provides better 
insight on the significant role played by predicted 
protein structures in the field of drug design and 
development25.
	 The structures can also prove to be useful 
for understanding the mechanism of infection of 
the disease. They can also be used to design a 
pathway for understanding the effect of inhibition 
of a few proteins that can act as good antifungal 
drug targets which may help design an antifungal 
compound that might be more effective as well 
as non-toxic unlike the traditional fungicides and 
insecticides that are proven to be harmful in the 

long run. This study provides a basic platform for 
future in-silico work on Colletotrichum falcatum 
specific drug design and development.
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