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 Objective of this study is to develop 3D structures of the potential drug target proteins 
in the ascomycte plant pathogen Colletotrichum falcatum that causes ‘red rot disease’ a grave 
disease of sugarcane crop. This study uses online databases such as UniPort, DrugBank, PDB 
and PMDB to retrieve and submit biological information. Online webtools such as SwissModel, 
BLASTp, was used to construct homology models and find similarity, respectively. Total of 72 
protein sequences were identified as potential drug targets and were retrieved form UniProt in 
.fasta file format.  Based on the available template model, total of 52 proteins were successfully 
modelled using Swiss-Model webtool. Among these 52 predicted models, 41 models were 
identified as significant based on Ramachandran plot analysis. The 41 predicted models were 
submitted to PMDB server for public access. This study has created a dataset of 3D homology 
models of drug target proteins that can greatly benefit in selective drug discovery and drug 
development against the investigated pathogen Colletotrichum falcatum. This can greatly 
benefit the pharmaceutical industry in developing agricultural antifungal favouring sugarcane 
cultivation.

Keywords: Colletotrichum Falcatum; Homology Modeling; PMDB; Ramachandran Plot;
Red Rot of Sugarcane; Swiss-Model.

The Red-Rot Disease
	 Saccharum	officinarium	(sugarcane)	is	a	
monocotyledonous	plant	 species	 that	 belongs	 to	
the	family	Graminae	and	is	cultivated	in	most	of	
the	tropical	and	subtropical	regions	of	the	world1. 
It	 is	 the	 2nd	most	 valuable	 agro-industrial	 crop	
(cash-crop)	in	India	next	to	cotton2,	3.	It	occupies	
around	4.2%(4.36million	hectares)	of	the	total	area	
under	cultivation	and	contributes	7.5%	to	the	gross	
value	 of	 agricultural	 production	 of	 the	 country1,	
2.	Global	 contributors	 to	 sugarcane	 production	
include	Brazil,	 India,	China,	Thailand,	 the	US,	

and	the	UK.	India	is	the	2nd	largest	producer	of	
sugarcane	 in	 the	world	 following	 	Brazil	 and	 is	
the	largest	consumer	of	sugarcane	with	an	average	
consumption	of	19	million	MT	a	year3.	Sugarcane	
is	 economically	 very	 important	 as	 it	 stores	 a	
high	concentration	of	sucrose	in	its	stalk	tissues,	
but	several	biotic	and	abiotic	factors	affects	 this	
sucrose	yield.	Approximately	a	hundred	diseases	
have	been	 reported	globally,	with	100	 fungi,	 10	
bacteria,10	 viruses,	 and	 50	 nematode	 species	
known	to	cause	destructive	diseases	to	sugarcane3. 
The	most	devastating	disease	of	sugarcane	is	the	
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red	rot	disease,	caused	by	the	fungi	Colletotrichum	
falcatum.
Colletotrichum Falcatum
	 It	 is	 a	 facultative	 saprophyte	 which	
belongs	to	the	subdivision	Ascomycotina3.	It	causes	
huge	 loss	 of	 18-31%	 in	 sugarcane	 production.	
According	to	the	GOI	study	of	2017,	various	biotic	
stress	 factors,	 including	 red	 rot	disease	hampers	
the	 production	 of	 sugarcane	 in	many	 important	
parts	 of	 the	 country3,4.	The	pathogen	 affects	 the	
economically	valuable	stalk	by	entering	 through	
the	nodes5.	Meteorological	factors,	along	with	soil	
pH	and	waterlogging	play	a	major,	but	a	compound	
role	 in	 aiding	 the	 infection	 mechanism3,	 6–9. 
Susceptibility	of	the	cultivar,	along	with	the	age	of	
stalk	tissues	and	time	of	infestation,	determines	the	
symptoms	shown	by	the	plant7.	Infections	decrease	
juice	 purity	 and	 deplete	 important	micro	 and	
macronutrients	like	iron,	copper,	zinc,	potassium,	
and	phosphorous,	but	however,	increase	the	content	
of	calcium,	and	nitrogen	to	a	large	extent10,	11.	Stalk	
weight	 is	 reduced	 by	 29%	 furthermore,	 sugar	
retrieval	capacity	is	reduced	by	up	to	31%.	Affected	
tissues	 cannot	be	 commercially	utilized	because	
they	lead	to	deterioration	of	the	product3,	11.
Homology Modeling
	 In	this	study,	the	3D	structures	of	proteins	
of	Colletotrichum	falcatum,	are	developed	using	
homology	modeling	technique.	These	structures	are	
necessary	to	design	and	develop	drugs	that	could	
aim	to	stop	the	spread	of	this	dreadful	disease.Lack	
of	protein	structures	has	hindered	the	understanding	
of	 binding	 specificities	 of	 proteins	 and	 ligands,	
which	 are	 pre-requisites	 for	 drug	 design	 and	
development12.	Well	 established	 and	 recognized	
databases	and	tools	were	employed	in	this	study	
to	obtain	the	computational	structures	of	potential	
drug	target	proteins.	These	are	very	necessary	to	
contain	this	dreadful	disease	and	also	reduce	the	
monetary	burdens	incurred	on	the	farmers	due	to	
this	disease.	Homology	modelling	was	done	using	
the	pre-existing	fasta	sequences	of	the	proteins	and	
structure	 of	 the	 protein	was	 predicted	 based	 on	
the	available	templates	which	were	similar	to	the	
respective	query	sequence	of	the	protein13,14,15.	It	
is	of	utmost	importance	that	the	protein	structures	
are	available,	which	would	otherwise	hinder	 the	
understanding	of	binding	specificities	of	the	protein	
and	 ligand	 leading	 to	 low	 availability	 of	 drugs	
to	stop	the	spread	of	this	disease.	The	structures	

