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	 In this paper, we propose the design of the Quadrature Mirror Filter (QMF) two-channel 
linear phase bank with modified particle swarm optimization (MPSO) algorithm. Traditional 
other reported methods for QMF bank design, were compared to the performance of proposed 
scheme. Based on simulation results, it is shown that the stated method can achieve 26%, 83%, 
97%, 84% as well as 67%, respectively reduction in amplitude, transfer band, impede band, 
alteration band, with peak reconstruction errors. In comparison, the proposed QMF bank 
applied for biomedical image reconstruction shows 2.2 folds reduction in mean square error 
with an improvement of 5 dB in peak signal-to-noise ratio as compared to recently reported 
Levenberga algorithm.
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	 Work on efficient design of two-channel 
quadrature mirror filter (QMF) banks has gained 
significant attention over the past two decades, 
because they are used in wide range of applications 
like speech signals1, 2, image processing [3] and 
communication systems4, 5. In the past, particle 
swarm optimization (PSO) technique and its 
different variants were employed in order for 
improving performance of QMF banks6, 7. In 
these algorithms, different stables (weights) were 
shortlisted on hit with trial basis for a boundary 
filter length. Recently, several authors have 
proposed gradient based approach to design QMF 
banks to improve performance for filterbank for 
sub-band coding8–14. The design problem was 
developed using filter response in ideal condition 

and complete reconstruction in these methods. 
The authors in15, 16 have used fractional derivative 
constraintsfor digital filter design and this was 
further extended for filter bank17, 18.The authors 
have used other evolutionary practices like artificial 
bee colony (ABC) algorithm19 and differential 
evolution (DE) 20 for the design of QMF bank. 
However, in this report, different variants of 
modifiedPSO (MPSO) have not been studied. 
Therefore, motive of this work is todesign QMF 
bank using different types of MPSO algorithms 
by adjusting ? so that the filter achieves optimum 
value of all fidelity parameters for different input 
signals. The proposed technique provides better 
performance overthe other algorithms reported 
in literature. Moreover, the proposed QMFbank 
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with MPSO scheme is applied for efficient 
reconstruction of a magneticresonance imaging 
(MRI) brain image.
Formulation of QMF bank
	 Fig. 1 displays a  two channel QMF block 
diagram in which input signal is split into two bands 
with one LPF (h0(z)) moreover other HPF (H1(z)) 
study filters. Their outputs are <ICON 1>k(n) 
where k = 0, 1. Which are passed to get an output 
(Uk(n)) through the down-sampler. Such signals 
are transmitted via a channel. The signals are 
passed through the up-sampler at the receiver end 
to obtain <ICON 1>k(n) moreover then added to 
the  synthesis filter LPF furthermore HPF (Gk(z)).
	 Finally, the signals are combined to obtain 
renovated yield (y(n)). The output via QMF system 
can be written as21, 22 :
Y (z) = 0.5[H0(z)G0(z) + H1(z)G1(z)]X(z) + 
0.5[H0(-z)G0(z)   + H1(-z)G1(z)]X(-z)                  ...(1)
The above output can also be represented as:
Y (z) = 0.5[t(z)]X(z)+ 0.5[a(z)]X(-z)                                                                 	

...(2)
	 The term t(z) is referred to as distortion 
transfer function and the term a(z) is referred to as 
an aliase. Term a(z) would be zero for no alises. 
QMF bank’s overall frequency response reduces 
to [6]:
T(ejw) = 0.5 e- jw(N-1)/2[|H0(e

jw) |2 – (-1)N| H0(e
j(w-p)|2]                                        	
...(3)

	 If filter order (N-1) is even then the above 
expression will be reduced to zero at ù = 0.5ð 
which is not required for the original signal to be 
perfectly reconstruction. So, we took (N-1) as odd 
furthermore Eq. 3 can be written as: 
t(ejw) = 0.5(e-jw(N-1)[|H0(e

jw)|2 + |H0(e
j(w-p))|2])	

...(4)
	 If H0(e

jw) posses perfect response in pass-
band and stop-band, the error of  reconstruction in 
transition band exists. In order to improve overall 
performance, one has to optimize the amplitude 
response in transition band. The filter bank’s overall 
amplitude response is provided by:
|T(ejw)| = |T(w)| = |H0(w)|

