Anti-Inflammatory Activity of *Sonchus oleraceus* Extract in Lipopoly saccharide-Stimulated RAW264.7 Cells

Eun-Jin Yang¹, Sungchan Jang², Kwang Hee Hyun³, Eun-Young Jung⁴, Seung-Young Kim^{2*} and Chang-Gu Hyun^{1*}

¹Department of Chemistry and Cosmetics, Jeju National University,Jeju 63243, Korea. ²Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Korea. ³Helios Co., Ltd.,Sanchundan Dong-gil 16, Jeju 63243, Korea. ⁴Department of Beauty Art, Chejuhalla University, 38 Halladaehak-ro, Jeju 63092, Korea. *Corresponding author E-mail: sykim01@sunmoon.ac.kr

http://dx.doi.org/10.13005/bpj/1546

(Received: 11 July 2018; accepted: 14 November 2018)

The anti-inflammatory activity and non-toxicity of *Sonchusoleraceus*extract (J6) were tested by measuring its effect on the levels of nitric oxide (NO), prostaglandin E2 (PGE₂), and the pro-inflammatory cytokines,interleukin-1 β (IL-1 β), interleukin-6 (IL-6), and tumor necrosis factor- α (TNF- α), in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We treated the RAW264.7 cells with various concentrations (50, 100, or 200 μ g/mL) of J6. Our results showed that J6 inhibited the production of NO, PGE₂, and pro-inflammatory cytokines in a concentration-dependent manner, without compromising cell viability. In addition, we provided supporting evidencethat the inhibitory activity of J6 on the production of NO and PGE₂occurredvia the downregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. Our findings suggestthat J6 is a new source for anti-inflammatory drugs and ingredients for healthcare products that include functional cosmetics.

Keywords: Sonchusoler aceus, anti-inflammation, iNOS, COX-2, TNF-α, PGE,

Lipopolysaccharide (LPS), a well-known endotoxin, is found in the outer membraneof Gramnegative bacteria.LPS induces the expression of inflammatory mediators in macrophages, such as RAW264.7 cells, and monocytes¹ and increases the production of nitric oxide (NO) and cytokines in the early stage of inflammation².

Nitric oxide synthase (NOS), which mediates inflammation, exists as three isoforms: neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS). eNOS is mainly expressed in endothelial cells and n NOS expression is restricted mostly to the nervous system and pancreatic beta cells. These two isoenzymes are constitutively expressed and play a key role in homeostasis,including vasodilation, blood flow control, and nerve signal transmission³. iNOS, in contrast, is induced by LPS and enzymatically generatesthe pro-inflammatory mediator, NO^{4,5}. Another inflammatory enzyme, cyclooxygenase (COX), exists astwo isoforms,namely COX-1 and COX-2. COX-1 is expressed in almost every tissue and is involved in homeostasis and protection of body organs. COX-2 is mostly involved in

This is an d Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Published by Oriental Scientific Publishing Company © 2018

inflammatory responses^{6,7}, and its expression is induced by LPS and inflammatory cytokines⁸. The expression of iNOS and COX-2, their production of NO and prostaglandin E2(PGE₂), respectively, and the generation of pro-inflammatory cytokines, such as tumor necrosis factor- α (TNF- α), interleukin (IL)-1 β , and IL-6, are common markers of inflammation⁹.

Sonchus oleraceus is a biennial, conicalshaped plant thatbelongs to the Asteraceae family. It can grow up to 1 m high and has been utilized asa medicinal compound and food source for livestock and humans.Its seedling leaves can be eaten uncooked. This plant contains a high content of flavonoid compounds, such as kaempferol, luteolin. quercetin, quercimeritrin, and chrysanthemin^{10–13}.

Previous studies mainly investigated the polyphenol content and antioxidant activity of S.oleraceuswhen grown at different locations, with seasonal changes, and after exposure to various environmental factors 10-13. However, there has been little study on the pharmacological and functional properties of S. oleraceus and its use as an ingredient in functional cosmetics. Some widely used synthetic materials such as oxybenzone, mineral oil, and parabens can reportedly cause adverse effects such as liver damage, abnormal body growth, and gastrointestinal bleeding ²⁰. As a result, interest in biotic materials with minimal side effects is increasing. Thus, the aim of the present study was to investigate the inhibitory activity of J6 S. oleraceus extraction the expression of inflammatory mediators in LPS-stimulated macrophages and to explore its potential as a biotic material.

