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 The objective of this paper is to make a distinction between EEG data of normal and 
epileptic subjects. Methods: The dataset is taken from 20-30 years healthy male/female subjects 
from EEG lab of Dept. of Neurology, Dr. RML Institute of Medical Sciences, Lucknow (India). 
The feature extraction has been done using the Hilbert Huang Transform (HHT) method. The 
experimental EEG signals have been decomposed till 5th level of Intrinsic Mode Function 
(IMF) followed by calculation of high order statistical values of each IMF. Relief algorithm 
(RBAs) is used for feature selection and classification is performed using Linear Support Vector 
Machine (Linear SVM). Findings: This paper gives an independent approach of classifying 
Epileptic EEG data with reduced computational cost and high accuracy. Our classification 
result shows sensitivity, specificity, selectiv ity and accuracy of 96.4%, 79.16%, 84.3% and 
88.5% respectively. Application: The proposed method has been analyzed to be very effective 
in accurate classification of epileptic EEG data with high sensitivity.

Keywords: Epilepsy, EEG, Hilbert Huang Transform (HHT), Relief-based feature 
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 EPILEPSY is a physical condition 
that occurs in the brain and affects the nervous 
system. According to the 2009 report by the World 
Health Organization around 70 million people 
worldwide have epilepsy1-3. Around 90% of this 
population lives in developing countries, and about 
three fourths of them do not have access to the 
necessary treatment. Epilepsy is defined by two 
or more such unprovoked seizures4. The seizures 
are commonly defined as abnormal electrical and 
chemical activities in the brain. Like many other 
neurological disorders, epilepsy can be assessed by 

the electroencephalogram (EEG). The EEG signal 
is highly non-linear and non-stationary in nature, 
and hence, it is difficult to characterize and interpret 
it using conventional frequency domain analysis5-7. 
 EEG is recording of the electrical 
activity of the brain from the scalp. The recorded 
waveforms reflect the cortical electrical activity 
and helps in identification of brain conditions. The 
most common method used for recording EEG is 
10-20 system which is internationally recognized 
method that allows EEG electrode placement to be 
standardized 8.
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 The system is based on the relationship 
between the location of an electrode and the 
underlying area of outer layer of the brain. The 
number ‘10’ & ‘20’ refer to the distance between 
adjacent electrode to be  either 10% or 20% of the 
total front-back or right-left distance of the scalp . 
The electrode placement is shown in Fig.1.
 In this paper authors have given a method 
for classification of epileptic and normal EEG data. 
The proposed method uses a combination of Hilbert 
Huang Transform (HHT) for features extraction, 
RBAs for feature selection and Linear SVM based 
classification of neural network modeling.
 Hilbert-Huang Transform is a time 
frequency technique consisting of two parts, the 
Empirical Mode Decomposition (EMD), and 
the Hilbert Spectral Analysis (HSA)9,10. EMD 
decomposes an EEG signal into a finite set of band-
limited signals termed intrinsic mode functions 
(IMFs), which are oscillatory components of input 
data. In the first step the mean frequency (MF) 
for each IMF has been computed using Fourier-
Bessel expansion11. The IMF oscillates in a narrow 
frequency band which is a reflection of quasi-
periodicity and nonlinearity. The non-constant 
frequency means non-stationary. MF measure of 
the IMFs has been used as one of the features to 
differentiate between healthy and epileptic EEG 
signals. In the second part, the Hilbert transform 
is applied to the IMF, yielding a time-frequency 
representation (Hilbert spectrum) for each IMF12,13. 
 For feature selection authors have 
used Relief algorithm14-17. Relief is an algorithm 
in which a filter-method approach is used for 
feature selection that is notably sensitive to 

feature interactions. It was originally designed 
for application to binary classification problems 
with discrete or numerical features. Relief was 
also described as generalizable to polynomial 
classification by decomposition into a number of 
binary problems.
 Relief calculates a feature score for each 
feature which can then be applied to rank and 
select top scoring features for feature reduction. 
Alternatively, these scores may be applied as 
feature weights to guide downstream modeling. 
Relief feature scoring is based on the identification 
of feature value differences between nearest 
neighbor instance pairs. If a feature value difference 
is observed in a neighboring instance pair with the 
same class (a ‘hit’), the feature score decreases. 
Alternatively, if a feature value difference is 
observed in a neighboring instance pair with 
different class values (a ‘miss’), the feature score 
increases shown in Fig.2.
 The Support Vector Machine (SVM) is 
a popular classifier that can handle linear as well 
as non-linear class boundaries with the help of 
kernel functions18.  In this paper authors have used 
Linear SVM for data classification. The SVM tries 
to identify the maximum-margin hyper plane that 
separates the different classes. However, if the data 
cannot be linearly separated, non-linear kernel 
functions are used to transform the feature space, 
allowing a maximum-margin hyper plane to be 
established19. 
HHT based feature extraction
 The Hilbert–Huang transform (HHT) is 
an empirical data-analysis method. Its basis of 
expansion is adaptive, so it produces physically 
meaningful representations of data from nonlinear 
and non-stationary processes20,21. Traditional 

