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	 In the present work, several mathematical models well-known in the literature for 
simulating drug release kinetics are compared using available experimental data sets obtained in 
real systems with different drugs and nano-sized carriers. Herein, the ÷2 minimization method, 
is employedconcluding that the Korsmeyer-Peppas modelprovides the best-ûtin all cases. Hence, 
(i) better understanding of the exact mass transport mechanism(s) involved in drug(s) release, 
and (ii) quantitative prediction of the drug release kinetics, can be computed.
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	 Nowadays, pharmaceutical industries 
and registration authorities focus on drug 
dissolution and/or pharmacokinetic release 
studies. Mathematical modeling aids at predicting 
drug release rates, and thus helping researchers 
to develop highly eûective drug formulations 
and more accurate dosing regimens saving 
time and money1. Kinetic models describe the 
amount of drug dissolved “C” fromsoliddosage 
form as a function of time t, or f = C(t). Since 
in practice the underlinemechanismis usually 
unknown, some semi-empirical equations, based 
on elementaryfunctions (polynomials, exponentials 
etc), are introduced. Up to now, a signiûcant number 
of mathematicalmodels have been introduced in the 
literature1–3, and in principle, onecan opt to use any 
of these.So, the question naturally arising herein 

is: which mathematical model is the best-fit to use 
for a given nano-system? 
	 In the present work, weattempt tore-
address precisely this question by systematically 
comparing various existingmathematical models. 
Already in2, it is mentioned that statistical methods 
can be usedto select a model, and one common 
method is based on minimization of the co-eûcient 
of determination R2, or if models with diûerent 
number of parameters are to be compared the 
adjusted coeûcient of determination R2

adjusted= 
1"(1"R2)(N-1)/(N “m) is preferred, where N is the 
number of experimental points and m is the number 
of free parameters ofa given mathematical model. 
	 Herein, however, and to the best of 
our knowledge, it is the ûrstattempt in which 
themathematical model comparison is done 
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explicitly using concrete experimental data 
thatcorrespond to diûerent drugs and diûerent 
nanoparticles; a more realistic approach perhaps. 
Furthermore, we employed the ÷2minimization 
method instead of the R2 coeûcient of determination, 
resulting indiûerent conclusions as we shall discuss 
in more detail later on. Thereby, the work is 
organized as follows:We first presentthe models to 
be compared as well as the data sets we have used 
for the analysis. Then,we perform the comparison 
and present findings and conclusions. A narrative 
format was deemed suitable for added clarity.

METHODS

Mathematical Models and Data Sets
	 We compared the following mathematical 
6 renowned models1–3:
• Zero order model
Q(t) = A + Bt	 ...(1)
with two free parameters A and B.
• First order model
Q(t) = Q0exp(kt/2.303)	 ...(2)
with two free parameters Q0,k
• Higuchi model[4]
Q(t) = k√t	 ...(3)
with a single free parameter k.
• Hixson-Crowell model[5]
Q(t) = (A + Bt)^3	 ...(4)
with two free parameters A and B.
• Korsmeyer-Peppas model (or power law model)
[6]
Q(t) = At^n	 ...(5)
with two free parameters A and n.
• Hopfenberg model[7] for the n = 1 ûat geometry
Q(t) = kt		 ...(6)
with a single parameter k.
	 On the other hand, the obtained data 
setsare summarized in the tables below:
	 Tables 1 and 2 relate to a multidrug-
loaded nanoplatform composed of Layer-by-layer 
(LbL)-engineered nanoparticles (NPs) achieved via 
the sequential deposition of poly-l-lysine (PLL) 
and poly(ethylene glycol)-block-poly(l-aspartic 
acid) (PEG-b-PLD) on liposomal nanoparticles 
(LbL-LNPs). The multilayered NPs (<“240nm 
in size, illustrated in Figure 1) were designed for 
the systemic administrationof doxorubicin (DOX 
– release kinetic profiling is displayed in Figure 

2) and mitoxantrone (MTX). Data sets in Tables 
3 and 4 relate to poly(D,L-lactide-co-glycolide) 
(PLGA-based nanoparticles) designed for the long-
term sustained and controlled (linear) delivery of 
simvastatin (SMV). Finally, [poly(å-caprolactone)-
based nanocapsules were prepared for the data set 
summarized in Table 5. 