MATERIALS AND METHODS

J6 procurement and cell culture

J6 was obtained from the Jeju Biodiversity Institute¹⁹. The murine macrophage cell line RAW264.7 was purchased from American Type Culture Collection (Manassas, VA, USA) and cultured in Dulbecco's Modified Eagle Medium (DMEM) (Gibco, Grand Island, NY, USA) supplemented with 100 units/mL penicillinstreptomycin and 10% (v/v) fetal bovine serum (FBS) at 37°C and 5% CO₂.

Cytotoxicity assay

An MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide) assay was implemented to assess the cytotoxicity of the J6 extract. RAW264.7 cells were plated at 1.8×10^5 cells/200uL/wellin a 96-well plate and incubated for 18 h prior to the 24 h-treatment of 1 μ g/mL LPS and different concentrations of J6 extract (50, 100, and 200 μ g/mL) at 37°C and 5% CO₂. Fifty microliters of MTT reagent was then added and incubated for 4 h. The spent culture medium was completely removed and 200 µL dimethylsulfoxide (DMSO, Sigma, MO, USA) was added to dissolve the formazan precipitate. The absorbance at 540 nm was then measured using a microplate reader (Bio-TekInstrument Inc., Vermont, WI, USA). The average absorbance for each sample group was used to evaluate cell viability.

NO assay

RAW264.7 cells were plated at 1.8×10^5 cells/200uL/wellin a 24-well plate and incubated for 18 h prior to the 24 h-treatment of 1 µg/mL LPS and different concentrations of J6 extract (50, 100, and 200 µg/mL) at 37°C and 5% CO₂.One hundred microliters of culture mediumfrom each well and an equal volume of Griess reagent were mixed and incubated at room temperature for 10 min¹⁵ followed by the measurement of absorbance at 540 nm using anenzyme-linked immunosorbent assay (ELISA) reader. The Griess reagent (1% (w/v) sulfanilamide, 0.1% (w/v)N-(1-naphthyl)ethylenediaminein 2.5% (v/v)phosphoric acid) reacts with nitrite in the culture medium to estimate the amount of NO produced. Values were calculated by using a standard curve of sodium nitrite (NaNO₂).

PGE,, IL-1β, IL-6, and TNF-α ELISAs

RAW264.7 cells were cultured as described above and treated for 24 h with 450 μ L of 1 μ g/mL LPS and 50 μ L of 10-times-concentrated 1 mg/mL J6 extract. The culture medium was then centrifuged at 12,000 rpm for 3 min and the resulting supernatant was used to measure the content of PGE₂, IL-1 β , IL-6, and TNF- α . All samples were kept at 20°C until quantification. PGE₂ and the other three pro-inflammatory cytokines were quantified using specific ELISA kits (R&D Systems Inc., Minneapolis, MN, USA); the R-squared values for the standard curves were 0.99.

Western blot analysis

As previously described, RAW264.7 cells were cultured and treated with LPS and J6 extract. After washing twice in PBS, proteins were isolated in lysis buffer [1X RIPA buffer (Upstate Cell Signaling Solution, Lake Placid, NY, USA), 1 mMphenylmethylsulfonyl fluoride(PMSF), 1 mM Na₃VO₄, 1 mMNaF, 1 µg/mL aprotinin, 1 µg/mL pepstatin, and 1 µg/mL leupeptin] for 1 h, followed by centrifugation. The protein-containing supernatant was subjected to 10% SDS-PAGE and electrophoreticallytransferred to

a polyvinylidene difluoride (PVDF) membrane (Millipore, Billerica, MA, USA) at 200 mA for 2 h. The resulting membrane was blocked at room temperature with5% skim milk in 0.05% Tween-20/Tris-buffered saline (T/TBS) followed by incubationwith theprimary antibody at 4°C overnight. The primary antibodies were iNOS antibody (1:5000, Calbiochem, USA), COX-2 antibody (1:1000, BD Biosciences Pharmingen, USA), and β -actin antibody clone AC-74 (1:10,000, Sigma, USA). After washing four times in T/ TBS, the membrane was incubated with 5,000- or

