Phytochemical Analysis and Antimicrobial Activity of Pergularia tomentosa in the North East of The Kingdom of Saudi Arabia

Walid Abu Rayyan^{1*}, Sami A. G. Alshammari², Abdulaziz M. F. ALSammary², Mutab S. S. ALShammari², Nisreen Seder⁴, Luay Abu-Qatouseh¹, Muna Bostami¹, Kenza Mansoor³, Mohammed F. Hamad⁵, Ibrahim S. AlMajali⁶ and Wael Abu Dayyih^{3*}

¹Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan. ²College of Medicine, University of Hail, Hail, KSA. ³Department of Pharmaceutical Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan. ⁴School of Biomedical Science, Faculty of Health Sciences, University Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia. ⁵Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia. ⁶Department of Medical Laboratory Sciences, Faculty of Science, Mutah University.Mutah, Jordan. *Corresponding author E-mail: wabudayvih@uop.edu.jo

http://dx.doi.org/10.13005/bpj/1547

(Received: 18 August 2018; accepted: 06 November 2018)

The increment in numbers of antimicrobial resistant strains along with the scarcity of new targets for drug industry has forced scientists to investigate deeply in the natural resources for new compounds with antimicrobial activity. Pergularia tomentosa is a member of the Apocynaceae family found in a wide geographical region including the Gulf region, Africa, and the Middle East. It is used as a remedy for the treatment of skin sores, asthma, and bronchitis. Dried plants of Pergularia tomentosa were subjected to extraction by using a Soxhlet extractor process to obtain essential oil and characterized by HPLC- Mass Spectroscopy (GC-MS). The essential oil was evaluated for antibacterial activity against pathogenic microorganisms by well diffusion method and confirmed by microdilution method. Additionally, we measured the antioxidant activity of the extracts using DPPH reagent. Phytochemical analysis has revealed variation in compositions and concentrations of *P. tomentosa* constituents grown in Hail from other agricultural regions. The lowest MIC was recorded with ethylacetate extract MIC of 6.25 mg/ml against S. typhi, whereas, the ethanolic extract had the broadest effective against the five strains with a MIC of 25 mg/ml. In conclusion, we summarize a variation between the phytochemical constituents of P. tomentosa plants grown in the district of Hail and other geographical regions. In addition, there are several natural phytocompounds with an antimicrobial activity could be a good target for the antimicrobial and antioxidants industry.

Keywords: Pergularia tomentosa, Antimicrobial, Phytochemical, Antioxidants, HPLC-MS.

The emergence of superbug strains between health care workers has obliged the

scientific society to investigate deeper in the natural products for alternative compounds with

This is an d Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Published by Oriental Scientific Publishing Company © 2018

antimicrobial activity^{1, 2}. According to a report by the Infectious Diseases Society of America, around 70% of new cases administered to the hospitals in the US are involved with strains that show a potential no susceptibility to at least one drug^{3,4}. In the UK, nowadays, methicillin-resistant Staphylococcus aureus (MRSA) is considered a real concern in infection control accounting for around more than 50% of all *S. aureus* isolates where as it had a low value a decade ago².

Since the beginning of mankind, there is a wide use of herbal plants in the folk medicine due to their therapeutic and pharmaceutical properties⁵⁻⁸.*Pergularia tomentosa* is a member of the Apocynaceae family (subfamily: Asclepiadeae) a yearly green plant with a distinctive odor,known in Hail city as "Aloonah"^{9, 10}. The plant is a climbing to semi erect perennial herb of around 30 cm, the stem is pale green-white in color, highly branched and usually grow vertically and milky latex is extracted from the plant ¹¹.

This plant is found in a wide geographical region including Gulf region (Saudi Arabia and Oman), Africa (north Sudan, Egypt, Ethiopia, Algeria, Niger and Kenya) and Middle East (Jordan, Iraq, Iran, Pakistan, and Afghanistan,)⁵. ¹²⁻¹⁴. *Pergularia tomentosa* is used as a remedy for the treatment of rheumatic fever, asthma, bronchitis, helminthiases and skin sores as cutaneous leishmaniosis^{15, 16}. Furthermore, several publications have reported the cytotoxic, antioxidant and antibacterial activity of *P. tomentosa*¹⁷⁻¹⁹. Up to date, this is the first study conducted on *P. tomentosa* in the region of Hail north east KSA that is focusing on the analysis of phytochemical

Fig. 1. Pergularia tomentosa

components and elucidating theantioxidant and antimicrobial activity of this perennial.