Fig.  1. Scalp Electrode Placement Fig. 2.  Relief Algorithm [14]
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data-analysis methods are all based on linear and 
stationary assumptions like Fourier transformation 
makes assumption of the signal period which 
creates spectral leakage. As is well known, the 
natural physical processes are mostly nonlinear 
and non-stationary like EEG signals from brain, 
yet the conventional data analysis methods provide 
very limited options for examining data from 
such processes. The available methods are either 
for linear but non-stationary, or nonlinear but 
stationary and statistically deterministic processes.
 It is known that frequency of sinusoidal 
waveform is a well defined quantity. However, 
in practice, signals are not purely sinusoidal or 
stationary. Thus representing such non stationary 
signals as combination of different sinusoidal 
components will be a compromise with the accurate 
assessment of an event. For such signal the term 

frequency loses its effectiveness and a need for a 
parameter which accounts for the varying nature 
of the phenomena arises. 
 This gives rise to an idea of instantaneous 
frequency (IF) – which means the signal is either 
composed of a single frequency or a narrow band 
of frequencies. For each component instantaneous 
frequency can be defined.
 HHT was motivated by the need to 
describe nonlinear distorted waves in detail, along 
with the variations of these signals that naturally 
occur in non-stationary processes.
 The empirical mode decomposition 
method is necessary to deal with data from 
non-stationary and nonlinear processes22,23. 
EMD decomposes signal X (t) into a number of 
oscillatory component which is known as intrinsic 
mode function through a shifting process. Each 
IMF has its own distinct time scale. Furthermore 
EMD does not consider the stationary and the 
linearity of the signal20. For an input signal X (t) 
the process of calculating IMFs are given below:
Let’s set 
 X(t) = X(t)old ...(1)

 Find all the maxima and minima in
 X(t)old  …(2)

 Interpolate between minima and maxima 
using cubic spline interpolation which will generate 
local maxima envelope (t) and local minima 
envelope Fig. 3.  Linear SVM

Fig. 4.  Flowchart of Proposed Method 
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Fig. 5. IMFs of Normal EEG Signal Fig. 6.  IMFs of Epileptic EEG Signal

 el(t) ...(3)

 Calculate the mean of envelopes 

 emean = ((t) + el (t))/2 ...(4)

 Now subtract emean from X(t)old  we  will 
get X(t)new as, 

 X(t)new = X(t)old - emean ...(5)

Now set 
 X(t)new= X(t)new ...(6)

Repeat the process (2 to 4) until standard deviation 

SD = (S | X(t)new –X(t)old |
2 / S X(t)2

old ) < a 
...(7)

Where a is value that between 0.2-0.3
  
 The first IMF is defined as IMF1 = X(t)
new which is the smallest temporal scale of X(t). By 
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Table 1 . High Order Statistical Values of 29 EEG signal of Normal Subjects upto 5th IMF

HOS Values of    High Order Statistical Values
29 EEG Signals
IMF MF SD VAR KUR SKW