2 + |H0(w - p)|
2	

...(5)
	 For an ideal prototype LPF, the amplitude 
response is written as:

H0(w) =                                                          	
...(6)

	 Here wp is frequency of pass-band 
furthermore ws is frequency of stop-band. By 
replacing the h0(w) value from Eq. 6 in Eq. 5, we 
obtain overall transfer function depicted:

T(w) =                                                            

...(7)
	 The amplitude response of |T(ejw)| is 
unity at cut-off frequency wc = p/2, for perfect 
reconstruction.
|T(ejw)|  = |T(w)| = |H0(w /2)|2 + |H0(p/2 - p)|2=1	

...(8)

2|H0(p/2)|2=1	 ...(9)
|H0(p/2)|=1/2	 ... (10)
	 From above amplitude response, we 
derived objective function:
f = et + aep + (1 - a )es + a.eam                                                                         	

...(11)
	 where et, ep, and es represent the errors 
in transition-band, pass-band, and stop-band 
furthermore eam shows the measure of amplitude 
ripples. These errors are formulated as:

et = [1 -   0.707h0(w)]
2|w= 0.5p                                                                            	

...(12)

ep =                                                                         	
...(13)

es =                                                                                  	
...(14)

eam = max(|T(w)|) - min(|T(w)|)                                                                      	
...(15)

Optimization of QMF with MPSO Technique
	 Solution of non linear Eqs. 12 - 15, the 
PSO technique which begins by initialization of a 
random swarm of M particles with R unspecified 
parameters to be optimized. The algorithm stock 
ups moreover gradually reinstates each particle’s 
most fit position parameter (pbest, i = 1, 2, ..., M) 
furthermore most suit group velocity parameter 
(gbest). But, if the signal period is long, the cutting-
edge PSO faces troubles14. Therefore, by using 
introducing an inertia weight (w) parameter the 
PSO is changed. In MPSO, every particle’s velocity 
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Table 1. Comparison of performance with other algorithms of proposed MPSO schemes

Parameters	 [11]	 [8]	 CWI	 LDI	 NLI	 DI	 CFI
	 	 	 MPSO	 MPSO	 MPSO	 MPSO	 MPSO
							     
ω	 0.95	 0.95	 0.95	 0.95	 0.95	 0.95	 0.95
eam × 10

"2	 0.45	 0.67	 0.63	 0.98	 0.332	 0.828	 0.789
ep × 10

"7	 0.00742	 1.69	 0.0632	 0.0043	 0.00123	 0.0842	 0.0976
es × 10

"5	 0.127	 7.49	 0.00476	 0.0006	 0.00315	 0.0621	 0.0764
et × 10

"8	 0.0332	 0.0231	 0.0454	 0.0318	 0.0105	 0.0267	 0.0344
As	 36.5	 36.15	 35.91	 35.43	 37.32	 35.43	 35.31
PRE	 0.0102	 0.0202	 0.00718	 0.00904	 0.00341	 0.00206	 0.00338
M SE × 10-2	 0.02807	 0.074	 0.0254	 0.921	 0.00126	 0.0614	 0.0854
PSNR (dB)	 83.64	 79.4	 81.70	 84.01	 89.23	 79.12	 76.15

Fig. 1. Two-channel QMF bank block diagram

Fig. 2. QMF’s bank Amplitude response with PSO, MPSO and Levenberga algorithms

(v(n)) and position (p(n)) are changed by means of 
the noted equations:

v(n) = w * v(n - 1)+c1*r(0, 1)*(gbestp(n1))+c2*r(0, 
1)*(pbest -p(n1))	 ...(16)
p(n) = p(n - 1) + vel(n)	 ...(17)

	 Here vel(n) is the nth iteration velocity 
vector of particle, r(0, 1) is random value vector 
between (0, 1), furthermore c1, c2 are the gbest 
and pbest acceleration coefficients. The update 
position is performed only if the current position 
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Fig. 3. (a) Magnetic resonance imaging (MRI) brain image (b) Sub-band coding scheme for image processing