MATERIALS AND METHODS

Sampling

This study was performed in the northeast region of KSA at Hail district. *Pergularia tomentosa* (Fig. 1) was collected from the surrounding regions of Naqbeen village (a mountainous area) about 25 km from Hail.

Leaves stem, and roots of *P. tomentosa* were collected locally in March 2017 in Hail, Southeast of KSA. Samples were collected from the water ways and slope in hilly areas and mixed together. The authenticity of the plant was confirmed by Dr. Mohammed Ahmed, and voucher specimens are maintained at the University of Hail (UOH) herbarium.

Preparation of plant extracts

The dust-freeleaves stem and roots of Pergularia tomentosa were shade dried for five days and finely grounded. 30 grams of dried powder were mixed in equal amounts from each part and extracted with 200 ml of ethanol, chloroform, and ethylacetate, consecutively, using Soxhlet extractor in order to separate phytochemical compounds based on their polarities. Filter paper Whatman No.1 was used to filter the crude extracts to remove impurities and debris and then the yield was concentrated by applying a vacuum at 35°C using a rotary evaporator. The concentrated extracts were subsequently dried aseptically using Lyophilization. Millipore distilled water was used to constitute inappropriate volume to obtain a final concentration of 200 mg/ml solution.

Phytochemical studies

For choosing the best solvent system (gradient of solvents (A and B)), we setup the method according to the TLC and analytical HPLC/UV. The concentration of the extract for the LC-MS analysis was 1 mg/2 ML ²⁰.

Ethanol layer of the extract of *P. tomentose* was subjected to qualitative analysis to determine the phytochemical composition for the plant. Liquid Chromatography-Mass Spectrometry (UHPLC system) with an autosampler and Waters nano Acquity HSS T3, 1.8 μ m, 100 μ m × 100 mm column was used in the analysis. H₂O 0.1 % formic acid (A) (v/v, pH=2.17) and 90 % acetonitrile in

H₂O0.1 % formic acid (B) was used asmobile phases at a flow rate of 0.4 ml/min. 1µm injection volume was used, the gradient elution for the injection was 5 % B during 0-2.5 min, a linear increase from 5 to 25 % B during 2.5-20 min, from 25 to 40 % B during 20-40 min and from 40 to 50 % B during 40-50 min, finally from 50 to 95 % B during 50-65 min followed by 15 min of maintenance. For identification of the eluent, we used Thermo Electron LTQ-Orbitrap XL mass spectrometer equipped with a nanoelectrospray ion source (Thermo Fisher Scientific, Bremen, Germany) and operated under Xcalibur 2.1 version software, in positive ionization mode for the MS analysis using data-dependent automatic switching between MS and MS/MS acquisition modes (Table $1)^{12}$.

Determination of antioxidant activity

Antioxidant properties of *P. tomentosa* extracts was determined in terms of scavenging free radical using DPPH method²¹⁻²³.

The reduction in the concentration of 2,2-diphenyl-1-Picrylhydrazyl (DPPH) radicals by the activityof the antioxidantsin *P. tomentosa* was measured and quantified bya colorimetric method. 0.02 g of DPPH reagent was dissolved in 1 L methanol; 3.9 mL of the solution is added to 0.1 mL of each sample that was diluted in a pure solvent of extraction at different concentrations. The mixtures were incubated for 90 minutes in a dark place at room temperature and the absorbance for each sample was measured at 517 nm using a UV/VIS spectrophotometer in triplicates.

The activity of free radical scavenging was disclosed as IC_{50} (µg/mL). The following equation was used to calculate the reduction in the amount of freeDPPH radical by the extract:

DPPH scavenging effect (%) = ((A0-A1)/A0)*100

A0 is the control absorbance at 90 min, and A1 is the sample absorbance at 90 min. All samples were analyzed in triplicate.