Subjects   IMF 1 of Healthy Subjects
NS1 0.794014 0.194748 0.0808656 0.0574944 0.0275939
NS2 0.7134649 0.3835633 0.1539171 0.0777196 0.0382288
NS3 0.7120425 0.392048 0.125765 0.0633654 0.0277442
NS4 0.6561924 0.3911876 0.1600673 0.0619577 0.0186501
NS5 0.7923439 0.39687 0.1419385 0.0608046 0.0248904
NS6 0.69531 0.3801633 0.1490987 0.0560318 0.0249986
NS7 0.6191468 0.3552116 0.1217889 0.0628417 0.0204335
NS8 0.6190132 0.2576959 0.1470799 0.0867544 0.0133281
NS9 0.7279635 0.3972242 0.1589645 0.0708214 0.0291047
NS10 0.6938438 0.3249872 0.1626327 0.0611141 0.0319724
NS11 0.6037114 0.2716271 0.1364642 0.0631772 0.0158963
NS12 0.5959096 0.2387053 0.1123194 0.0494584 0.0204792
NS13 0.7039527 0.3296545 0.1480881 0.0748475 0.0269281
NS14 0.6844529 0.4312466 0.165582 0.0781406 0.0422987
NS15 0.7843782 0.4633051 0.1519389 0.0567255 0.0207948
NS16 0.7207146 0.356144 0.1542686 0.0732491 0.023715
NS17 0.7776593 0.4194125 0.157747 0.0816223 0.0360981
NS18 0.7018462 0.4333557 0.1727692 0.0736394 0.0344944
NS19 0.7561062 0.3031047 0.1599127 0.0667163 0.0298385
NS20 0.5615601 0.2440335 0.1393101 0.0625563 0.0232113
NS21 1.0151271 0.5419102 0.2060411 0.1060046 0.0350871
NS22 0.7082527 0.4058785 0.1250664 0.061215 0.0242943
NS23 0.58942 0.2640501 0.1342691 0.0745797 0.0292519
NS24 0.6863921 0.2591281 0.1569117 0.0679083 0.0330215
NS25 0.6579692 0.3820743 0.1577376 0.0544039 0.0247068
NS27 0.6185096 0.3248713 0.1347292 0.0557921 0.0208321
NS28 0.7167416 0.2263721 0.1505363 0.0735477 0.0337342
NS29 0.4230327 0.3507278 0.1417878 0.0668265 0.026326
Subjects   IMF 2 of Healthy Subjects
NS1 1.3671451 2.8716697 6.5527059 9.3498067 8.6381729
NS2 1.1840138 1.3916471 2.8017808 2.4379485 2.2303501
NS3 0.843453 0.9167091 2.4823977 3.5295424 3.3642967
NS4 0.8421751 0.9637028 2.2007558 2.8008546 5.2072605
NS5 0.5406368 0.9089775 2.0956593 4.9641066 2.7387957
NS6 0.6736103 0.8451676 2.1182751 3.4507008 3.1589237
NS7 0.9872215 1.0550772 2.5285452 2.9370106 5.9665401
NS8 4.5190525 6.5279076 9.970391 5.4465119 20.088837
NS9 0.5998085 0.8185307 1.6512623 2.3169359 3.1302619
NS10 0.8223158 1.0699668 1.8031497 2.367291 2.5566929
NS11 1.0965751 1.460845 2.553014 2.7946504 5.9919763
NS12 1.1829003 1.7480142 3.5795746 4.8171016 4.7400878
NS13 1.0971638 1.4864917 2.6012838 2.1556349 2.5493749
NS14 0.4312608 0.5038683 0.9079241 1.3058499 1.4082351
NS15 1.5704348 1.487021 2.6870926 7.916428 14.940614
NS16 0.8077475 1.0170576 2.5210509 2.3879847 2.7999426
NS17 0.4905736 0.7537514 1.8861905 1.9574766 1.9970076
NS18 0.7166195 1.0073588 2.0143632 2.1873461 2.7866116
NS19 0.680081 1.1124491 1.9422344 2.3306878 3.7269487
NS20 3.0825562 4.1088006 5.6119314 4.6420457 3.914372
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NS21 3.0527935 3.1810749 2.9614952 2.9901266 2.0240628
NS22 0.6201656 0.6909153 2.2992595 3.5640906 3.9328668
NS23 2.1344174 2.6372075 4.8936201 3.6146932 3.2462856
NS24 0.5554465 1.3915533 2.3443719 2.6064464 1.9867625
NS25 1.0111484 1.1234713 2.0467199 3.0696111 2.481803
NS27 1.1047307 1.2129053 2.3732381 3.3731465 5.2515313
NS28 0.6727835 1.6808005 3.1633969 3.2929552 2.621261
NS29 0.5791149 0.5605072 1.4387479 1.9286429 3.2353766
Subjects   IMF 3 of Healthy Subjects
NS1 1.8690857 8.246487 42.937955 87.418885 74.618031
NS2 1.4018887 1.9366815 7.8499754 5.9435931 4.9744615
NS3 0.7114129 0.8403556 6.1622985 12.45767 11.318492
NS4 0.7092588 0.928723 4.8433261 7.8447862 27.115562
NS5 0.2922881 0.8262401 4.3917878 24.642354 7.5010021
NS6 0.4537508 0.7143082 4.4870895 11.907336 9.978799
NS7 0.9746063 1.1131878 6.3935406 8.6260312 35.5996
NS8 20.421835 42.613577 99.408696 29.664492 403.56139
NS9 0.3597703 0.6699926 2.7266671 5.3681922 9.7985398
NS10 0.6762032 1.144829 3.251349 5.6040665 6.5366786
NS11 1.2024769 2.1340681 6.5178805 7.8100709 35.90378
NS12 1.399253 3.0555538 12.813354 23.204467 22.468433
NS13 1.2037684 2.2096577 6.7666774 4.6467616 6.4993125
NS14 0.1859859 0.2538833 0.8243261 1.705244 1.9831261
