
Biomedical & Pharmacology Journal, June 2019.	 Vol. 12(2), p. 947-959

Published by Oriental Scientific Publishing Company © 2019

This is an    Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY).

Detection of Murmur from Non-Stationarity of Heart Sounds

P. Careena1, M. Mary Synthuja Jain Preetha2 and P. Arun3

1Department of Electronics and Communication Engineering,
AmalJyothi College of Engineering,Kanjirapally-686518.

2Department of Electronics &Communication Engg., 
Noorul Islam University, Nagercoil-629180

3Department of Electronics and Communication Engineering,
St. Joseph’s College of Engineering and Technology, Palai-686 579.

*Corresponding author: E-mail: careenaarun@gmail.com

http://dx.doi.org/10.13005/bpj/1721

(Received: 13 March 2019; accepted: 13 May 2019)

	 Early diagnosis of heart diseases bears a major role in saving lives. Presence of 
spurious extra-frequency components, termed as murmurs within the phonocardiography record 
may be indicative of valvular disorders like stenosis, lesions or regurgitation. It is difficult to 
identify the subtitle spectral components of murmurs through subjective audition. In this paper, 
a technique is proposed to detect the presence of murmur from the heart signal by analyzing 
their non-stationarity behaviorby using autocorrelationbased features namely, Standard Error 
(SE) of Auto-Correlation Function (ACF) and absolute deviation of SE from the reciprocal of 
the square root of number of samples (â). The selected features corresponding to normal and 
murmur differ with a ‘P’ value of 1.80 x10-14(dataset 1) and 2.20 x10-76(dataset 2) for SE and 
â,respectively. It is found that SE and â could effectively distinguish normal and murmurwith 
100% accuracy, sensitivity, and specificity.

Keywords: Autocorrelation,heart abnormality, murmur, non-stationarity,
PCG signal, type of heart signal, time domain features.

	 Cardiovascular diseases (CVDs) are 
one of the major causes of death worldwide. 
As per the report of world health organization, 
the annual death rate due to CVDs is more than 
from any other diseases [1]. In 2015, around 
17.7 million people died because of CVDs. Of 
these deaths, an estimated 7.4 million were due 
to coronary heart disease. Hence, early detection 
and diagnosis of heart diseases play a major 
role in saving lives. Presence of spurious extra-
frequency components, termed as murmurs within 
the phonocardiography (PCG) records, or heard 

during the routine auscultation with steth, may 
be indicative of valvular disorders like stenosis, 
lesions or regurgitation. But it is difficult to detect 
the presence of murmur in the heart signalthrough 
subjective audition. Hence an automated method 
to detect the presence of murmur in the heart 
sound has its own importance to find out the heart 
abnormalities. 
	 Few methods  dea l ing  wi th  the 
computerized detection and characterization of 
heart murmurs are available in the literature [2-18].
Kang et al. [2] developed a system for automatic 



948 Careena et al., Biomed. & Pharmacol. J,  Vol. 12(2), 947-959 (2019)

identification of Still’s murmur in children with 
a sensitivity of 84-94% and a specificity of 91-
99%. They used time domain features (average 
Shannon energy and envelope detection) and 
frequency domain features (spectral width and 
peak frequency) of S1 and S2 heart sounds. These 
features were given as input to Support Vector 
Machine (SVM) classifier.S.W. Deng and J. Q. Han 
[3] proposed a method based on the autocorrelation 
features like Sub-band autocorrelation function. 
These features were extracted from the sub-band 
envelopes derived from the sub-band coefficients 
of PCG signals obtained using Discrete Wavelet 
Transform (DWT). Finally using diffusion maps, 
these features were fused to get unified features and 
they were given into the SVM classifier (Accuracy 
91 %). 
	 Chen et al. [4] used a continuous wavelet 
transform to distinguishorganic and innocent 
murmurs. Singular value decomposition and QR(Q 
is an orthogonal matrix and R isan upper triangular 
matrix)decomposition were applied on the time-
frequency matrix, obtained from continuous 
wavelet transforms for feature extraction. Shannon 
entropy and the Gini index were further computed 
on the decomposition results and were taken as 
features. To reduce the number of features and the 
computational complexity, Sequential Forward 
Floating Selection (SFFS) was used as a feature 
selection algorithm. Classification accuracy of 90% 
was reported for regression tree based classification 
scheme. 
	 Safaraet al. [5] used wavelet packet 
entropy to discern stenosis and regurgitation of 
mitral and aortic valves (Bay’s Net classifier 
96% accuracy). Choi et al.[6] used features like 
maximum peak frequency, the position index 
of the wavelet packet coefficient corresponding 
to the maximum peak frequency and the ratios 
of the wavelet energy and entropy of PCG 
signal(99.78% specificity and 99.43% sensitivity). 
In the method suggested by V. N. Varghees and 
K. I. Ramachandran, [7] initially the PCG signal 
was decomposed by Empirical Wavelet Transform 
(EWT). The heart sound/murmur detection was 
done by Shannon entropy and instantaneous phase 
after discriminating them using mode boundary 
frequency and maximum absolute amplitude. The 
evaluation results showed that the system had an 
accuracy of 91.92%. To extract S1 and S2 heart 