Antimicrobial activity

We have conducted a preliminary study using the anti-bacterial susceptibility test to determine the minimal inhibitory concentrations (MICs) for the three herbal extracts (ethylacetate, ethanol, and chloroform) against gram-positive, gram-negative and fungal strains. The protocol was conducted s defined in guidelines of National Committee for Clinical Laboratory Standard (NCCLS)²⁴. Further, we compared their activities to reference compounds, fluconazole, and ciprofloxacin. We have determined MICs for a strain collection consisting of Staphylococcus aureus ATCC®35556, Staphylococcus epidermidis ATCC®12228, Escherichia coli ATCC® 25404, Salmonella typhiATCC® 700931 and Candida albicans SC5314. We covered a range of 6.25-100mg/mL for the herbal extract against the strains. Bacterial strains were propagatedon nutrient plates at 37°C for 24 hours. Where as, we propagated C.albicans strains on sabouraud dextrose (Sab) plates at 25 °C for 24 hours. Row number 1 on each microdilution plate was used as viability control of microbial cells. Rows 2 to 12 contained a decreasing amount of the herbal

HPLC Conditions	Pump Flow	Pump Flow Rate		Auto-sampler Injection Volume		Auto-sampler Temperature		Column Oven	
	1.00mL/mi	nute	25	.00µL		10.0 °C		30.0) °C
Chromatography	phy Mobile Phase Mixture of(60%ACN, +40%(675µL Triethylamine / 1L of mixture,),pH adjusted to 7.1with phosphoric ad								
	Column Type			Sepax GP-C18, $(150 \times 4.6 \text{ mm}, 5 \mu\text{m})$					
	Expected Re			As seen in Table 230 nm			As seen in Table230 nm		
MRM-	Anlytes	Q1	Q3	Dwell	FP	DP	EP	CE	СХР
Detection	Category1	86	68.5	150	75	80	10	20	25
Conditions	Category2	440	265	150	75	80	10	20	25
Mass-Spectra	CUR	CA	D	IS		TEM		NEB	
Conditions	10	6		5500		400		5	

Table 1. Chromatographic conditions of the HPLC MS

extract in a 1:1 serial dilution scheme resulting in a range of final concentrations from 6.5mg/mL to 100 mg/mL. Ciprofloxacin was used as a reference drug for the antibacterial activity of the extracts whereas Fluconazole was used for the comparison of antifungal activity. TECAN Microtiter plate reader was used for obtaining the optical density at 450nm for the microtiter plates after incubation at 37°C for 22 ± 2 hours, results were analyzed with Magellan software.

RESULTS

Phytochemical compounds

Characterization of the ethanol fraction of *P. tomentosa* was carried out using mass spectrometry. We identified 18 compounds in the aqueous extract;14 compounds belonged to phenols and flavonoids whereas the last four had cardenolides structures. The results of the identified compounds were shown in Table 3. We also identified 3 flavonoids (Quercetin 3*O*-galactoside (8), Kaempferol 3-*O*-glucoside (11) and Kaempferol 3-*O*-malonylhexoside (14)) and one cardenolides (17) with LCMS techniques. This had also been isolated before in *P. tomentosa* [ref] and three other cardenolides (5, 17 and 18) which were not reported in this plant. Most of the identified flavonoids were belong to the flavone and flavonol ^{25, 26}(Table 2, Fig. 2).

The DPPH free radical scavenging activity

The property of *P. tomentosa* extracts to scavenge free radicals was measured using a UV-visibles pectrophotometer. Samples with plant extracts were analyzed covering a concentration range of 0.10 2.0 mg/mL. In the same conditions, Butylhydroxytoluene (BHT) was also measured as a reference compound for the radical scavenging activity. The proportion of DPPH free radicals scavenging for both tested extracts and the positive control BHT are depicted in Table 3. The antioxidants properties of the extracts were expressed by the IC_{50} values, showing the sample concentration required to reduce fifty percent of DPPH free radicals (Table 3).

Linear regression analysis of the doseresponse curve was used to determine the sample concentration required to reduce DPPH radical by 50% (IC₅₀ value). The values are the mean of three determinations \pm standard error.

Antimicrobial activity

The three fractions of *P. tomentosa* showed different antimicrobial activity against the study strains; ethanol layer showed a broad