NS15 2.4662655 2.2112313 7.2204666 62.669832 223.22196
NS16 0.652456 1.0344061 6.3556978 5.7024708 7.8396784
NS17 0.2406624 0.5681411 3.5577147 3.8317147 3.9880392
NS18 0.5135434 1.0147717 4.0576589 4.7844829 7.7652043
NS19 0.4625101 1.237543 3.7722746 5.4321057 13.890147
NS20 9.5021525 16.882242 31.493774 21.548588 15.322308
NS21 9.3195484 10.119238 8.770454 8.940857 4.0968302
NS22 0.3846054 0.477364 5.2865944 12.702742 15.467441
NS23 4.5557378 6.9548636 23.947518 13.066007 10.53837
NS24 0.3085208 1.9364205 5.4960795 6.7935628 3.9472251
NS25 1.0224211 1.2621877 4.1890623 9.4225121 6.1593459
NS27 1.22043 1.4711394 5.6322589 11.378117 27.578581
NS28 0.4526377 2.8250902 10.00708 10.843554 6.871009
NS29 0.3353741 0.3141683 2.0699954 3.7196636 10.467662
Subjects   IMF 4 of Healthy Subjects
NS1 26.1211 173.58881 105.7402 86.502577 14.866722
NS2 4.5384237 5.8235914 3.3288413 3.9677612 3.7352665
NS3 4.4268523 6.0777767 6.4834451 4.3057737 4.129212
NS4 13.246323 6.5958737 3.7837047 3.3066044 4.5568696
NS5 5.8715379 9.3080921 4.438701 2.8511137 3.3463041
NS6 4.7410993 5.602009 3.5239203 3.5818778 3.7913422
NS7 5.019083 4.3211797 7.0526305 3.8742989 6.3995483
NS8 12.323221 26.213322 6.9748686 5.203992 14.349722
NS9 5.2998872 8.1148395 4.0907434 3.5577341 2.7479037
NS10 5.5523941 15.273256 3.2721178 4.860471 3.6195343
NS11 5.1316229 7.6528964 3.4040442 3.4681068 11.761679
NS12 24.611047 7.1365169 4.9725586 7.1197671 7.7796655
NS13 4.9092302 7.0940397 3.7071417 4.1142901 4.2781562
NS14 142.10583 27.677388 4.7715764 3.4914967 2.9643649
NS15 8.9146693 7.9038536 10.159726 7.0833235 5.5552036
NS16 7.5069103 10.522004 5.2477441 3.1655753 4.1332655
NS17 6.2864369 3.7169318 3.4123277 3.6338549 3.3516207
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NS18 7.3879998 3.6279616 3.2416907 4.0381763 12.696512
NS19 124.96265 7.2477353 3.3237369 3.8798556 5.3328726
NS20 4.8953379 6.7082148 3.0854336 4.6323791 5.6055095
NS21 19.483011 18.089693 4.9513198 4.9412625 2.9780993
NS22 18.376056 6.0605848 5.1925368 7.9395411 9.4866847
NS23 4.3802035 6.3862992 3.1073743 2.9512085 8.2121815
NS24 5.8519008 7.5350298 3.1145678 3.5716336 4.0131338
NS25 4.8353898 4.4480728 3.2057832 6.4106097 4.777637
NS27 6.9280576 6.504447 5.4986645 7.9219861 13.547343
NS28 81.381915 12.772316 3.7331439 3.2206681 3.218636
NS29 859.94158 22.498134 4.7187115 4.8681671 4.070564
Subjects   IMF 5 of Healthy Subjects
NS1 0.9368617 2.2400095 1.8788759 -4.6346204 -0.4742972
NS2 -0.0641331 0.02556 0.0213764 -0.1746376 -0.1316439
NS3 -0.0329525 -0.0372348 -0.170347 0.03744 -0.2469791
NS4 0.0760672 -0.0646503 0.078916 -0.0567486 0.265975
NS5 0.1335422 -0.0651292 -0.0394491 -0.1116554 -0.5056581
NS6 -0.0182776 -0.1920655 0.0125293 -0.0639116 0.2236741
NS7 0.0518529 0.0462345 0.2674941 0.0297923 -0.7641902
NS8 0.0091883 -0.2378462 0.0179487 0.0271938 1.0651003
NS9 -0.0182481 -0.0174901 0.0300339 0.0872897 -0.0599968
NS10 -0.0801845 0.6202513 -0.0045994 0.2976808 -0.0249067
NS11 -0.039921 0.3110126 0.086128 -0.0891201 -0.345381
NS12 1.2827003 -0.0110624 -0.0726262 0.0017892 -0.6870894
NS13 0.0069424 -0.0484375 0.0417263 -0.1836737 0.3871868
NS14 -0.6105902 1.2346839 0.1682674 0.0953418 -0.0021122
NS15 -0.1261543 -0.4746706 -0.3580666 0.2197198 -0.0952142
NS16 0.0352776 0.2623286 0.0164817 0.1063452 -0.2706383
NS17 -0.0915483 0.0119703 -0.0373728 0.0496959 0.2590188
NS18 0.1835534 0.0202854 -0.0084826 0.0108377 0.9936275
NS19 4.2085615 0.0127075 -0.059354 -0.2144468 -0.2042717
NS20 -0.0086416 -0.0772461 -0.0441348 -0.0245628 0.4144225
NS21 0.1078166 0.2286214 0.0188273 0.0214265 0.000411
NS22 -0.6105868 -0.1642786 0.0458767 0.8285085 -0.2906335
NS23 0.0155542 0.1616218 0.0071227 -0.0232878 -1.1183538
NS24 -0.0677949 -0.0092523 0.0438202 -0.0172195 -0.2904886
NS25 -0.0088769 0.0240307 -0.0392672 0.3934843 0.5874376
NS27 -0.0855313 -0.0039345 -0.1527337 0.2219079 -0.7106446
NS28 -0.3867619 -0.1214849 -0.0287683 -0.0250265 -0.1046807
NS29 24.095343 -0.4350748 0.0042242 0.0465327 -0.1108155