developed	in	this	study	could	further	be	exploited	to	
design	and	develop	new	and	efficient	drugs	which	
would	be	a	boon	to	the	cultivators	of	this	crop.

MaTeRials anD MeTHoDs

nCBi Database
	 This	 database	was	 used	 to	 screen	 the	
amount	of	 pre-existing	 information	 available	on	
the	chosen	organism	of	interest.	A	simple	search	
with	the	organism’s	name	revealed	the	amount	of	
available	data	in	different	databases	(https://www.
ncbi.nlm.nih.gov/).
sequence Retrieval
	 The	 UniProtknowledgebase	 (www.
uniprot.org)-a	centralised,	reliable	and	publically	
accessable	 collection	 of	 non–reductant	 protein	
sequences16,	was	used	to	retrieve	the	amino	acid	
sequences	required	for	this	study.	The	organism’s	
name	was	used	 	 as	 the	 search	 criteria.	The	best	
sequences	were	sorted	based	on	the	length	of	the	
amino	 acid	 chain	 and	were	 downloaded	 in.fasta	
file	format.	Repetitive	sequences	were	all	omitted	
to	prevent	ambiguity,	and	downloaded	sequences	
were	all	stored	along	with	their	respective	accession	
IDs.
sequence alignment
	 The	 query	 sequences	 or	 amino	 acid	
sequences	 retrieved	 from	UNIPROT	were	 all	
compared	using	the	BLASTp	server	(www.uniprot.
org),	 an	 online	 tool	 that	 compares	 the	 query	
sequence	with	pre-existing	protein	sequences	in	the	
Protein	Data	Bank	in	order	to	obtain	the	percentage	
similarity17,14,18.	The	first	BLAST	was	carried	out	to	
get	similarity	values	with	pre-existing	sequences	of	
the	non-reductant	database,	followed	by	a	second	
BLAST	to	get	similarity	values	with	the	sequences	
present	 in	 the	 Protein	Data	 Bank	 (www.rcsb.
org).	The	similarity	estimations	 thus	obtained	 in	
percentages	were	noted	down	for	further	reference.
structure Prediction
	 The	 3D	 structure	 of	 the	 selected	 drug	
target	proteins	were	predicted	through	homology	
modelling	technique,	using	the	online	tool	SWISS-
MODEL	 (https://swissmodel.expasy.org/).	This	
tool	uses	respective	amino	acid	sequences	of	the	
protein	as	well	 as	 the	 templates	available	 in	 the	
protein	databank	to	predict	the	3D	structure	of	the	
protein19,20.	Sequences	retrieved	from	UNIPROT	
were	uploaded	in	.fasta	file	format	and	the	predicted	
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3D	models	were	retrieved	in	.pdb	file	format.	The	
quality	 of	 the	models	 developed	was	 dependent	
on	the	availability	and	percentage	similarity	of	the	
templates.
	 The	 models	 hence	 developed	 were	
analyzed	using	the	Ramachandran	plots.	These	are	
graphical	plots	that	represent	protein	structures	in	
terms	of	torsion	angles	andhence	play	a	significant	
role	 in	 confirming	 the	 predicted	 structure’s	
accuracy21.	The	best	models	were	downloaded	in	
.pdb	after	the	analysis	was	complete.
Model analysis
	 Qualitative	 analysis	 of	 the	 reliability	
of	 the	 predicted	model	was	 performed	 via	 the	
Ramachandran	 plot	 provided	 by	 the	 SWISS-
MODEL	as	an	in-built	feature.	The	degree	angles	
of	all	the	residues	were	expected	to	be	within	the	
Most-Favoured	 regions	 of	 the	 Ramachandran	
plot,	that	determines	the	quality	of	the	predicted	
structure.	The	 residues	 that	 are	 outside	 of	 this	
favoured	region	are	considered	to	be	unfavourable	
prediction	 or	 outliers.	These	 outliers	 reduce	 the	
confidence	score	of	the	predicted	model.
Model submission
	 The	3D	models	thus	predicted	with	good	
quality	Ramachandran	plot	(confidence	score)	were	
then	submitted	to	public	database	Protein	Model	
Data	Base	[PMDB]	(https://bioinformatics.cineca.
it/PMDB/)		which	is	a	resource	that	stores	manually	
built	protein	models	that	are	published	in	scientific	
literature22.	All	the	models	were	uploaded	in	.pdb	