	Identified Compounds in negative ion mode	Molecular formula	Antimicrobial activity	RT (min)	References
1	Phenolic glycosid: Scrophenoside D	C ₂₈ H ₃₄ O ₁₇	NO	4.12	Li et al, 2014
2	Phenolic: Synapoyl hexoside	$C_{17}^{20}H_{22}^{10}O_{10}^{17}$	NO	4.7	Orquedaet al, 2017
3	Flavone: Luteolin-di C-lucoside	$C_{27}H_{30}O_{16}$	YES	5.12	Singh et al, 2015
4	Phenolic: Feruloyl Glucoside	$C_{16}H_{20}O_{9}$	NO	9.1	Frig et al, 2016
5	Cardenolide: antiaroside G	$C_{29}H_{42}O_{12}$	NO	10.6	Shi et al, 2013
6	Flavonole: Kaempferol-malonyl-dihexosid	$C_{30}H_{32}O_{19}$	YES	12	Salced et al, 2016
7	Flavonole: Kampferol + glucose	$C_{27}H_{28}O_{17}$	YES	12.5	Heneidak et al, 2006
8	Flavonole: Quercetin 3-0-galactoside	$C_{21}H_{20}O_{12}$	YES	13.5	Valente et al, 2016
9	Flavonole: Isorhamnetin-3-0-glucoside	C,,,H,,,O,,	NO	13.6	Haijuan et al, 2013
10	Flavonole: Kaempferol 3-0-glucoside	$C_{21}^{22}H_{20}^{22}O_{11}^{12}$	YES	13.9	Hettwer, 2016
11	Phenolic: Ferulylmalic acid	$C_{14}H_{14}O_{8}$	NO	14.4	Song et al, 2016
12	Phenolic: glucuronic acid	$C_{17}H_{14}O_{10}$	NO	14.5	Heneidak et al, 2006
13	Flavonole: Kaempferol 3-0-malonylhexoside	$C_{24}H_{22}O_{14}$	NO	15.3	Dugo et al, 2009
14	Flavonole: Kaempferol-3-0-6 -acetyl-b-	C,,,H,,,O,,	YES	15.7	Ojwang, 2012
	Dglucopyranoside	25 22 12			
15	Flavonole: quercetin-3-(6"-succinoyl)-glucoside	$C_{25}H_{24}O_{15}$	YES	16.3	Hamed et al, 2006;
16	Cardenolide: Hydroxycalactin	$C_{29}^{25}H_{40}^{24}O_{10}^{15}$	NO	16.9	Piacente et al, 2009
17	Cardenolide: Antiaroside E	$C_{29}^{29}H_{42}^{40}O_{10}^{10}$	NO	18	Shi et al, 2010
18	Cardenolide: Antiaroside F	$C_{35}^{29}H_{52}^{42}O_{15}^{10}$	NO	18.5	Shi et al, 2010

Table 2. Phytochemical components identified in the ethanolic extract of P. tomentosa

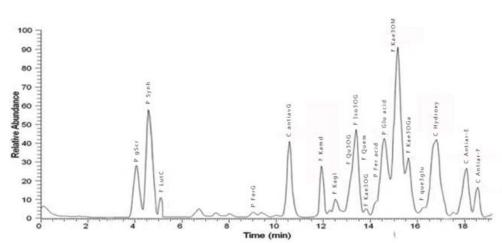

inhibition activity against the five strains (*S. aureus, S. epidermidis, E. coli, S. typhi and C. albicans*) whereas ethyl acetate fraction had the most effective MIC values against only three strains (*S.*

Table 3. DPPH radical scavenging activityexpressed as IC_{50} values (ig/mL) of variousextracts from *P. tomentose*

Extract Ethanol	IC ₅₀ 0.63 (0.993)*
Methanol	0.58 (0.98)
Ethylacetate	0.54 (0.981)
Butylhydroxytoluene (BHT)	0.61 (0.99)

* R2: Correlation coefficient

epidermidis, S. typhi, and C. albicans) as depicted in Fig (4). The lowest MIC value was 6.25 mg/ mL for the collection strains. A summary of the MIC distribution for the three fractions against the test strains is given in Table 4. At the level of antibacterial activity, ethyl acetate fraction has the most effective value (MIC 6.25 mg/mL). It was evident from the MIC results that the lipophilicity and the low solubility profile have affected the activity of the prepared compounds and consequently their antimicrobial effect.