Fig. 4. (a) Scheme of image restoration via QMF bank (b)Reconstructed image using proposed NLI-MPSO algorithm

p(n) performs better than the   previous p(n - 1) 
position. The MPSO technique is used to minimize 
the objective function (Eq. 9) which provides the 
coefficients (h(n), n = 1, 2, ..., m) of optimum 
QMF bank. In this process, the main objective is 
to evaluate the pbest and gbest for each particle and 
update their values in every iteration. The iteration 
ends when the fitness function ((ö1)) given below 
becomes less than a pre-specified tolerance value 
(ep= 0.1).
f1 = min(K)                                                               ...(18)

	 In which K is the preliminary enter of 
MPSO. Exploration moreover development may be 
noted as  primary features of MPSO. Exploration 
show how the technique for higher overall 
performance will cover more search location 
whereas exploitation shows accurate convergence 

to a particular point. Those characteristics depend 
upon the w parameter. Expanded cost of w gives 
more exploration while exploitation is higher for 
squat fee of w. Consequently, w is a vital parameter 
which must be up to date cautiously. Initially, 
the w is assigned a high fee that’s lowered as 
iteration is going in the direction of the quit7. The 
implementation steps of MPSO are as follows:
Stride 1 Position furthermore velocity is initialized 
for each particle.
Stride 2 Fitness value ((f1)) is computed for each 
particle thru Eq. 18.
Stride 3 Find the particle with finest fitness value 
furthermore initialize its area in an effort to gain 
the squat fitness value. If lowest fitness value is 
appropriate then replace the placement by using 
assigning the particle new random cost in step with 
eq. 16 & 17 for area furthermore velocity.
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Stride 4  Evaluate the fitness cost with pbest for 
each particle furthermore update if it is higher than 
the pbest.
Stride 5 Primarily based on its fitness cost, decide 
the excellent particle furthermore replace if it’s 
miles higher than the gbest.
Stride 6 Take a look at for concluding condition, 
if new release is glad otherwise it’s going to again 
start with stride 3.
	 From equations 16 and 17, it is clear that 
w is an essential parameter affecting the speed and 
function of every particle in MPSO. Depending 
on choice of w, the MPSO technique is classified 
into special classes. In steady weight inertia (CWI) 
MPSO, the w is stored constant among 0 to 1 for 
every particle and at any time immediate, the inertia 
weight (wt) is given via:

wt = c	 ...(19)

	 However, a regular value of wt won’t 
cause most excellent exploitation and exploration 
in the simulation procedure for diverse alerts. 
Consequently, for better performance of MPSO, an 
adaptability in wt is required. In case of dynamic 
inertia (DI) MPSO22, the wt is up to date in every 
iteration as:

Wt = 0.5 + Rand(.)t/2	 ...(20) 

	 Here, rand(.)t is the random feature 
producing numbers uniformly allotted between 0 
and 1. Due to the fact the brand new wt in every 
generation is unrelated to the previous one cost, 
there’s hard to pick out the random value to gain 
better exploitation and exploration. To triumph over 
this, a linear decay inertia (LDI) MPSO is used in 
which wt is up to date in each iteration in a linear 
among most and minimum values. The generation 
procedure begins with maximum fee of wt and 
decremented because the iteration progresses. 
For(LDI) MPSO, the wt after every iteration is 
written as:

Wt = Wmax - (wmax - wmin) * t / tmax
...(21)

	 Where in wmin moreover wmax 
represents least furthermore most values of wt, 
along tmax denotes the most time of iterations. 
Despite the fact that, LDI MPSO offers better 

outcomes for exploitation22 but exploration isn’t 
always optimized as consistent with requirement. 
For improving exploration, the non-linear inertia 
(NLDI MPSO) is used wherein Eq 21 is modified 
by using introducing non-linearity18 as:

Wt = wmax - (wmax - wmin) * (tmax - t)
n / tnmax 

...(22)
	 here n is the index of non-linear 
modulation.