Fig. 1. Effect of J6 extracton nitric oxide production in LPS-stimulated RAW264.7 cells Cells were stimulated with 1 g/mL LPS alone or in combination withvarious concentrations (50, 100, or 200 $\mu g/mL$) of J6 for 24 h. Nitric oxide production was determined by the Griess reagent method. Cell viability was determined using an MTT assay from the 24-h culture of cells stimulated with LPS (1 $\mu g/mL$) in the presence of J6. All data areexpressed as the means ± SD of triplicate experiments. *p < 0.005, **p < 0.001 versus LPS alone. IC₅₀ = 158.6 $\mu g/mL$

Fig. 2. Effect of J6 on PGE₂ production in LPS-stimulated RAW264.7 cells Cells were stimulated with 1 μ g/mL LPS with or without various concentrations (50, 100, or 200 μ g/mL) of J6 for 24 h. PGE₂ production was measured by ELISA. The data represent the means ± SD of triplicate experiments. *p <0.005, **p<0.001 versus LPS alone. IC₅₀=18.3 μ g/mL

10,000-fold diluted secondary antibody (Jackson ImmunoResearch, East Grove, PA, USA), followed by washing thrice in T/TBS. The proteins of interest were detected and quantified using an ECL kit and an imaging densitometer (Model GS-700; Bio-Rad, Hercules, CA, USA).

Statistical analysis

All data are expressed as means ±standard deviations (SDs). Statistical differences between samples were resolved by Student's t-tests.

RESULTS AND DISCUSSION

Effect of J6 on cell viability

For the cytotoxicity assay, murine RAW264.7 macrophage cells were treated for 24 h with 1 μ g/mL LPS alone or in combination with various concentrations of J6 extract (50, 100, or 200 μ g/mL). Anincrease in cell viability and no toxicity were observed in the J6-treated samples relative to that of the control group (Fig. 1, line plot), which was consistent with the results of a previous study

Fig. 3. Effect of J6 on IL-1 β production in LPS-stimulated RAW264.7 cells Cells were stimulated with 1 µg/mL of LPS only or with various concentrations (50, 100, and 200 µg/mL) of J6 for 24 h. IL-1 β production was measured by ELISA. The data represent the means ± SD of triplicate experiments. *p <0.005, **p<0.001 versus LPS alone

Fig. 4. Effect of J6 on IL-6 production in LPS-stimulated RAW264.7 cells

Cells were stimulated with 1 μ g/mL of LPS with or without various concentrations (50, 100, and 200 μ g/mL) of J6 for 24 h. IL-6 production was measured by ELISA. The data represent the means ± SD of triplicate experiments. *p <0.005, **p<0.001 versus LPS alone. IC₅₀=114.5 μ g/mL

on the anti-inflammatory effect of *Scutellariae* radix extract¹⁶. Up to 200 μ g/mL of J6 extract, near the cytotoxic threshold concentration, was used further to assay the inhibitory activity of J6 on the

<0.005, **p<0.001 versus LPS alone

generation of NO, PGE_2 , and pro-inflammatory cytokines.

Effect of J6 on NO generation

The effect of J6 extract on the generation

Fig. 5. Effect of J6 on TNF- α production in LPS-stimulated RAW264.7 cells Cells were stimulated with 1 ig/mL LPS only or with various concentrations (50, 100, or 200 µg/mL) of J6 for 24 h. TNF- α production was measured by ELISA. The data represent the means ± SD of triplicate experiments. *p

Fig. 6. Effect of J6 on protein level of iNOS in LPS-stimulated RAW 264.7 cells

RAW 264.7 cells (6.0×10^{5} cell/mL) were stimulated with LPS (1 µg/mL) in the presence of J6 (50,100, or 200 µg/mL) for 24h. Whole-cell lysates (30 µg) were prepared and subjected to 10% SDS-PAGE; the expression level of iNOS and β -actin were determined by western blotting. β -Actinwas used as a loading control. Representative images are shown

Fig. 7. Effect of J6 on protein level of COX-2 in LPS-stimulated RAW 264.7 cells

RAW 264.7 cells (6.0×105 cell/mL) were stimulated with LPS (1 µg/mL) in the presence of J6 (50,100, or 200 µg/mL) for 24h. Whole-cell lysates ($30 \mu g$) were prepared and subjected to 10% SDS-PAGE; the expression level of COX-2 and β -actin were determined by western blotting. β -actin used as a loading control. Representative images are shown

of NO, a critical mediator of the inflammatory response, was examined (Fig. 1, bar graph). RAW264.7 cells were treated with LPS and J6 extract as described above and the generated NO was quantified asnitriteusing a Griess assay. Relative to that of the LPS-only-treated group, NO production was decreased by 64% at the peak concentration of 200 μ g/mL J6 extract. This confirmed the potent inhibitory activity of J6 on NO production and itspotential to inhibit iNOS expression.