Fig. 2. Profile of LC-MS of *P. tomentosa* ethanolic extract. The names are according to the identified compounds in Table 2

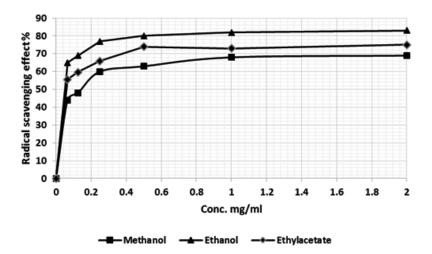


Fig. 3. Radical scavenging effect (%) on DPPH radicals of P. tomentosa organs

1767

DISCUSSION

This study has investigated the phytochemical composition and the biological properties of *Pergularia tomentosa* grown in the district of Hail. The results of metabolite profiling showed that there are 18 compounds (phenolics and cardenolides) in the extract. Fourteen compounds belonging to the phenolics and flavonoids, and 4 cardenolides were identified from leaves' aqueous extract of *P. tomentosa*. Given that *P. tomentosa* is in Asclepiadaceae, we expected that it would

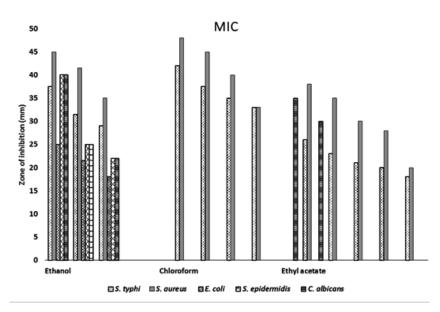


Fig. 4. MIC of *P. tomentosa* extracts against the pathogenic microorganisms

	Conc. mg/ml	S. typhi	S. aureus	E. coli	S. epidermidis	C. albicans
Ethanol	100	37.5	45	25	40	28
	50	31.5	41.5	21.5	25	26
	25	29	35	18	22	19
	12.5	-	-	-	-	-
	6.25	-	-	-	-	-
Chloroform	100	42	48	-	-	-
	50	37.5	45	-	-	-
	25	35	40	-	-	-
	12.5	33	33	-	-	-
	6.25	-	-	-	-	
Ethyl acetate	100	26	38	-	-	35
	50	23	35	-	-	30
	25	21	30	-	-	-
	12.5	20	28	-	-	-
	6.25	18	20	-	-	-
Ciprofloxacin	8 μg/ml	25	28	24	30	-
	4 μg/ml	20	23	19	20	-
	2 µg/ml	15	14	13	18	-
Fluconazole	10 µg/ml	-	-	-	-	17
	5 µg/ml	-	-	-	-	13

	1		·		
Table 4. MIC of Pergul	lawia tomontosc	avtraate age	unct nothoga	ania miara	organiama
	iaria iomeniosa	childuis age	illist DathOg		Joigannsins

have contained many cardenolides, but 79% of the identified compounds are phenolic, and 21% belong to the cardenolides. Other reports which investigated the aerial parts of this plant 9 demonstrated that its aerial parts are a rich source of flavonoids. Almost all studies showed that the roots of P. tomentosa are cardenolide-bearing part⁶, ⁹. We identified 4 cardenolides in leaves of this plant. These results suggested that the leaves of P. tomentosa are a rich source of flavonoids and could be a suitable source for valuable cardenolides. For example, one of the identified cardenolides is Ghalakino side, which has a potent effect on cancer cells²⁷. The other three identified cardenolides (Antiaroside E-G), from the resultsof Shiet al (2010), exhibited strong cardiotonic activity, with a potent inhibitor of Na+/K+-ATPase. In addition, its phenolic-compounds can play a strong antioxidant role^{8, 28}. In this field, Yakubu et al (2015) and Al Jabri (2013) confirmed the antioxidant effect of the extract of this plant^{2, 10, 11, 18}.

The antimicrobial activity for ethanol extract was the broadest whereas the lowest MIC was 6.25 mg/mL for ethyl acetate but surprisingly the inhibition was noticed in all strains the grampositive, gram-negative and fungus. This points to inhibitory effect applied on a metabolic pathway or a process in gene transcription especially that the collection of pathogenic microorganism has different constituents in the cell membrane and ribosomal subunits^{8, 23, 29-31}.

Additionally, phytochemical analysis has revealed variation in components and concentrations of *P. tomentosa* constituents grown at different agricultural regions ³². Interestingly, we can enumerate two important sources of antioxidants in *P. tomentosa*, firstly, the high concentrations of phenolic compounds in *P. tomentosa* which is considered to be a good source of powerful antioxidants, secondly, the hydroxyl groups in flavonoids which have the capability to react with DPPH radical by hydrogen atom donation to free radicals^{7,33}, while a highly positive correlation between total phenolic content and antioxidant activity was established in case of many plant species ^{7,23}.

CONCLUSIONS

In conclusion, we summarize a variation between the phytochemical constituents of *P. tomentosa* plants grown in the district of Hail and other geographical regions. In addition, there are several natural phyto compounds with an antimicrobial activity could be a good target for the antimicrobial and antioxidants industry.