	 The performance parameters of clear out 
are evaluated the use of following equations:

PRE = max[20log10[|H0(ejω)|2 +H0(ej(ω-p))|2]]                                            
...(23)

As = -20log10[|H0(ω)|]  |ω=ωs                                                                                                	
...(24) 

	 In which PRE is the peak restoration 
error, furthermore As denotes the forestall-band 
attenuation. It could be mentioned that we’ve got 
taken coefficients of 32 faucet filter out with ?p 
= 0.4p, ?c = 0.5p furthermore ?s =0. 6p. The use 
of above equations, the overall performance of 
proposed NIL-MPSO method is in comparison 
with other currently suggested PSO moreover 
Levenberga algorithms8, 11. Fig. 2 shows the 
amplitude reaction of a qmf the use of NLI-MPSO 
along side the mentioned results of PSO moreover 
Levenberga strategies. As depicted from this 
determine, the facet-lobe amplitudes of proposed 
filter are decrease than the other  algorithms. The 
maximum aspect-lobe attenuation of NIL-MPSO, 
PSO moreover Levenberga strategies is discovered 
to be 60, 50 and 52 db, respectively. A assessment 
of constancy parameters of QMF the use of various 
mpso techniques together with reported PSO 
moreover Levenberga algorithms are given in 
Table 1. For this comparative evaluation, the equal 
layout specs of bi -channel QMF bank institution as 
given in11 are taken for all algorithms. From these 
outcomes, it’s miles clear that a bi – channel QMF 
bank institution with NIL-MPSO affords advanced 
overall performance in-dexes compared to other 
strategies. The presented strategy achieves 26% 
decrease eam and 67% lower in P RE as compared 
to the currently reported consequences11. Further, 
the errors have been decreased with the aid of 83%, 
ninety seven% and 84% for skip-band, stop-band 
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furthermore transition-band therefore, using the 
proposed NLI-MPSO algorithm.
Reconstruction of Biomedical Image
	 To measure other parameters of fidelity 
such as proposed QMF with MPSO mean square 
error (MSE) and peak signal-to-noise ratio 
(PSNR), a magnetic resonance imaging (MRI) 
brain image is taken. For analysis of this image, 
the sub-band coding is used1. Fig. 3(a) shows the 
selected MRI brain image23 which is applied at 
input (x(j, k)) of QMF bank analysis system given 
in Fig. 3(b). The input image is decomposed into 
two bands by LPF (H0(Z)) and HPF (H1(Z)) and 
each signal is decimated by 2. 2 In addition, each 
decimated sub-band is filtered along column using 
identical analytical filters leading to quadrature 
sub-bands again decimated by 2. This second level 
decomposition of image is labeled as LL2, LH2, 
HL2, and HH2. These sub-bands may be further 
processed to obtain amultilevel decomposition as 
desired in a specific application. For the image 
under consideration, two-level decomposition 
is used. The decomposed im-age is transmitted 
through the channel and the received image is 
applied to synthesis QMF bank as shown in Fig. 
4(a). At output of QMF bank, the reconstructed 
image (x' (j, k)) is obtained as shown in Fig. 4(b). 
Through evaluating the fidelity of the restored 
signal to original signal, the quality of the proposed 
method is evaluated The M SE and P SN R 
fidelity parameters are calculated using following 
expressions:

	 ...(25)

	 ...(26)

	 where M and N are the dimensions of 
image. A better designed QMF bank should provide 
lower M SE and higher P SN R. A comparison of 
M SE of proposed method with other algorithms 
is also given in Table 1. The MSE performance 
of proposed NLI-MPSO is far better than the 
other methods. For image under consideration, 
the average MSE obtained with NLI-MPSO is 
1.26 × 10-5 as compared to 2.8 × 10-4 of recently 
reported Levenberga technique3. Moreover, as seen 
from Table 1, the proposed QMF with NLI-MPSO 
provides higher P SN R when compared with other 

techniques. For example, the PSNR of NLI-MPSO 
is 5 dB higher than that of Levenberga algorithm. 
Therefore, the proposed technique shows better 
results over the other algorithms for a biomedical 
image reconstruction.

Conclusion

	 A modified PSO (MPSO) method erstwhile 
proposed for designing two-channel linear-phase 
QMF bank. The performance of QMF bank with 
different variants of MPSO is compared with the 
famous conventional design methods used by QMF 
banks. The simulation consequences demonstrate 
the dominance of suggested strategy in reference 
to reduced pass-band, stop band, transition band 
errors, amplitude distortion furthermore peak 
reconstruction error. The suggested strategy QMF 
scheme can be effectively applied to improve the 
fidelity parameters of a biomedical image. For MRI 
brain image, the QMF with NLI-MPSO algorithm 
exhibits significant improvement in M SE and P SN 
R. The proposed MPSO method can therefore be 
a better choice for QMF bank design for medical 
image reconstruction.
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