RESULTS AND DICUSSION

Model Comparison
	 We now proceed to perform the model 
comparison using the c2 minimization method. For 
a given data set with N number of time points with 
values Qi and errors ói, i taking values from one 
to N, and for a given function f(t;a1,a2,...,am) that 
models the amount of drug as a function of time 
and is characterized by m free parameters (where 
N > m), we compute c2 using the standard formula:

	
...(7)

	 where we sum over all experimental time 
points from i=1 to i=N, and thus c2is a function 
of the free parameters that characterize the 
mathematical model. Minimizing c2 we determine 
the values of the parameters for which the model 
best ûts the data, and ûnallywe compute cmin

2/d.o.f, 
where d.o.f stands for the number of degrees of 
freedom given by N “m. 
	 This last step is necessary in order to 
compare models with diûerent number of free 
parameters. 
	 In our analysis the models are characterized 
either by one or by twofree parameters, and so m 
= 1 or m = 2, while the data sets have either 8, 10 
or 12 pointsand so N = 8, N = 10 or N = 12. 
	 For a given data set the model that best 
ûts the data is the one with the lowest ÷2

min/d.o.f. 
We start with the ûrst data set seen in Table 1 and 
we minimize ÷2 for all models one by one using the 
computer software Mathematica11. By comparing 
÷2

min/d.o.f we see that the power law model has 
the best ût. The values of the parametersare 
summarized in Table 6, while as was illustrated 
in Figure 2, we can see that indeed the power law 
model fits the data way better than the Higuchi 
model.
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Table 1. First data set (DOX) (from[8])

Number of 	 Time 	 Drug 	 Error 
time point	 (h)	 dissolution %	 bars

1	 1	 10	 7
2	 2	 20	 7
3	 4	 30	 3
4	 5	 38	 3
5	 7.5	 42	 7
6	 10	 48	 2
7	 12	 50	 8
8	 24	 60	 2
9	 35	 65	 5
10	 48	 70	 1

Table 2. Second data set (MTX) (from[8])

Number of 	 Time 	 Drug 	 Error 
time point	 (h)	 dissolution %	 bars

1	 1	 2	 1
2	 2	 5	 1
3	 4	 10	 1
4	 5	 15	 1
5	 7.5	 19	 1
6	 10	 21	 1
7	 12	 25	 1
8	 24	 35	 1
9	 35	 40	 1
10	 48	 45	 1

Table 3. Third data set (PLGA NPs) (from[9])

Number of 	 Time 	 Drug 	 Error 
time point	 (h)	 dissolution %	 bars

1	 1	 10	 2.5
2	 2	 18	 2.5
3	 3	 23	 4
4	 4	 27	 3
5	 5	 29	 3
6	 7	 34	 3
7	 8	 36	 3
8	 12	 40	 3
9	 15	 43	 3
10	 18	 44	 4
11	 24	 45	 3
12	 30	 46	 2.5

Table 4. Fourth data set (CA-PLGA NPs) 
(from[9])

Number of 	 Time 	 Drug 	 Error 
time point	 (h)	 dissolution %	 bars

1	 1	 20	 2.5
2	 2	 27	 2.5
3	 3	 32	 3
4	 4	 38	 2.5
5	 5	 43	 5
6	 7	 49	 3
7	 8	 53	 5
8	 12	 55	 3
9	 15	 57	 3
10	 18	 58	 2.5
11	 24	 58	 3
12	 30	 59	 3

Table 5. Fifth data set (PD-PCL-NC) (from[10])

Number of 	 Time 	 Drug 	 Error 
time point	 (h)	 dissolution %	 bars

1	 0	 0	 1
2	 0.5	 45	 1
3	 1	 65	 1
4	 2	 80	 1
5	 3	 90	 1
6	 4	 95	 1
7	 5	 97.5	 1
8	 6	 100	 2.5

	 We then follow exactly the same procedure 
for the rest of the data sets seen in Tables2, 3, 4 and 

5. Our results show that the power law model has 
the best ûtin all cases, and therefore our conclusion 
is robust. 
	 Our  resu l t s  a re  in te res t ing  for 
threereasons:Foremost, we have shown that 
although the most-widely used model in the 
literatureis the one introduced by Higuchi4, 
at least the class of systems considered here 
are bestdescribed by the power law model. In 
addition, we have shown that it is possible that 
amodel with more parameters has a better ût to 
the data contrary to what is stated in the literature 
whenthe coeûcient of determination R2 is used2. 
This is due to the fact thatalthough the number of 
degrees of freedom decreases when the number of 
free parametersincreases, in some cases the c2 at 
the minimum is reduced so much that overall the 
c2/d.o.fis lower. Finally, knowing the model that 
best describes the systems studied here in, it would 
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Table 6. Values of parameters for first data set (N=10)