REFERENCES

- 1. S Mahmoudi, M Khali, A Benkhaled, K Benamirouche, and I Baiti. Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from ten Algerian Ficus carica L. varieties. *Asian Pacific Journal of Tropical Biomedicine*, **6**:239-245 (2016).
- H ADCOCK. Pharmageddon: is it too late to tackle growing resistance to anti-infectives? *Pharmaceutical journal*,269:599-600 (2002).
- 3. V Alexandriaand I D S o America. Statement of the DSA Concerning Bioshield II: Responding to an Everchanging Threat. *Arlington, VA: Society* of America, IDSA, (2004).
- R A Mothana, S Kriegisch, M Harms, K Wende, and U Lindequist. Assessment of selected Yemeni medicinal plants for their in vitro antimicrobial, anticancer, and antioxidant activities. *Pharmaceutical Biology*,49:200-210 (2011).
- 5. Z Babaamer, L Sekhri, A-J Hala, A Mahmoud, and M A ZARGA. Extraction and identification of triterpenoids from Pergularia tomentosa L.(2013).
- 6. O Y Althunibat, H Qaralleh, S Y A Al-Dalin, M Abboud, K Khleifat, I S Majali, H K Aldal'in, W A Rayyan, and A Jaafraa. Effect of Thymol and Carvacrol, the Major Components of Thymus capitatus on the Growth of Pseudomonas aeruginosa. *Journal of Pure and Applied Microbiology*, **10**:367-374 (2016).
- E M Mallah, W S Rayyan, W A Dayyih, F D Elhajji, K A Mansour, I S Al-Majali, and T A Arafat. Dose-Dependent Synergistic effect of Pomegranate Juice on the Bioavailability of Sildenafil in Rats by Using HPLC Method. *Lat Am J Pharm*, 35:1277-1284 (2016).
- I S Majali, S A Oran, M k Khaled, H Qaralleh, W A Rayyan, and O Y Althunibat. Assessment of the antibacterial effects of Moringa peregrina

extracts. African Journal of microbiology research, 9:2410-2414 (2015).

- S Heneidak, R J Grayer, G C Kite, and M S Simmonds. Flavonoid glycosides from Egyptian species of the tribe Asclepiadeae (Apocynaceae, subfamily Asclepiadoideae). *Biochemical* systematics and ecology, 34:575-584 (2006).
- S Akroum, D Bendjeddou, D Satta, and K Lalaoui. Antibacterial activity and acute toxicity effect of flavonoids extracted from Mentha longifolia. *American-Eurasian Journal of Scientific Research*, 4:93-96 (2009).
- S A H Al Jabri. Chemical and Bio-analytical Studies on Pergularia tomentosa and Species from the Mentha Genus, University of Leicester2013.
- 12. R Erfanzadeh, R Shahbazian, and H Zali. Role of plant patches in preserving flora from the soil seed bank in an overgrazed high-mountain habitat in northern Iran.(2014).
- M M E O Ahmed. Gohar, Essam Abdel Sattar, M. El Said, M. Niwa. Cardenolides and âSitosterol Glucoside from Pergularia tomentosa. *Natural Product Sciences* Volume 6:142-146 (2000).
- M S Al-Said, M S Hifnawy, A T McPhail, and D R McPhail. Ghalakinoside, a cytotoxic cardiac glycoside from Pergularia tomentosa. *Phytochemistry*, 27:3245-3250 (1988).
- 15. A I Hamed, A Plaza, M L Balestrieri, U A Mahalel, I V Springuel, W Oleszek, C Pizza, and S Piacente. Cardenolide glycosides from Pergularia tomentosa and their proapoptotic activity in Kaposi's sarcoma cells. *Journal of natural products*, 69:1319-1322 (2006).
- P W Green, N C Veitch, P C Stevenson, and M S Simmonds. Cardenolides from Gomphocarpus sinaicus and Pergularia tomentosa (Apocynaceae: Asclepiadoideae) deter the feeding of Spodoptera littoralis. *Arthropod-Plant Interactions*,5:219 (2011).
- S Piacente, M Masullo, N De Nève, J Dewelle, A Hamed, R Kiss, and T Mijatovic. Cardenolides from Pergularia tomentosa display cytotoxic activity resulting from their potent inhibition of Na+/K+-ATPase. *Journal of natural* products, 72:1087-1091 (2009).
- R Yakubu, F Musa, A Lukman, and F Sheikh. Activity guided fractionation with Antimicrobial Evaluation of Pergularia Tomentosa L.(Asclepiadacea) whole plant. British Microbiology Research Journal, 8:567-576 (2015).
- D Goyder. A revision of the genus Pergularia L.(Apocynaceae: Asclepiadoideae). Kew Bulletin:245-256 (2006).
- 20. G D'Urso, M Maldini, G Pintore, L d'Aquino, P Montoro, and C Pizza. Characterisation of