subtracting IMF1 from X(t) we will get residual 
signal R(t) which can be expressed as ,
R(t) = X(t) – IMF1. 
 After acquiring R(t) we put it in the same 
process above to get new IMF which means each 
IMF will have different frequencies against time. 
So the original signal can be rewritten as

 Hilbert Huang Transform (HHT) is a very 
new and powerful tool for analyzing data from 

non-stationary and nonlinear processing realm 
and capable of filtering data based on empirical 
mode decomposition (EMD). The EMD is based 
on the sequential extraction of energy associated 
with various intrinsic time scales of the signal; 
therefore total sum of the intrinsic mode functions 
(IMFs) matches the signal very well and ensures 
completeness. 
 Studies show that we can discriminate 
between normal EEG data and abnormal EEG by 
statistically analyzing the IMF. Their statistical 
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Table 2. High Order Statistical Values of 23 EEG signal of Epileptic Subjects upto 5th IMF

HOS Values of    High Order Statistical Values
23 EEG Signals 
IMF MF SD VAR KUR SKW

Subjects   IMF 1 of Unhealthy Subjects
ES1 0.8650899 0.4729091 0.0656301 0.0500698 0.0282743
ES2 0.7204698 0.301023 0.1401935 0.0650751 0.0277056
ES3 0.8391117 0.5123799 0.1675866 0.0580672 0.017728
ES4 0.6846268 0.2982419 0.1178403 0.0341233 0.019428
ES5 0.8246545 0.5175436 0.1532076 0.0706868 0.037721
ES6 0.7866724 0.5715599 0.1436699 0.0708974 0.0364508
ES7 0.7180737 0.5269248 0.1003643 0.0498809 0.0373853
ES8 0.6780945 0.2309114 0.1450357 0.0151319 0.0131524
ES9 0.6633649 0.2670126 0.1298747 0.0509755 0.029085
ES10 0.6764995 0.3393412 0.1618375 0.0640588 0.0253861
ES11 0.8552998 0.4695551 0.1592763 0.0396773 0.0178348
ES12 0.9608706 0.3980764 0.1618239 0.0526249 0.0202914
ES13 0.6468634 0.2672435 0.1478045 0.0621515 0.0111755
ES14 0.7191737 0.4133107 0.1478768 0.0643535 0.0182317
ES15 0.5935737 0.261775 0.1387919 0.0708448 0.0263439
ES16 0.7620866 0.2757785 0.0989844 0.0334673 0.0162968
ES17 0.6647294 0.3585806 0.1565834 0.0678156 0.0250318
ES18 0.7578168 0.4157828 0.1355068 0.0425817 0.0257703
ES19 0.8166415 0.4948268 0.09664 0.0278963 0.0233678
ES20 0.6549819 0.2668567 0.1455575 0.0675608 0.0255792
ES21 0.6143616 0.4561768 0.1217524 0.0705827 0.0390815
ES22 0.8869436 0.0897994 0.089129 0.0387991 0.0219594
ES23 0.9041045 0.5533729 0.1935902 0.0959522 0.0479147
Subjects   IMF 2 of Unhealthy Subjects
ES1 0.3303539 0.4068024 5.0004128 6.9876397 4.450579
ES2 0.7759541 1.1785239 2.2471837 2.6743979 2.9395671
ES3 0.9123532 1.0098045 1.2550563 2.205777 10.381173
ES4 0.4983477 0.9938214 3.0678322 10.58149 16.008316
ES5 0.3640596 0.4457771 1.0317171 1.9604556 2.8770458
ES6 0.4965187 0.7479746 1.5959717 2.2057836 2.4487858
ES7 0.4709187 0.4566298 1.689656 4.7747918 3.8819404
ES8 2.2989287 2.7078515 4.1221566 13.077719 19.783741
ES9 0.5902094 1.0359951 1.9711336 4.1579259 5.7722332
ES10 1.1322866 1.3598762 2.584256 3.8131407 4.8031704
ES11 0.7589179 0.8662426 1.49653 4.2199104 6.6306221
ES12 0.4402255 0.4632958 0.8848784 2.8468135 5.2325725
ES13 2.1736135 2.5147764 5.2851702 3.4996659 13.125115
ES14 0.5805407 0.6980601 1.8219706 2.5253038 11.036471
ES15 2.2502876 2.9015059 4.0772807 3.3953816 2.7857397
ES16 0.3805414 0.7496236 3.5402665 12.479548 12.62304
ES17 1.0604954 1.1549985 2.0075533 2.6702119 5.2474406
ES18 0.5168601 0.6714232 1.6591487 6.2580204 5.0768957
ES19 0.5728281 0.5966072 1.6938629 6.5959014 7.3144355
ES20 1.3439738 2.0153848 3.1818819 2.2977474 2.7072257
ES21 0.3307135 0.4728326 1.7315057 2.1334664 2.3625637
ES22 0.3404253 2.8266346 2.919212 6.7144357 7.7731332
ES23 1.0936969 1.0679932 1.7261892 1.9150612 1.8657758
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Subjects   IMF 3 of Unhealthy Subjects
ES1 0.1091337 0.1654882 25.004129 48.827109 19.807653