sounds G. Eslamizadeh and R. Barati [8]applied 
Continuous Wavelet Transform (CWT) with 
Morlet wavelet function to PCG signal. To detect 
the murmur, an algorithm was also proposed to 
extract features such as maximum amplitude values 
from consecutive S1 and S2 and vice versa. These 
features were normalized and input into Artificial 
Neural Network (ANN) classifier (average success 
rate of 94 %.). Guillermo et al. [9] introduced a 
system based on radial wavelet neural network 
with Kalman learning. At first, by using CWT, 
the PCG signal was segmented to get S1 and S2 
heart sounds. As a feature extraction method, a 
total of 9 relative divisions made recursively upon 
each division generated on a symmetric way by 
considering previous S1’s and S2’s. From each 
division, a maximum and minimum amplitude 
point were taken and considered a feature. Thus a 
total of 18 features were obtained. These selected 
features were input into a Radial Wavelet Neural 
Network (RWNN) with Kalman learning. The 
system was able to differentiate normal and 
murmur with a success rate of 98.04%.
	 Safaraet al. [10] proposed a technique 
termed as Multi-Level Basis Selection (MLBS) to 
preserve the most informative bases of a wavelet 
packet decomposition tree by removing less 
informative bases by applying three exclusion 
criteria: frequency range, noise frequency,and 
energy threshold. MLBS achieved an accuracy of 
97.56%.Hamidiet al. [11] suggested two methods 
for heart abnormality detection using PCG signal. 
In the first method curve fitting of the heart, 
signal was performed after preprocessing and 
filtering. The power spectrum of the curve fitted 
signal was computed and used it as a feature. In 
the second method, the signal was divided into 
equal parts and fractal dimension was computed 
for each part. The resultant signal was considered 
as the second feature. These two features were 
input into K-Nearest Neighbors (KNN)classifier.
Average accuracy of 90 % was reported. Bozkurt 
et al. [12] proposed a system using Mel-frequency 
CepstralCoefficient (MFCC), Mel-spectrogram 
and sub-band envelopes of the PCG signal for 
paediatric heart abnormality detection with 84.5% 
sensitivity, 78.50% specificity, and 81.5% accuracy. 
The features were directly inputted into the 
Convolutional Neural Network (CNN) classifier.
Thiyagarajaet al. [13] prototyped a smartphone 
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based electronic stethoscope that can record, 
process and detect heart sounds. In their system, 
S1 and S2 heart sounds were extracted using peak 
detection method after preprocessing. By using 
this S1 and S2 heart sounds, a classification model 
utilizing the MFCC and Hidden Markov Model 
(HMM) were introduced to detect normal/murmur 
(Accuracy of 92.68%).
	 The features used by Zheng et al. [14] 
include the energy fraction of the first and the 
second heart sounds (S1–S2EF), energy fraction 
of heart murmur (HMEF), the maximum energy 
fraction of heart sound frequency sub-band 
(HSEFmax), sample entropy of the first and the 
second heart sound component (S1–S2sampen) 
and sample entropy of heart murmur component 
(HMsampen). The heart sounds after denoising, 
normalized signals were decomposed into wavelet 

packets. The features were calculated from the 
reconstructed selective frequency components of 
the signals. It was reported that the SVM classifier 
discriminated heart murmurs with an accuracy of 
97.17%, a specificity of 98.55% and a sensitivity 
of 93.48%. 
	 Choi et al. [15] illustrated a method based 
on a multi-Gaussian fitting algorithm of the cardiac 
spectral curve. The spectral autoregressive Power 
Spectral Density (aPSD) curve was estimated from 
the cardiac sounds noise-canceled by the wavelet 
decomposition. 5-GaPSD was approximated by a 
five-Gaussian model consisting of five Gaussian 
peaks, P1 to P5. The spectral profiles, the maximum 
frequency, the amplitude, the half-width, the area 
portion and the loss of area, of five Gaussian peaks, 
were investigated and compared for segmenting 
the spectral information of normal heart sound and 
regurgitation murmurs. Redlarskiet al. [16] used 
Linear Predictive Coding (LPC) Coefficients as 
feature input to a composite classifier made of SVM 
and modified cuckoo search, to separate innocent 
murmur (S1, S2, S3, and S4) and organic murmur 
(Accuracy 93%).  Zhang et al.[17] used scaled 
spectrogram after dimensionality reduction with 
partial least squares regression as feature input to 
SVM classifier to distinguish heart murmur from 
extrasystole and controls (Precision 91%). Another 
method proposed by Zhang et al.[18], spectrograms 
of the heart signal were scaled to a fixed size 
after preprocessing and dimensionality reduction. 
Then the scaled spectrograms were concatenated 
as a three-way tensor and decomposed using 
Tuckar-2 decomposition method. The decomposed 
information has given in to SVM (Accuracy 76 %). 
	 In most of the literature, the statistical 
significance, separability and the inter-class 
variability of the features were not investigated 
or tested. To distinguish the normal/murmur, 
most of the literature used various classifiers 
along with various features rather than using the 
fundamental time, frequency or time-frequency 