file	 formats	 and	 each	 entry	was	 given	 a	 unique	
PMDBID	for	future	reference.

ResulTs anD DisCussions

Drug Target selection
	 A	bibliographical	search	of	the	organism	
Colletotrichum	falcatum	in	NCBI	website,	showed	
that,	 there	 are	 no	 known	 protein	 structures	 of	
the	 organism,	 but	 there	 are	 about	 600	 protein	
sequences	 reported.	Hence,	 this	 organism	was	
ideal	 for	 construction	 of	 computational	 protein	
models.	Preliminary	screening	of	the	600	protein	
sequences,	suggested	that	non-enzymatic	protein	
components	 such	 as	 ribosomal	 subunits	were	
predominantly	 reported.	Hence,	 these	 ribosomal	
and	non-enzymatic	proteins	were	 eliminated	 for	
the	homology	model	development,	resulting	in	a	
total	of	125	protein	sequences	for	further	analysis.	
These	125	protein	sequences	were	then	analysed	
in	the	DrugBank	database	(www.drugbank.ca)		to	
confirm	if	they	are	previously	reported	as	a	possible	
drug	targets.	Among	these	125	protein	sequences,	
72	 sequences	were	 identified	 as	 potential	 drug	
targets	based	on	literature	proof	of	mechanism	of	
action	of	known	antibiotics.
Building Homology Model
	 The	selected	72	protein	sequences	were	
retrieved	from	the	uniprot	database	(www.uniprot.
org)	 and	 saved	 as	 fasta	file	 format	 (.fasta)	 then	
subjected	 for	BLASTp	 also	 known	 as	 Protein	

Fig.1. Ramachandran	plot	analysis	of;	[a]:	Least	preferred	model	with	lowest	confidence	score	of	79.3%	(Coronative	
insensitive	 protein	 homolog-1);	 [B]: Most	 preferred	model	with	 highest	 confidence	 score	 of	 100%	 (WRKY	
transcription	factor	37)
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Fig.2. Structural	analysis	of	the	most	preferred	homology	model	with	100%	of	the	residues	with	the	most	favoured	
region	(WRKY	transcription	factor	37)

Blast	 (https://blast.ncbi.nlm.nih.gov/)	 to	 search	
within	 Protein	 Data	 Bank	 (www.rcsb.org)	 to	
identify	 the	 templates	 for	 homology	modelling.	
Protein	structures	with	more	than	80%	sequence	
similarity	were	 chosen	 as	 ideal	 template.	Only	
12	sequences	had	a	similarity	of	more	than	80%.	
The	 other	 sequences	 had	more	 than	 1	 template	
used	for	homology	modelling,	with	less	than	80%	
sequence	similarity.	All	the	72	protein	sequences	
with	appropriate	template	models	were	subjected	

for	homology	model	construction	using	the	Swiss-
Model	web	server	tool	(https://swissmodel.expasy.
org/).	Homology	protein	models	were	built	for	52	
sequences	successfully.
Ramachandran Plot Validation
	 The	 Swiss-Model	 tool,	 has	 developed	
a	maximum	 of	 5	 different	models	 for	 each	 of	
the	 query	 sequences.	The	 best	 of	 the	 5	models	
were	 selected	 based	 on	 the	Ramachandran	Plot	
analysis,	that	was	integrated	with	the	server.	The	
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Table 1. Summary	of	PMDB	entries	for	Colletotrichum falcatum