ES2 0.6021047 1.3889186 5.0498348 7.1524041 8.6410547
ES3 0.8323884 1.0197052 1.5751663 4.8654523 107.76876
ES4 0.2483504 0.987681 9.4115946 111.96793 256.26619
ES5 0.1325394 0.1987172 1.0644402 3.8433861 8.2773925
ES6 0.2465308 0.5594661 2.5471256 4.8654812 5.9965518
ES7 0.2217644 0.2085108 2.8549373 22.798637 15.069461
ES8 5.2850734 7.3324599 16.992175 171.02673 391.39639
ES9 0.3483471 1.0732858 3.8853676 17.288348 33.318676
ES10 1.2820729 1.8492632 6.6783789 14.540042 23.070446
ES11 0.5759564 0.7503762 2.239602 17.807644 43.965149
ES12 0.1937985 0.214643 0.7830098 8.104347 27.379815
ES13 4.7245957 6.3241006 27.933024 12.247662 172.26864
ES14 0.3370275 0.4872879 3.3195768 6.3771594 121.8037
ES15 5.0637941 8.4187365 16.624218 11.528616 7.7603459
ES16 0.1448118 0.5619355 12.533487 155.73913 159.34114
ES17 1.1246505 1.3340216 4.0302702 7.1300316 27.535632
ES18 0.2671444 0.4508091 2.7527745 39.162819 25.77487
ES19 0.328132 0.3559401 2.8691715 43.505915 53.500966
ES20 1.8062657 4.0617758 10.124372 5.2796432 7.3290711
ES21 0.1093714 0.2235707 2.998112 4.5516789 5.5817073
ES22 0.1158894 7.9898633 8.5217987 45.083647 60.4216
ES23 1.1961729 1.1406094 2.9797292 3.6674596 3.4811194
Subjects   IMF 4 of Unhealthy Subjects
ES1 4.5771176 7.0087635 18.72618 4.438525 3.6387834
ES2 4.6721191 12.485297 3.7515448 2.8945809 3.2989253
ES3 4.8363808 3.6414101 4.8090367 9.1757919 3.8358201
ES4 25.708015 29.801328 6.3511609 12.355667 2.2715564
ES5 8.4152284 3.0111605 5.1884963 11.195804 4.1664795
ES6 8.058631 2.5071926 5.6127706 4.8551599 3.3116094
ES7 294.40981 3.1362269 27.83137 5.3359899 2.957612
ES8 4.9401601 11.098406 3.3255404 35.553052 18.566356
ES9 14.952852 13.619801 5.7570903 8.0806325 12.965434
ES10 4.5372324 6.8736788 3.6542007 6.0117279 12.628416
ES11 3.7915257 3.8012139 5.0176857 10.534601 16.394638
ES12 8.3659199 66.930757 9.4311181 14.648822 13.724967
ES13 7.3759178 12.338818 2.9419575 21.578049 31.927595
ES14 63.38271 4.2477574 3.713664 5.0928349 8.7693387
ES15 6.158873 5.8291961 3.826798 2.9856206 4.9684164
ES16 43.596893 24.808282 5.9428689 5.6386731 7.2970514
ES17 5.4453413 6.0432796 3.93111 6.0310116 7.4071691
ES18 17.473343 7.0504811 4.7559268 4.5921542 3.0711551
ES19 223.20771 6.1305469 30.525167 43.536547 22.863897
ES20 3.83648 6.6480955 3.4461044 3.1125352 3.3795001
ES21 395.02359 7.7392785 15.905384 5.0630354 3.1100875
ES22 6.965067 100.63262 22.440095 16.072997 8.0500811
ES23 4.7254519 4.026748 6.3249347 10.183007 15.691209
Subjects   IMF 5 of Unhealthy Subjects
ES1 0.024654 -0.4296459 0.3575977 0.0226011 -0.0755703
ES2 0.0061941 0.5499125 -0.1601651 0.0755629 0.1800178
ES3 0.0010872 -0.0197224 -0.0789725 -0.140138 0.1755386
ES4 -0.7393064 -0.4796606 -0.0979807 -0.8759199 0.090423
ES5 0.2707581 -0.001205 -0.0570468 0.2302964 0.2013605
ES6 -0.0974631 0.0032945 0.0368402 -0.1686396 0.1249878
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ES7 9.9175498 0.0201692 -2.417516 -0.1451854 0.0458859
ES8 0.0410811 -0.3725798 0.0468306 -3.5959749 1.6056099
ES9 -0.7679569 -0.2677045 -0.2248263 0.1450071 0.2373168
ES10 0.011263 0.2940156 0.0009562 0.3756074 0.2475115
ES11 -0.0123112 0.0664354 -0.103722 1.323574 2.3883766
ES12 0.3587948 -1.3089528 -0.3568748 0.9671277 -1.8264115
ES13 0.352495 0.236305 -0.00324 -2.3182493 -4.0947717
ES14 -2.6589605 0.0485656 0.0581806 -0.0709458 -0.0135256
ES15 0.1221658 0.0747326 0.0272607 0.0547411 -0.2824818
ES16 -2.2468663 0.0203399 0.0164117 0.0324535 -0.9939975
ES17 0.076271 -0.1215204 0.1040614 -0.059463 -0.3068512
ES18 0.9846622 -0.0624885 0.0260383 0.1778707 -0.0116882
ES19 6.9752414 -0.1316119 -0.0018436 -3.9574945 -1.6565017
ES20 -0.0276649 -0.1214705 -0.0007395 0.0384048 -0.0818361
ES21 14.24066 0.1333398 -0.3670489 0.0921567 -0.0049415
ES22 0.2247009 -3.5664924 -0.315258 0.7120273 -0.5549812
ES23 -0.0670528 -0.0564401 -0.0320062 -0.5541185 -1.4992487