Fig. 1. Schematic of the stages incorporated in the 
computation of the temporal features and feature 
evaluation

Fig. 2. Schematic of the steps incorporated in the preprocessing
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domain features. Neural networks or classifiers are 
essential in conditions, where in feature space, the 
features are less statistically significant. Moreover, 
a system with classifiers may deteriorate the system 
performance and also the system complexity will 
be increased. The works presented in literature 
failed to differentiate the normal and murmur 
with cent percentage sensitivity, septicity, and 
accuracy. Usually, the pattern of the heart signal of 
a normal heart is stationary. When extra frequency 
components like murmurs isinterfered in the heart 
sound, the non-stationarity of the resultant signal 
will be increased. That means PCG measurements 
of an abnormal heart will be highly nonstationary. 
Moreover, the normal heart signal is less stationary 
than the heart signal interfered with a murmur.
	 Hence, the objective of this paper is 
to design atechnique by usingthe time domain 
features such as the autocorrelation based features 
such asStandard Error (SE) of Auto-Correlation 
Function (ACF) and absolute deviation of SE 
from the reciprocal of the square root of number 
of samples (â)to detect the Murmurs from Non-
Stationarity of heart sound. The highlights of the 
proposed technique are i) The method is able to 
identify the presence of murmur in the heart signal 
with 100 % sensitivity, septicity, and accuracy. 
ii)  It is quite simple as the method used only 
fundamental time domain features. Moreover, the 
computational complexity of the technique is also 
very less. 
	 The analysis, mathematical formulation 
of features and the details of the datasetused are 
furnished in section 2. In section 3, the statistical 
significance and separability offeredby the features 
to distinguish normal or murmur is analyzed. In 
section 4, discussion with the existing methods is 
included.

Methodology

	 The methodology adopted in the method 
to detect the presence of murmur from the non-
stationarity of the heart sound is discussed in this 
section.  
	 The schematic of the stagesinvolved in 
the computation of autocorrelation based features 
and feature evaluation is presented in fig.1.
	 Before computing the autocorrelation 
based features, the PCG signal is preprocessed. 

The block schematic of the steps involved in 
the preprocessing is illustrated in fig.2. After 
extracting the autocorrelation based features 
like SE and â, athreshold isset up for accurately 
classifying the heart signal. If SE is greater than 
the thresholdTSEand â isgreater than that of Tâ, the 
heart signal belongs to normal else it is murmur. 
Where TSE and Tâ are the threshold for SE and â, 
respectively.
	 The preprocessing (fig.2) of the PCG 
signal includes upsampling of the signal by a factor 
2 to achieve adequate sampling rate, the amplitude 
normalization between -1 and +1 and the high pass 
filter to remove the frequency components below 
10Hz. The time domain features likeSE and âof 
the preprocessed signal is estimated to test their 
ability to differentiate normal heart sound and 
murmur. Besides, their statistical significance is 
also evaluated.
	 The upsampled PCG signal after 
normalization is given as 

	 ...(1)

	 where ‘Xi(t)’ is the PCG signal, sampled 
at a rate ‘1/fs’ and contains ‘N’ samples, 1d”nd”N.
To regulate the amplitude of heart signal, the 
samples are normalized to a range between -1 and 
+1 as in (1).
	 As already stated, PCG measurements of 
an abnormal heart will be highly nonstationary. 
That means the murmur may more non-stationary 
than the normal heart signal. The properties of 
the autocorrelation of heart signal areemployed 
in this paper.Autocorrelation is extensively 
used to measure non-stationarity of a signal.The 
autocorrelation based features can be used to 
quantify the change in non-stationarity of the heart 
signal.  Box et.al [19]proposed that SE of the ACF 
can be used to estimate the randomness or non-
stationarity behavior of a signal. It was also stated 
that, as the signal becomes more random, the value 
of SE movesnearer to the reciprocal of the square 
root of the number of samples in the signal. The 
SE of the sample autocorrelation function can be 
denoted as
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Fig. 3. Wave shape of normal heart sound and murmur (a)normal heart sound(dataset 1) (b) normal heart sound(dataset 
2) (c) Murmur (dataset 1) (d) Murmur (dataset 2)

	 ...(2)
	 where ‘N’ is the total number of samples, 
‘q’ is the lag beyond which the theoretical ACF is 
effectuallybecome 0 and ‘rj’ is the SACF function. 
When the series becomescompletelyrandom, SE 
reduces to 1/”N [19]
	 The SACF ‘rk’ at lag ‘k’ is

	 	 ...(3)

	 where ‘C0’ and ‘Ck’ are the variance 
(with zero shift) and covariance of the signal, 
respectively.