Model	 First parameter	 Second parameter	 χ^2min/d.o.f

Higuchi (m = 1)	 k = 10.6865h^(“1/2)	 -	 13.1467
Power law (m = 2)	 A = 23.3605h^(“n)	 n = 0.2856	 1.4183
Hopfenberg (m = 1)	 k = 1.5740h^(“1)	 -	 69.1869
Zero order (m = 2)	 A = 35.7739	 B = 0.7355h^(“1)	 5.9920
Hixson-Crowell (m = 2)	 A = 3.3535	 B = 0.0164h^(“1)	 7.0212
First order (m = 2)	 Q0 = 38.4977	 k = 0.0293h^(“1)	 7.4994

Fig. 1. Schematic illustration of the nanoparticulate dual-drug delivery system

Fig. 2. Drug dissolution versus time, for the first data set presented in Table 1. Shown are the data points, the Higuchi 
model (red color) and the power law model (black color) which fits the data better than the Higuchi model

beinteresting to try to understand the underlying 
mechanism starting from basic principles,and 
relate the parameters of the model with properties 

of the system. In that case, sincethe parametersof 
the model have been already determined upon 
comparison with the data,one can compute the 
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properties of the system, and thus the properties of 
the system couldbe measured experimentally using 
our method. Furthermore, it is interesting to note at 
this point that the power law time dependencecan 
be mathematically derived as the exact analytical 
solution of the diûusion equationin one dimension 
in the semi-inûnite domain x > 0:
C(t,x)t = D C(t,x)xx	 ...(8)
	 w h e r e  t h e  s u b i n d e x  t  d e n o t e s 
differentiation with respect to time, while the 
subindex xx denotes double differentiation with 
respect to space, with the initial condition C(t 
= 0,x) = 0 and boundary condition C(t,x = 0) = 
ktn/2. In the above initial/boundary problem D is 
the diûusioncoeûcient assumed to be a constant, 
C(t,x) is the drug concentration asa function 
of time andposition and k,n are constants. It 
is known from mathematicalphysics that this 
boundary/initialvalue problem is well posed and 
it has a unique solution11. Using the method of 
Laplacetransform (see e.g.11) one ûnds that the 
unique solution that satisûes thediûusion equation 
and all conditions is the following12:
C(t,x) = kΓ(1 + n/2)(4t)n/2inerfc(x/2√Dt)	

...(9)
	 where Γ(z) is the Euler’s Gamma function, 
and we make use of the error function erf(x)and 
the complementary error function erfc(x) deûned 
as follows:

	 ...(10)

	 ...(11)
	 For more details on the special functions 
of mathematical physics see e.g.13. Finally, given 
the drug concentration, we can now compute 
the amount of the drug as a function of timeby 
performing the integral over all space from zero 
to infinity:

	 ...(12)
The integral can be computed exactly and ûnally 
we obtain:

M(t) =(k√DΓ(1 + n/2))/(2n Γ (3/2 + n/2)) 
t^(n+1/ 2)	 ...(13)

CONCLUSIONS

	 In this work, we conducted comparisons 
between several mathematical models widely-
mentioned in the literature regarding predicting 
overall release behavior. We have used 5 diûerent 
data setsobtained experimentally in realistic 
systems with diûerent drugs and nanoparticles. 
Eachmodel is characterized by one or two free 
parameters to be determined uponcomparison with 
the data. We have used the c2 minimization method 
to determine the values of the parameters of each 
model, and we have obtained the minimum value 
of c2 per degree offreedom for each model. Our 
results show that among all mathematical models 
studied herein, the power law model has the best-ût 
in all 4 cases. We conclude that at least the class 
ofsystems considered here are best described by 
the power law model, characterized by two free 
parameters, although the Higuchi model is the most 
widely-used in the literature, and also despite other 
claims that adopting the coeûcient of determination 
R2, models with more parameters have a worse ût 
to the data. Finally, our derived method could in 
principle be used to measure variable properties of 
the nano-systems, experimentally.
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