Effect of J6 extracton PGE2 production in LPSstimulated RAW264.7 cells

RAW264.7 cells were plated and treated with LPS and J6 extract as described in the NO assay and PGE₂ generation was thenassessedusing a PGE₂ ELISA kit. The cells were treated with J6 at various concentrations of 50, 100, and 200 μ g/ mL.Relative to that of the cells treated with LPS only, PGE₂ production was substantially decreased over the J6 concentration range of 50–200 μ g/ mL;this reduction reached 95.5% at the peak concentration of 200 μ g/mL J6 (Fig. 2). Therefore, J6 extract inhibited LPS-induced PGE₂ production concentration-dependently.

Effect of J6 extract on pro-inflammatory cytokine (IL-1 β , IL-6, and TNF- α) generation

Cytokines act as mediators in the activation, proliferation, and differentiation of immune cells and typical pro-inflammatory cytokines, such asIL-1 β , IL-6, and TNF- α , are well recognized as modulators of inflammatory responses both in vitro and in vivo17. The effect of J6 extract on the production of these three pro-inflammatory cytokines in the presence and absence of LPS was examined. The secretionof IL-1 β , IL-6, and TNF- α was increased in the medium of LPS-treated cells (Fig. 3, 4, 5). Relative to that of the LPS-only-treated group, IL-1ß and IL-6 production were concentration-dependently decreased by J6 extract, reaching 43.5% (Fig. 3) and 80% (Fig. 4) reduction, respectively, at 200 µg/mL J6. Similarly, TNF-áproduction was decreased in a concentration-dependent manner (Fig. 5). This confirmed the anti-inflammatory effect of J6 extract on secretion of the three proinflammatory cytokines, IL-1 β , IL-6, and TNF- α , in LPS-stimulated RAW264.7 cells.

Effect of J6 on protein expression of iNOS and COX-2

iNOS and COX-2 are known as key players in the synthesis of NO and PGE₂ during inflammation¹⁸. Based on our findings that J6 inhibits the production of NO and PGE₂ in a concentration-dependent manner, we used western blotting to examine whether the reduced production of NO and PGE₂ was associated with reduced protein expression of iNOS and COX-2. Our results demonstrate that J6 extract had a suppressive effect on the LPS-induced expression of iNOS and COX-2 in a concentration-dependent manner (Fig. 6, 7). This also showed that J6 inhibits NO and PGE₂ generation via down regulation of iNOS and COX-2 expression, respectively.

CONCLUSIONS

S. oleraceus has been valued for animal and human consumption but there have been fewstudies on its pharmacological activity and toxicity. Our study confirmed that J6 extract was not toxic and exerted an inhibitory effect on the production of NO, PGE, and pro-inflammatory cytokines in LPS-stimulated macrophages.We found that during LPS-stimulation J6 extract inhibited the generation of NO and PGE, in a concentration-dependent manner. We also examined whether J6 was involved in modulating the production of pro-inflammatory cytokines and founditto concentration-dependently inhibit the secretion of three pro-inflammatory mediators(i.e., IL-1 β , IL-6, and TNF- α), suggesting that it has potent anti-inflammatory effects. Moreover, the protein level of bothiNOS and COX-2 was drastically decreased with increasing concentrations of J6 extract. Further research is required to clarify that the down-regulation of iNOS and COX-2 expression is through the downregulation of NF- κ B activation and MAPK phosphorylation^{21,22}. These results provide strong support that J6 is a potential new source for anti-inflammatory drugs and ingredients for healthcare products, including functional cosmetics.

ACKNOWLEDMENT

This work was funded by the 2017 Jeju Industry-academic Converged Zone (MOTIE, 14150240).