	 ...(4)
	 Where ‘X t’is the heart signal after 
preprocessing and it’s mean is given by ‘µ (Xt)’

	 ...(5)
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Fig. 4. Wave shape of preprocessed heart signal (a)normal(dataset 1) (b) normal(dataset 2) (c) Murmur (dataset 1) 
(d) Murmur (dataset 2)

	
...(6)

	 where ‘X (t+k)’is the shifted version of the 
signal ‘Xt’ and given k=0,1,2 … …K.
	 The mathematical  representation 
oftheabsolute deviation of SE from the reciprocal 
of the square root of the number of samples (â) is 
given as,

	 ...(7)

	
...(8)

	 The proposed technique used two common 
public heart sound databases namely pascal heart 
sounds challenge database (Pascal HSDB) [20] and 
physionet heart sound database (Physionet HSDB) 
[21]. The Pascal HSDB consists ofdataset A and 
dataset B. The former has been collected from the 
general public using the iStethoscope Pro iPhone 
app and later from a clinical trial in hospitals 
via digital stethoscope DigiScope. The duration 
of recorded ‘.wav’ files (sampling frequency 4 
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Fig. 5. ACF of normal heart sound and murmur (a) normal heart sound(dataset 1)(b) normal heart sound(dataset 2)
(c) Murmur (dataset 1) (d) Murmur (dataset 2)

KHz) in the dataset B varies from 1 second to 30 
seconds. The Physionet HSDB recordings were 
collected from various contributors around the 
globe, gathered at either a medical or nonmedical 
environment, from both healthy people and 
pathological patients. This data set consists of five 
training databases (A to E) comprising a total heart 
sound recording of 3,126 samples with a duration 
from 5 to 120 seconds. All records were resampled 
to 2 KHz and hold only one PCG lead. All the 
recordings were provided as .wav format. 
	 The proposed method is tested on 400 
records. Out of these, 60 records from dataset B 
of PascalHSDB (dataset 1) and 340 records from 
dataset E of Physionet HSDB (dataset 2). Out of 

the 60 records of dataset 1, 30 records are normal 
and 30 records are murmur. The 340 records of 
dataset 2 consist of 170 records each from normal 
and murmur category. The signals are selected in 
such a way that each record have sample length 
more than 8 seconds and are upsampled by a 
factor 2 ie; the sampling frequency ‘fs’of the first 
datasetis 8KHz and that of the second dataset is 
4KHz. The frequency components less than 10Hz 
are eliminated by a high pass filter with a cut off 
frequency 10Hz.
	 The wave shape of  heart  s ignal 
corresponding to normal and murmur acquired 
from two data set are shown in fig. 3 (a) –  
fig. 3. (d).
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Table 1. Numerical values and Range of features of Normal heart sound and Murmur

Sl 	 Features	 Type of 	                            Dataset 1		                                Dataset 2
no		  Heart 	 Range	 Numerical 	 Range	 Numerical 
		  Signal		  value		  value

1	 Standard Error (SE)	 Normal	 0.0701 to 0.0878	 0.0776 ± 0.0042	 0.2384 to 0.351	 0.2677 ± 0.0120
		  Murmur	 0.0262 to 0.0439	 0.0337 ±  0.0042	 0.0303 to 0.2124	 0.0481 ± 0.0173
2	 Absolute deviation ( â)	 Normal	 0.0674 to 0.0851	 0.0749 ± 0.0042	 0.2371 to 0.3467	 0.2634 ± 0.0120
		  Murmur	 0.0233 to 0.0402	 0.0301 ±  0.0040	 0.0253 to 0.2074	 0.0431 ± 0.0173

Fig. 6. The histogram of features of normal heart sound and murmur (a) Standard error (dataset 1) (b) Standard error 
(dataset 2)(c) Beta (dataset 1) (d) Beta (dataset 2)

	 The wave pattern of normal heart sound 
and murmur are entirely different from each 
other. They differ in terms of their amplitude and 
randomness characteristics. For example, the wave 
pattern of heart signal corresponding to murmur 
is more random and their average amplitude is 

comparatively higher than the wave pattern of the 
normal heart sound. By observing fig.3 (a) and 
(c), the average amplitude of normal heart signal 
(fig.3 (a)) is comparatively smaller than that of the 
murmur (fig.3 (c)).
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Table 3. Range of features of Normal heart sound and Murmur

Sl. 	 Features	 Type of 	 Dataset 1	 Dataset 2
No		  Signal

1	 Standard Error (SE)	 Normal	 0.0701 to 0.0878	 0.2384 to 0.351
		  Murmur	 0.0262 to 0.0439	 0.0303 to 0.2124
2	 Absolute deviation ( ?)	 Normal	 0.0674 to 0.0851	 0.2371 to 0.3467
		  Murmur	 0.0233 to 0.0402	 0.0253 to 0.2074

Table 4. Performance parameters of SE and β

Parameters	          Standard Error (SE)	               Absolute deviation ( β)
	 Dataset 1	 Dataset 2	 Dataset 1	 Dataset 2