Sl.	No	 Drug	Target	Name	 UniProt	ID	 Confident	Score	 PMDB	ID

1	 Chitin	synthase	 J7HAD5	 91.89	 PM0082471
2	 Beta-tubulin(142)	 Q8J1X0	 95.16	 PM0082472
3	 Elongation	factor	2	 A0A1B3B2L9	 91.43	 PM0082473
4	 Dirigent	protein	 A0A1B3B2N1	 96.97	 PM0082474
5	 EPL1	protein(212)	 A0A1C9II66	 98.25	 PM0082310
6	 NAC	transcription	factor	C	 A0A059VE62	 95.65	 PM0082475
7	 NAC	transcription	factor	J	 A0A059VK69	 91.49	 PM0082476
8	 NAC	transcription	factor	M	 A0A059VPC0	 92.68	 PM0082477
9	 Glycosyl	hydrolase	family	10	 A0A1C9II18	 98.68	 PM0082478
10	 WRKY	transcription	factor	37	 A0A059VP87	 100	 PM0082479
11	 Elongation	factor	1	alpha	 A0A1B3B2J0	 97.22	 PM0082480
12	 Translation	elongation	factor	1	alpha	 A0A1B3B2K3	 94.74	 PM0082481
13	 BZIP	transcription	factor	25	 A0A059VP32	 99.64	 PM0082482
14	 BZIP	transcription	factor	9	 A0A059VJB5	 100	 PM0082483
15	 BZIP	transcription	factor	15	 A0A059VP28	 100	 PM0082484
16	 BZIP	transcription	factor	18	 A0A059VK55	 100	 PM0082491
17	 BZIP	transcription	factor	29	 A0A059VE58	 95.65	 PM0082492
18	 BZIP	transcription	factor	4	 A0A059VE50	 98	 PM0082493
19	 BZIP	transcription	factor	24	 A0A059VP99	 96.23	 PM0082494
20	 BZIP	transcription	factor	14	 A0A059VP93	 92.31	 PM0082495
21	 TLP	transcription	factor	A	 A0A059VJE2	 91.11	 PM0082497
22	 TLP	transcription	factor	K	 A0A059VK79	 98.96	 PM0082498
23	 TLP	transcription	factor	M	 A0A059VJE8	 93.62	 PM0082499
24	 TLP	transcription	factor	L	 A0A059VE75	 93.62	 PM0082500
25	 MYB	transcription	factor	83	 A0A059VP36	 93.27	 PM0082501
26	 MYB	transcription	factor	82	 A0A059VPA7	 96.2	 PM0082502
27	 MYB	transcription	factor	78	 A0A059VJC5	 90.54	 PM0082503
28	 Class	VII	chitinase	 A0A1B3B2M2	 98.68	 PM0082504
29	 Chitinase	B	 A0A1B3B2K5	 95.89	 PM0082505
30	 RNA	-dependent	RNA	polymerase	 A0A3Q9NNK8	 92.64	 PM0082309
31	 Putative	heat	shock	protein	(90)	 A0A1B3B2M4	 91.43	 PM0082506
32	 Respiratory	burst	oxidase-like	protein	H	 A0A1B3B2N7	 98.44	 PM0082507
33	 NDR1/HIN1-like	protein	 A0A1B3B2P4	 100	 PM0082508
34	 Type	I	polyketide	synthase	 C9WLC4	 93.83	 PM0082509
35	 Respiratory	burst	oxidase-like	protein	B	 A0A1B3B2N2	 95.45	 PM0082510
36	 Putative	ethylene	response	sensor	 A0A1B3B2N0	 100	 PM0082511
37	 Beta-1,3-glucanase	D	 A0A1B3B2K9	 97.06	 PM0082512
38	 EPL1-like	protein	 A0A1C9II08	 96	 PM0082513
39	 Salicylate	hydroxylase	1	 A0A1C9IIB1	 95.45	 PM0082514
40	 Bys1	family	protein	 A0A1C9II96	 97.14	 PM0082515
41	 Respiratory	burst	oxidase-like	protein	C	 A0A1B3B2N8	 97.25	 PM0082516