use is motivated by the fact that the distributions 
of samples in the data are characterized by their 
asymmetry, dispersion and concentration around 
the mean. After analyzing visually we can see IMF 
obtained from normal and pathological EEG are 
quite different from one another. These differences 
can easily extracted by statistical methods like 
Mean Function (MF), 
 Standard Deviation (SD), Variance 
(VAR), Kurtosis (KUR), Skewness (SKW)24-26. 
Mean: Computes the average values of the signal 
at various frequency levels.

Standard Deviation: For calculating the variations 
of signal at various levels. 

Variance: is the square of the standard deviation.

Kurtosis: Coefficients of EEG signal do not follow 
the normal distribution, and have a heavy tail 
characteristic is justified by the value of kurtosis 
parameters.

Skewness: is a measure of the asymmetry. If the 
probability distribution of a real-valued random 
variable around its mean is not symmetrical, the 
data is said to be skewed.

 The same processing steps are further 
applied on other 16 channels of EEG recording of 
Normal and Epileptic subjects. 
Relief Based Feature Selection Algorithm
 Take a data set with n  instances 
of p features, belonging to two known classes. 
Within the data set, each feature should be scaled 
to the interval [0 1] (binary data should remain as 
0 and 1). The algorithm will be repeated k times. 
Start with a p-long weight vector (G) of zeros.
 At each iteration, take the feature vector 
(V) belonging to one random instance, and the 
feature vectors of the instance closest to V (by 
Euclidean distance) from each class. The closest 
same-class instance is called ‘near-hit’, and the 
closest different-class instance is called ‘near-
miss’. Update the weight vector such that

Gi = Gi – (vi – nearHiti)
2 + (vi – nearMissi)

2

 Thus the weight of any given feature 
decreases if it differs from that feature in nearby 
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Table 3. Shows the proposed classifier output 
and compare with existing techniques