Sensitivity	 100%	 100%	 100%	 100%
Specificity  	 100%	 100%	 100%	 100%
Accuracy   	 100%	 100%	 100%	 100%
PPV        	 100%	 100%	 100%	 100%
NPV 	 100%	 100%	 100%	 100%

Table 2. Kolmogorov-Smirnov Test -'H' and 'P' values of features 
of heart signal corresponding to Normal and Murmur

Sl 	 Features	                           Dataset1		                           Dataset2
no		  Chi-Square 	 Probability 	 Chi-Square 	 Probability 
		  value (H)	 value (P)	 value (H)	 value (P)

1	 Standard Error(SE)	 1	 1.80 x10-14	 1	 2.20 x10-76
2	 Absolute deviation ( ?)	 1	 1.80 x10-14	 1	 2.20 x10-76

	 The statistical significance of the features 
is tested for their ability to distinguish normal 
and murmurvia Kolmogorov–Smirnov test. The 
Histogram is used to qualitatively evaluate the 
separability offered by the features. Both feature 
extraction and their statistical evaluation are 
performed in Matlab®.

Results

	 As stated earlier, Standard Error (SE) of 
Auto-Correlation Function and absolute deviation 
of SE from the reciprocal of the square root of a 
number of samples (â) of the preprocessed signal 
are utilized as features. The wave pattern of the 
PCG signal after preprocessing is presented in 
fig.4(a – d).
	 The wave shape of normal heart sound 
(fig.4 (a-b)) and murmur (fig.4(c-d)) shows certain 
dissimilarity in their pattern. They vary in terms 
of their amplitude and randomness. That means, 

the wave shape of preprocessed heart signal 
corresponding to normal (fig.4 (a-b)) is less random 
and their average amplitude is comparatively lesser 
than the wave shape of murmur. By observing fig.4 
(a) and (c), the average amplitude of murmur (fig.4 
(c)) is comparatively larger than that of normal 
heart signal (fig.4 (a)).
	 The pattern of normalized ACF of normal 
heart sound and murmur of dataset 1 and dataset 2 
is shown in fig. 5(a)–(d).
	 It is clear that the pattern of the 
autocorrelation of the normalheart signal(fig. 5 
a-b) andthat of the murmur (fig. 5 c-d) of dataset 
1 and dataset 2 differ significantly. This highlights 
the possibility of ACF of heart signal to be used 
to distinguish the type of heart signal like normal 
and murmur.In this paper, the time domain 
features like SE of Auto-Correlation Function and 
â are estimated on the PCG signal collected from 
dataset 1 and dataset 2 to evaluate their ability to 
differentiate normal and murmur. The range and 
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Table 5. List of certain previously reported studies on detection of a murmur

Sl 	 Method used	 Features Used	 Classifier	 Dataset	 Se 	 Sp	 Acc 
No	 (Reporter & Year)				    (%)	 (%)	 (%)