ramachandran	plot	of	all	developed	models	were	
examined,	 and	 the	model	which	 has	majority	
percentage	 of	 the	 residues	 within	 the	 most	
preferred	regions	of	the	graph	were	considered	as	
the	ideal	/	final	model.	The	percentage	of	residues	
within	 the	most	 favoured	 regions	was	 also	used	
as	the	confidence	percentage	score.	The	graphical	
representation	of	 the	 ramachandran	plot	of	 least	
preferred	model	 and	best	 preferred	models	with	

lowest	and	highest	confidence	score	are	shown	in	
Figure.1(A)	&	Figure.1(B).	The	structure	analysis	
of	 a	 constructed	 homology	model	 for	WRKY	
transcription	 factor	 37	 protein	 is	 represented	
graphically	in	Figure.2.
submission to PMDB
	 A	 total	 of	 52	 homology	models	were	
developed	 in	 the	 Swiss-Model	 online	 tool.	
However,	ramachandran	plot	analysis	showed	that	
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only	41	protein	models	exhibited	more	than	90%	
residues	within	the	most	favoured	regions.	Hence,	
these	41	sequences	were	submitted	in	the	Protein	
Model	Data	Base	(https://bioinformatics.cineca.it/
PMDB/)	for	public	access	and	further	research.	A	
summary	of	all	the	41	protein	3D	models	submitted	
to	the	PMDB	database	with	their	PMDB	ID,	along	
with	drug	target	name,	Uniprot	ID	and	confidence	
score	of	the	model	are	tabulated	in	Table.1.

ConClusion

	 The	objective	of	this	study	was	to	prepare	
3-D	models	of	proteins	present	in	Colletotrichum	
falcatum	that	is	a	major	pathogen	responsible	for	
the	red	rot	disease	in	sugarcane	crops.	The	protein	
structures	 of	 this	 ascomycete	were	 successfully	
developed	 and	 analyzed	 using	 the	 swiss-model	
workspace.	A	similar	study	by	Divya	et.al	(2018)	
was	performed	on	a	less	studied	organism	P.marinus	
an	endoparasitic	pathogen,	and	other	Perkinsus	spp.	
that	are	responsible	for	causing	devastating	losses	
in	the	cultivation	of	shellfish	and	mollusk	species	
worldwide	 ,	where	 the	 authors	 developed	 and	
submitted	3D	structures	of	drug	target	proteins	of	
the	organism	based	on	homology	modelling23.
	 These	 developed	 structures	 could	 be	
further	exploited	to	either	develop	new	antifungal	
drugs	 or	 to	 revise	 the	 pre-existing	ones.	This	 is	
an	 important	 aspect	of	 computer-aided,	 in-silico	
drug	designing	approach	which	gained	significant	
momentum	 in	 the	 recent	 years24.	 Furthermore	
active	sites	of	the	molecule	can	be	found	out	aiding	
in	docking	studies	that	would	help	in	studying	the	
interactions	between	the	protein	and	the	ligand.	A	
Study	by	Daisy	et.al	(2013)	involving	the	in-silico	
drug	designing	approach	for	biotin	protein	ligase	
of	 	Mycobacterium	 tuberculosis,	provides	better	
insight	on	the	significant	role	played	by	predicted	
protein	structures	in	the	field	of	drug	design	and	
development25.
	 The	structures	can	also	prove	to	be	useful	
for	understanding	the	mechanism	of	infection	of	
the	 disease.	They	 can	 also	 be	 used	 to	 design	 a	
pathway	for	understanding	the	effect	of	inhibition	
of	a	few	proteins	that	can	act	as	good	antifungal	
drug	targets	which	may	help	design	an	antifungal	
compound	 that	might	 be	more	 effective	 as	well	
as	non-toxic	unlike	the	traditional	fungicides	and	
insecticides	 that	are	proven	to	be	harmful	 in	 the	

long	run.	This	study	provides	a	basic	platform	for	
future	in-silico	work	on	Colletotrichum	falcatum	
specific	drug	design	and	development.
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