Fragaria vesca fruit from Italy following a metabolomics approach through integrated mass spectrometry techniques. *LWT-Food Science and Technology*, **74**:387-395 (2016).

- W Brand-Williams, M-E Cuvelier, and C Berset. Use of a free radical method to evaluate antioxidant activity. *LWT-Food science and Technology*, 28:25-30 (1995).
- H Hosseinzadeh, H Zarei, and E Taghiabadi. Antinociceptive, anti-inflammatory and acute toxicity effects of Juglans regia L. leaves in mice. *Iranian Red Crescent Medical Journal*, 13:27 (2011).
- 23. A H Al-Nadaf, N J Seder, and W A Rayyan. Wound healing; antimicrobial and anti-oxidant activity for Jordanian Juglans Regia L. unripe fruits. *Journal of Innovations in Pharmaceutical and Biological Sciences*, **5**:26-34 (2018).
- 24. P Wayne. National committee for clinical laboratory standards. *Performance standards for antimicrobial disc susceptibility testing*, **12**:01-53 (2002).
- 25. A Mari, D Lyon, L Fragner, P Montoro, S Piacente, S Wienkoop, V Egelhofer, and W Weckwerth. Phytochemical composition of Potentilla anserina L. analyzed by an integrative GC-MS and LC-MS metabolomics platform. *Metabolomics*,**9**:599-607 (2013).
- 26. P Li, W Su, C Xie, X Zeng, W Peng, and M Liu. Rapid Identification and Simultaneous Quantification of Multiple Constituents in Nao-Shuan-Tong Capsule by Ultra-Fast Liquid Chromatography/Diode-Array Detector/ Quadrupole Time-of-Flight Tandem Mass Spectrometry. Journal of chromatographic science,53:886-897 (2014).
- 27. L-S Shi, S-C Kuo, H-D Sun, S L Morris-Natschke, K-H Lee, and T-S Wu. Cytotoxic cardiac glycosides and coumarins from Antiaris toxicaria. *Bioorganic & medicinal chemistry*, **22**:1889-1898 (2014).
- L-S Shi, Y-R Liao, M-J Su, A-S Lee, P-C Kuo, A G Damu, S-C Kuo, H-D Sun, K-H Lee, and T-S Wu. Cardiac glycosides from Antiaris toxicaria with potent cardiotonic activity. *Journal of natural products*, 73:1214-1222 (2010).
- 29. A Burger-Kentischer, D Finkelmeier, P Keller, J Bauer, H Eickhoff, G Kleymann, W Abu Rayyan, A Singh, K Schroppel, K Lemuth, K H Wiesmuller, and S Rupp. A screening assay based on host-pathogen interaction models identifies a set of novel antifungal benzimidazole derivatives. *Antimicrobial agents* and chemotherapy, **55**:4789-4801 (2011).
- K Sweidan, J Engelmann, W Abu Rayyan, D Sabbah, M Abu Zarga, T Al-Qirim, Y Al-

Hiari, G Abu Sheikha, and G Shattat. Synthesis and preliminary biological evaluation of new heterocyclic carboxamide models. *Letters in Drug Design & Discovery*, **12**:417-429 (2015).

31. K Sweidan, W Abu Rayyan, M Abu Zarga, M M El-Abadelah, and H AY Mohammad. Synthesis and Antibacterial Evaluation of Model Fluoroquinolone-Benzylidene Barbiturate Hybrids. *Letters in Organic Chemistry*, **11**:422-425 (2014).

- 32. T T Cushnieand A J Lamb. Antimicrobial activity of flavonoids. *International journal of antimicrobial agents*, **26**:343-356 (2005).
- 33. I Lahmar, H Belghith, F Ben Abdallah, and K Belghith. Nutritional composition and phytochemical, antioxidative, and antifungal activities of Pergularia tomentosa L. *BioMed research international*,**2017**:(2017).