1	 Time Frequency 	 Mel-frequency cepstral 	 SVM	 University of  	 84.5	 78.5	 81.5
	 Bozkurt et al.,2018	 coefficient (MFCC), 		  Crete HSDB 
		  mel-spectrogram		  and Physionet
				    HSDB
2	 Frequency Domain	 Curve fitting and 	 KNN	 Pascal HSDB 	 _	 _	 90
	 Hamidiet al. ,2018	 power spectrum		  and Physionet 
				    HSDB
3	 Time Domain 	 Peak detection	 Not Used	 Experimental 	 _	 _	 92.6
	 Thiyagarajaet al.,2018			   setup
4	 Time and Frequency 	 Mode boundary 	 Not Used	 Pascal HSDB 	 _	 _	 91.9
	 Vargheeset al. ,2017	 frequency and 		  and Physionet 
		  maximum absolute 		  HSDB
		  amplitude
5	 Time Frequency 	 CWT and maximum 	 ANN	 Pascal 	 _	 _	 94
	 Eslamizadehet al.,2017	 amplitude 		  HSDB 
6	 Time and Frequency 	 Average Shannon 	 SVM	 The murmur 	 94	 99	 _
	 Kang et al.  ,2017	 energy and envelope 		  library 
		  detection width and 
		  peak frequency
7	 Time-Frequency 	 Scaled spectrogram 	 SVM	 Pascal 	 _	 _	 76
	 Zhang  et al. ,2017	 with tensor 		  HSDB
		  decomposition
8	 Time-Frequency 	 Scaled spectrogram 	 SVM	 Pascal 	 _	 _	 90
	 Zhang  et al. ,2017	 and partial least 		  HSDB
		  squares regression
9	 Time Domain 	 Autocorrelation 	 SVM	 Pacsal 	 _	 _	 91
	 Deng et al. ,2016	 (Sub-band ACF 		  HSDB
		  feature) 
10	 Time and Time-	 Energy fraction, 	 SVM	 unknown	 93.5	 98.6	 97.1
	 Frequency 	 sample entropy 
	 Zheng et al.,2015	 and wavelet packets
11	 Time-Frequency 	 Maximum and 	 RWNN	 Experimental 	 _	 _	 98
	 Guillermo et al.,2015	 minimum amplitude		  setup
12	 Frequency Domain	 Wavelet  	 Not Used	 Not 	 _	 _	 _
	 Choi et al.,2014	 decomposition		  mentioned
13	 Frequency Domain           Linear Predictive 	 SVM	 Littmann	 _	 _	 93
	 Redlarskiet al.,2014	 Coding (LPC) 		  HSDB
		  Coefficients 
14	 Time-Frequency 	 Wavelet packet  	 SVM	 Experimental 	 _	 _	 97.5
	 Safaraet al.,2013	 decomposition		  setup	
15	 Time Frequency 	 CWT, Shannon 	 SFFS	 Earson 	 94	 83	 90
	 (Chen et al.,2012)	 entropy and the 		  HSDB
		  Gini index 
16	 Time-Frequency 	 Wavelet packet 	 Bay's net	 unknown	 _	 _	 96
	 (Safaraet al.,2012)	 entropy
17	 Time-Frequency 	 Wavelet packet 	 Not Used	 unknown	 99.4	 99.7	 _
	 Choi et al.,2011	 coefficient
18	 Time Domain 	 SE and absolute 	 Not Used	 Pascal HSDB 	 100	 100	 100
	 Proposed System	 deviation		  and Physionet 
				    HSDB
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numerical values of SE and â extracted from the 
signal corresponding to normal and the murmur is 
presented in Table 1.
	 From Table 1 it is observed that, for 
dataset1, the standard error and absolute deviation 
of normal signal rangingfrom 0.0701 to 0.0878 
and 0.0674 to 0.0851, respectively. The SE and â 
of dataset 2 of normal signal ranging from0.2384 
to 0.351 and 0.2371 to 0.3467, respectively. For 
murmur, the feature ranging from 0.0262 to 0.0439 
and 0.0233 to 0.0402 for SE and â, respectively 
for dataset 1 and 0.0303 to 0.2124 and 0.0253 to 
0.2074for SE and â, respectivelyfor dataset 2.
	 The numerical value of SE of dataset 
1 is 0.0776 ± 0.0042 (normal), 0.0337 ± 0.0042 
(murmur) and that of dataset 2 is 0.2677 ± 
0.0120 (normal) and 0.0481 ± 0.0173 (murmur), 
respectively. In the case of âof dataset 2, its 
numerical value is 0.2634 ± 0.0120 (normal) and 
0.0431 ± 0.0173 (murmur), respectively.It can be 
inferred that the numerical values of SE and â of 
PCG signal corresponding to normal heart sound 
are significantly greater than that of murmur for 
both datasets.
	 As far as the range of features of murmur 
is considered, they are confined to a narrow range 
compared to that of the normal heart sound. As 
mentioned earlier,the heart signal of an abnormal 
heart will be highly nonstationary. That is, when the 
signal becomes more random (murmur), the value 
of SE moves closer to the reciprocal of the square 
root of the number of samples in the signal.As 
the signal becomes more random, the value of SE 
moves nearer to the reciprocal of the square root of 
the number of samples of the signal. These clearly 
apparent distinctions between the magnitude and 
the range of feature values extracted from the 
signal corresponding to normal as well as murmur 
justify the potential of the time domain features, 
particularly the autocorrelation based features. 
	 The statistical significance of SE and â are 
tested for their capability to differentiatenormal and 
murmurusing Kolmogorov–Smirnov test. The ‘H’ 
and ‘P’ values of these featuresof dataset 1 and 2 
are presented in Table 2.
	 The Chi-Square values (H) obtained 
from the Kolmogorov-Smirnov Test (table 1) is‘1’ 
for both SE and â. The ‘H’ values are computed 
for a default significance level of 5%. SE and 
â corresponding to normal and murmurof both 