REFERENCES

- Park SJ, Shin JS, Cho W, Cho YW, Ahn EM, Baek NI, Lee TK. Inhibition of LPS induced iNOS, COX-2 and cytokines expression by kaempferol-3-o-²-D-sophoroside though the NF-kB inactivation in RAW264.7 cells. *Kor J Pharmacogn*; **39**:95-103 (2008).
- Higuchi M, Hisgahi N, Taki H, Osawa T. Cytolytic mechanisms of activated macrophages, tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. *J Immunol*; 144: 1425-1431 (1990).
- Moncada S, Higgs EA. Molecular mechanisms and therapeutic strategies related to nitric oxide. *FASEB J*; 9: 1319-1330 (1995).
- Guzik TJ, Korbut R, Adamek-guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol; 54:469-487 (2003).
- Barnes PJ, Liew FY. Nitric oxide and asthmatic inflammation.*Immunol Today*; 16: 128-130 (1995).
- Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE. Cyclooxygenase in biology and disease.*FASEB J*; 12:1063-1073 (1998).
- Smith WL, Michael GR, De-Witt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2.*JBiolChem*; 271: 33157-33160 (1996).
- Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Ann Rev PharmacolToxicol;38:97-120 (1998).
- Yun HJ, Heo SK, Yi HS, Kim CH, Kim BW, Park SD. Anti-inflammatory effect of injiho-tang in RAW264.7 cells.*Korean J Herbology*;23:169-178 (2008).
- Howard LR, Pandjaitan N, Morelock T, Gil MI. Antioxidant capacity and phenolic content of spinach as affected by genetics and growing season. J Agric Food Chem;50:5891-5896 (2002).
- 11. Ma M, Hong CL, An SQ, Li B. Seasonal, spatial, and interspecific variation in quercetin in apocynumvenetum and poacynumhendersonii, Chinese traditional herbal teas. *J Agric Food Chem*; **51**:2390-2393 (2003).
- 12. Guil-Guerrero JL, Gimnez-Gimnez A, Rodriguez-Garcia I, TorijaIsasa ME.Nutritional composition

of Sonchus species (*A. asper L, S. oleraceus L* and *S. tenerrimus L*).*J Sci Food Agric*; **76**: 628-632 (1998).

- Yin J, Kwon GJ, Wang MH. The antioxidant and cytotoxic activities of *Sonchusoleraceus* L. extracts. *Nutr Res Pract*; 3: 189-194 (2007).
- Yang EJ, Hyun JM, Lee NH, Hyun CG. In vitro screening of Korean halophytes for cosmeceutical ingredients.*Int J ChemTech Res*; 9:541-547 (2016).
- Delgado-Pertinez M, Gomez-Cabrera A, Garrido A. Predicting the nutritive value of the olive leaf (oleaeuropea): digestibility and chemical composition and in vitro studies. *Anim Feed SciTechnol*; 87: 187-201 (2000).
- Yoon SB, Han HS, Lee YJ.Effect of *Scutellariae* radix extract on the proinflammatory mediators in RAW 264.7 cells induced by LPS.Korean J Herbology; 26: 75-81 (2011).
- Kong SM, Jang SA, Sohn EH, Bak JP, Sohn ES, Koo HJ, Yoon WJ, Kwon JE, Jeong YJ, Meng X, Han HS, Kang SC. Comparative study of *Litsea japonica* leaf and fruit extract on the anti-inflammatory effects. *Korean J Plant Res*; 28: 145-152 (2015).
- Aktan F. iNOS-mediated nitric oxide production and its regulation. *Life Sci*; **75**: 639-653 (2004).
- Eun-Jin Yang, JuMi Hyun, Nam Ho Lee, and Chang-Gu Hyun. In vitro screening of Korean halophytes for cosmeceutical ingredients. *International Journal of ChemTech Research*, 9(8): 541-547 (2016).
- Bruce Lourie, Rick Smith. Toxin Toxout: Getting Harmful Chemicals Out of Our Bodies and Our World. St. Martin's Griffin; Reprint edition (2015)
- TakuhiroUto, NatnaprachSuangkaew, Osamu Morinaga, Hiroko Kariyazono, Shigeru Oiso, and YhkihiroShoyama. Eriobotryae Folium Extract Suppresses LPS-Induced iNOS and COX-2 Expression by Inhibition of NF-kB and MAPK Activation in Murine Macrophages. The American Journal of Chinese Medicine. 38(05): 985-994 (2010)
- 22. Dae Hyun Kim, Jae Heun Chung, Ji Sung Yoon, Young Mi Ha, Sungjin Bae, EunKyeong Lee, Kyung Jin Jung, Min Sun Kim, You Jung Kim, Mi Kyung Kim, and Hae Young Chung. Ginsenoside Rd Inhibits the Expression of iNOS and COX-2 by Suppressing NF-kB in LPS-Stimulated RAW264.7 cells and mouse liver. J. Ginseng Res. **34**(1): 42-63.