Authors Sensitivity Selectivity Accuracy

Syed Muhammad Usman et al. (2017)  92.3% - -
Yildiz, Bergil & C.Oral (2017) 88.06% - -
Bandarabadi, Mojtaba et al.(2015) 75.8% - -
Our Findings 96.5% 84.8% 88.5%

Fig. 9. Shows comparison of our result with other researchers in terms of sensitivity

Fig. 7.  Confusion Matrix Fig. 8. ROC Curve

instances of the same class more than nearby 
instances of the other class, and increases in the 
reverse case.
 After k iterations, divide each element of 
the weight vector by k. This becomes the relevance 
vector. Features are selected if their relevance is 
greater than a threshold T.

 Kira and Rendell’s experiments showed 
a clear contrast between relevant and irrelevant 
features, allowing T to be determined by 
inspection27. However, it can also be determined 
by Chebyshev’s inequality for a given confidence 
level (α) that a T of 1/sqrt(α*k) is good enough to 
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make the probability of a Type I error less than á, 
although it is stated that T can be much smaller 
than that.
Classification using linear SVM
 Support  Vector  Machine (SVM) 
is a supervised machine learning algorithm 
which can be used for both classification and 
regression based problems. However, it is 
mostly used in classification problems. In this 
algorithm, we plot each data item as a point 
in n-dimensional space (where n is number of 
features you have) with the value of each feature 
being the value of a particular coordinate. Then, 
we perform classification by finding the hyper-
plane that differentiate the two classes very well 
(look at the below snapshot) shown in Fig. 3[A].
 Support Vectors are simply the co-
ordinates of individual observation. Support Vector 
Machine is a frontier which best segregates the two 
classes (hyper-plane/ line)24. In the linear case, the 
margin is defined by the distance of the hyper plane 
to the nearest of the positive and negative examples. 
The formula for the output of a linear SVM is

 v = ѡ̄  * xˉ - b ...(1)
 where w is the normal vector to the hyper 
plane and x is the input vector. The separating hyper 
plane is the plane v=0. The nearest points lie on the 
planes v = ±1. The margin m is thus
 
 k = 1/║ѡ║2                                      

RESULT AnD DISCUSSIOn

 This paper gives the feature extraction 
results produced by applying decomposition 
of signal till fifth level of IMFs by applying 
HHT on EEG signals, and then RBA is used for 
feature selection, followed by Linear SVM for 
classification. The normal and abnormal input data 
is applied after removing artifacts. 
 Statistical values of 29 EEG signals  of 
normal subjects upto 5th IMF has been shown in 
table 1 and values of 23 EEG signal of Epileptic 
subjects has been displayed in table 2. On the basis 
of these obtained values, the training and testing of 
Linear SVM classifier has been proposed. 70% of 
data set is used for training purpose and rest 30% 
were utilised for testing results. 
 Once the calculation of IMFs is complete, 

the following important statistical parameters are 
evaluated. Table 1 & 2 are presenting the calculated 
statistical values of Healthy and Unhealthy 
subjects.
 For feature selection Relief algorithm 
calculates a feature score for each feature which 
can then be applied to rank and select top scoring 
features. The Hilbert–Huang transform (HHT) 
is a way to decompose a signal into intrinsic 
mode functions (IMF) along with a trend, and 
obtain instantaneous frequency data and used for 
feature extraction. For classifying the experimental 
EEG signals, the Linear SVM concept has been 
used. The computed statistical values are fed into 
Linear SVM classifier for training and testing. The 
performance of proposed methodology is evaluated 
in terms of parameters of confusion matrix & ROC 
Curve shown in Fig. 7 & 8.

          
 Where TP, TN, FP and FN stands for 
true positive, true negative, false positive and 
false negative respectively. Sensitivity is used to 
diagnose the correctly identified positive case, 
specificity is defined as the determination of 
negative cases accurately, selectivity is defined as 
the recognition of unidentified positive results and 
accuracy stands for the identification of correct 
classified instances. 

COnCLUSIOn

 The proposed method is suitable for 
separating normal and epileptic EEG data. The 
com bined approach of HHT, RBAs with Linear 
SVM has found to be very effective in such 
classification with high sensitivity. The result of 
the classification pro cess is based on using the 
statistical values obtained by HHT. This technique 
has been found to be suitable in the correct 
classification of epileptic and healthy EEG data. 
The data set is taken from Natus NeuroWorks EEG 
Recording Machine from RML Institute of Medical 
Sciences, Lucknow (U.P.), India. Our classification 
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result shows sensitivity, selectiv ity and accuracy 
are 96.5%, 84.8% and 88.5% respectively. 
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