dataset 1 and dataset 2 differ with a ‘P’ value of 
1.80 x10-14 and 2.20 x10-76,respectively. It can be 
inferred that;the above two features are statistically 
more significant.
	 The histogram of features specifically SE 
and â of normal heart sound and murmurof dataset 
1 and dataset 2 are shown in fig. 6(a)-(d). 
	 In the histogram of SE of dataset 1(fig. 
6(a)) and that of dataset 2 (fig. 6(b)), there is no 
overlap exists among the histogram of normal 
and murmur. Similarly,in the histogram of â of 
dataset 1(fig. 6(c)) and that of dataset 2 (fig. 6(c), 
there is no overlap occurs between the histogram 
of normal and murmur. Besides, the histogram of 
SE (fig. 6(a)-(b)) and that of â (fig. 6 (c)-(d)), the 
histogram corresponding to normalheart signal is 
lying sufficiently apart spatially from thehistogram 
corresponding to murmur. That means, there is no 
overlap between the features of normal and murmur 
and also they offer very good separability among 
them. Hence, SE and â can be used to effectively 
distinguishnormal and abnormal heart signal.
	 The range of features of normal heart 
sound and murmur are given in Table.3.The range 
of SE of dataset 1 of the normal signal is 0.0701 to 
0.0878 and that murmur is 0.0262 to 0.0439. In the 
case of absolute deviation, the normal signal ranges 
from 0.0674 to 0.0851 and murmur from 0.0233 to 
0.0402. For the second dataset, the normal signal 
is varying from 0.2384 to 0.351 and murmur from 
0.0303 to 0.2124 for the feature SE. For the same 
dataset, the absolute deviation (â) of the normal 
signal ranging from 0.2371 to 0.3467 and that of 
murmur is lies between 0.0253 to 0.2074.
	 As stated earlier, there is no overlap 
exists among the range of normal and murmur of 
two features (SE and â) of dataset 1 and dataset 
2. Therefore, these two features are useful to 
effectively classify the normal and murmur. Using 
the range values of the selected feature of normal 
and murmur, a threshold (TSE and Tâ) is set for 
dataset 1 and dataset 2.Where TSE and Tâ are 
the threshold for SE and â, respectively.To get 
better classification accuracy, the threshold level 
is selected in such a way that, it is the average of 
the minimum value of murmur and the maximum 
value of the normal signal. Hence the threshold 
levels obtained by using the range shown in Table.3 
is listed as follows. For first dataset, the thresholds 
are 0.057(TSE) and 0.054 (Tâ), respectively. For 
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second dataset the thresholds are 0.1322(TSE) and 
0.2254 (Tâ), respectively.That means for the first 
dataset if TSEspecifically above 0.057,the signal is 
normal and if it goesjust below 0.057, the signal is 
murmur. If Tâis exactly below 0.054, the signal is 
murmur and if it is just above 0.054, the signal is 
normal. For the second dataset, if TSEabove 0.2254 
the signal is normal and if it is below 0.2254, the 
signal is murmur. WhenTâgoes just above 0.1322, 
the signal is normal and if it is just below 0.1322 
the signal is murmur. So it can be inferred that 
the features namely, standard error and absolute 
deviation of SE from the reciprocal of the square 
root of a number of samples of the heart signal can 
be effectively useful to differentiate the normal and 
murmur signal.
	 The performance parameters like 
sensitivity,specificity, Positive Predictive 
Value(PPV), Negative Predictive Value(NPV) and 
accuracy of the features (SE and â) to distinguish 
the normal/murmur are also computed for the two 
datasets and are presented in Table.4. 
	 For both dataset, the two features namely, 
SE and â are capable to discriminate normal 
or murmurheart signal with 100 % sensitivity, 
specificity, PPV, NPV, and accuracy.

DISCUSSIONS

	 Table 5 presents several related studies 
formerly reported on the detection of murmur from 
the PCG records (arranged by publication year). As 
already discussed, most of the literature presented 
in the table. 5 failed to address the heart signal 
discrimination by using fundamental features. 
Most of the methods used either combination of 
fundamental features or used classifiers. Moreover, 
in all the below reported cases, 100% sensitivity, 
specificity, and accuracy was not achieved for 
categorizing normal or murmur.
	 Compared to the methods presented in 
table 5, we proposed a technique to detect heart 
sound and also to differentiate them as normal 
or murmur by using time domain features, 
exclusively autocorrelation features such as SE 
and â by utilizing the PCG records collected from 
two publicly available databases namely, Pascal 
HSDB and Physionet HSDB.The two features are 
successfully tested on the two datasets, statistically 
evaluated and separability among the features 

is examined. The technique offered an efficient 
performance (100% sensitivity, specificity, PPV, 
NPV, and accuracy) to differentiate normal/murmur 
heart signal. Hence, the proposed technique 
could be an effective study for the state-of-the-art 
methods available in the literature.

Conclusions

	 Atechnique for the detection of heart 
murmur from the non-stationarity of the heart 
signal,viaautocorrelationbased features like 
Standard Error (SE) of Auto-Correlation Function 
(ACF) and absolute deviation of SE from the 
reciprocal of the square root of a number of 
samples (â),was proposed in this paper.It was 
inferred that PCG measurements of murmur is 
highly nonstationary than that of normal heart 
signal. The features were statistically evaluated 
and the separability offered them was assessed on 
the PCG records collected from Pascal HSDB and 
Physionet HSDB. The proposed system by using 
the fundamental time domain features was able to 
detect the murmur with 100% accuracy, sensitivity 
and specificity without incorporating any complex 
classifiers. The method overcomes the problems 
associated with manual auscultation.The scope of 
the methods to characterize the Phenotypes of the 
murmurcan be investigated as a future deviation.

Acknowledgment

	 The authors would like to thank the 
people behind the Pascal heart sound database and 
Physionet heart sound database for providing the 
required PCG signals to test the proposed system.

References

1.	 HEARTS Technical package for cardiovascular 
disease management in primary health 
care: healthy-lifestyle counselling; Geneva: 
World Health Organization; 2018, (WHO/
NMH/NVI/18.1). Licence: CC BY-NC-SA 
3.0 IGO,http://apps.who.int/iris/bitstream/
handle/10665/260422/WHO-NMH-NVI-18.1-
eng.pdf?sequence=1&isAllowed=y.

2.	 S. Kang, R. Doroshow, J. McConnaughey and R. 
Shekhar, Automated Identification of Innocent 
Still's Murmur in Children, IEEE Transactions 
on Biomedical Engineering, 64: pp. 1326-1334 
(2017).



959Careena et al., Biomed. & Pharmacol. J,  Vol. 12(2), 947-959 (2019)

3.	 S.W. Deng and J. Q. Han, Towards heart 
sound classification without segmentation via 
autocorrelation feature and diffusion maps, 
Future Generation Computer Systems, 60: pp.13-
21 (2016).

4.	 Y. Chen, S. Wang, C.H. Shen and F.K. Choy, 
Matrix decomposition based feature extraction 
for murmur classification, Medical Engineering 
& Physics, 34: pp. 756-761, (2012).

5.	 F. Safara, S. Doraisamy, A. Azman, A. Jantan, 
and S. Ranga, Wavelet Packet Entropy for 
Heart Murmurs Classification, Advances in 
Bioinformatics, pp.1-6,  (2012).

6.	 S. Choi, Y. Shin and H.K. Park, Selection of 
wavelet packet measures for insufficiency 
murmur identification, Expert Systems with 
Applications, 38: pp. 4264-4271 (2011).

7.	 V. N. Varghees and K. I. Ramachandran, 
"Effective Heart Sound Segmentation and 
Murmur Classification Using Empirical Wavelet 
Transform and Instantaneous Phase for Electronic 
Stethoscope, IEEE Sensors Journal, 17, pp. 
3861-3872 (2017).

8.	 G. Eslamizadeh and R .Barati, Heart murmur 
detection based on wavelet transformation and 
a synergy between artificial neural network and 
modified neighbor annealing methods, Artificial 
Intelligence in Medicine, 78: pp.23-40 (2017).

9.	 J. E. Guillermo, L. J. R. Castellanos, E. N. 
Sanchez and A. Y. Alanis, Detection of heart 
murmurs based on radial wavelet neural network 
with Kalman learning, Neurocomputing, 164: 
pp.307-317, (2015).

10.	 F. Safara, S. Doraisamy, A. Azman, A. Jantan, 
A. Ranga and A. Ramaiah, Multi-level basis 
selection of wavelet packet decomposition tree 
for heart sound classification, Computers in 
Biology and Medicine, 43: pp. 4264-4271 (2013).

11.	 M. Hamidi, H. Ghassemian and M. Imani, 
Classification of heart sound signal using curve 
fitting and fractal dimension, Biomedical Signal 
Processing and Control, 39: pp.351-359, (2018).

12.	 B. Bozkurt, I. Germanakis and Y. Stylianou, 
A study of time-frequency features for CNN-

based automatic heart sound classification for 
pathology detection, Computers in Biology and 
Medicine, 100, pp.132-143, (2018).

13.	 S. R. Thiyagaraja, R. Dantu, P. L. Shrestha 
and A. Chitnis, Mark A. Thompson, Pruthvi 
T. Anumandla, Tom Sarma and Siva Dantu, A 
novel heart-mobile interface for detection and 
classification of heart sounds, Biomedical Signal 
Processing and Control, 45: pp.313-324, (2018).

14.	 Y. Zheng, X. Guo and X. Ding, A novel hybrid 
energy fraction and entropy-based approach for 
systolic heart murmurs identification, Expert 
Systems with Applications, 42: pp. 2710-2721, 
(2015).

15.	 S. Choi, G.B. Jung and H.K Park, A novel 
cardiac spectral segmentation based on a multi-
Gaussian fitting method for regurgitation murmur 
identification, Signal Processing, 104: pp. 339-
345, (2014).

16.	 G. Redlarski, D. Gradolewski and A. Palkowski, 
A System for Heart Sounds Classification. PLoS 
ONE,  9(11): (2014).

17.	 W. Zhang, J. Han and S. Deng, Heart sound 
classification based on scaled spectrogram and 
partial least squares regression, Biomedical 
Signal Processing and Control, 32: pp. 20-28 
(2017).

18.	 W. Zhang, J. Han and S. Deng, Heart sound 
classification based on scaled spectrogram and 
tensor decomposition, Expert Systems with 
Applications, 84: pp.220-231 (2017).

19.	 G. E. P. Box, G. M. Jenkins and G. C. Reinsel, 
"Time series analysis: forecasting and control," 
3rd ed. Englewood Cliffs, NJ: Prentice Hall, 
(1994).

20.	 P. Bentley, G. Nordehn, M. Coimbra, S. Mannor, 
G. Rita, The pascalclassifying heart sounds 
challenge,sponsored by PASCAL, (2011), http://
www.peterjbentley.com/heartchallenge/index.
html

21.	 Classification of Normal/Abnormal Heart 
Sound Recordings, the PhysioNet/Computing 
in Cardiology Challenge (2016), https://www.
physionet.org/challenge/2016/#challenge-data.


