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	 Silver nitrous aqueous solution is used to biosynthesize Silver nanoparticles (Ag-NPs) 
through a green and easy way using tuber powder extracts of Curcuma Longa (C. longa). The 
aim is to model an Artificial Neural Network (ANN) using seven existing algorithms in MATLAB 
for forecasting the size of the silver nanoparticle with volume of both C. longa extraction and 
AgNO3, time of stirring and temperature of reaction as input functions. Several techniques 
including Quasi-Newton, Conjugate Gradient and Levenberg-Maquardt are employed for 
training the designed ANN model, a feed-forward backpropagation network with different 
combinations of architecture and transfer functions. Each algorithm is fashioned to obtain the 
best performance by calculating the Regression (R), Mean Square Error (MSE), Mean Absolute 
Error (MAE) and Error Sum of Squares (SSE), thereby comparing the results and propounding 
the optimum algorithm technique for the discussed application in nanoengineering. Finally, 
based on the findings, the optimum network is proposed through the simulation results.

Keywords: Artificial Neural Network, Feed-forward back propagation,
Learning Algorithms, Nanoengineering, Silver nanoparticles.

	 THE Nanoparticles (NPs) are a broad 
class of materials including particulate substances 
having a dimension less than 100  nm at least1. 
Noble metals like Silver in metal Nanoparticles 
mainly have been used for experimental purposes 
because of their robust properties in optics. This 
creates large amount of applications in areas 
such as photography, dentistry, electronics, food 
industries, clothing etc2. The shape and size of 
metal nanoparticle is measured typically using 
discrete techniques such as Scanning Electron 

Microscopy, Transmission Electron Microscopy 
etc3. 
	 In the last decade an increasing use 
of artificial intelligence tools was observed in 
nanotechnology research. Artificial Intelligence can 
be used in classification of material properties of 
nanoscale, designing, simulation, nanocomputing 
etc4. Artificial neural network (ANN) is an efficient 
as well as dynamic simulation tool which allows 
one to classify, predict or estimate relationships 
among inputs and outputs2. They can expertly 
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solve difficult problems such as stock exchange 
prediction, image compression, face recognition 
etc. These tasks may be carried out without any 
prior information. 
Artificial neural network
	 An ANN is a computational technique that 
uses the assistance of a learning paradigm along 
with processing nodes and attempts to present 
an affiliation between the input and output data5. 
Majorly, there are two learning paradigms that 
an ANN can employ; supervised learning and 
unsupervised learning6. 
	 A basic ANN network comprises of 
three primitive layers; input layer, hidden layer 
and output layer as illustrated in Fig. 1. These 
layers contain various mathematical functions, 
nodes which are also called artificial neurons, 
associated with weights or coefficients that builds 
the structure of the neural network7. When an 
input and the corresponding target is provided 
to the ANN model (the training in this case is 
supervised), the error is calculated from the 
difference between the system output and the 
target response. This information of the error is 
fed back (Back propagation or BP learning) during 
the training phase and consequently the weights 
are adjusted accordingly, thereby improving the 
system parameters. Reiteration is done until the 
desired performance is achieved8. 
	 Several types of ANNs have been 
designed with different configurations either with a 
single-layer or multiple layer neurons. A multilayer 
perceptron (MLP) is the best model for complex 
problems. By introducing more number of hidden 
layers a MLP outlives the drawback of the single-
layer perceptron. In a conventional feed-forward 
MLP network, the input responses are multiplied 

with the weights and these multiplied signals 
from each input are then summed and guided to a 
transfer function which gives the output result for 
that particular neuron7. 
Learning algorithms
	 There are several types of training 
algorithms that can be adopted to train an ANN. 
MATLAB provides 9 different types of algorithms 
for an Engine Data Set problem, out of which top 
7 algorithms are explored in this study.
Conjugate Gradient
	 Conjugate Gradient (CG) starts by 
searching the negative of the descent in their first 
iteration. Before the next search is determined, a 
line search is implemented for acquiring the prime 
distance to travel forth the existing search direction, 
so that the two search directions are conjugate. 
The novel search direction is determined when the 
new steepest descent direction and the preceding 
search direction are combined9. Several versions 

Fig. 1. Basic architecture of a Neural Network Model Fig. 2. Flowchart of the methodology used
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Table 1. Experimental Values For Prediction Of The Size Of Ag-nps

S.No.	 Volume.	 Temperature	 Stirring 	 Volume 	 Ag-NPs 
	 C. Longa 	 (°)	 Time	 of AgNO

3	
Particle 

	 Extract 		  (h)	 (mL)	 Size (Actual) 
	 (mL)				    (nm)

Training Set
1.	 20	 40	 48	 5	 5.52
2.	 20	 50	 48	 10	 6.08
3.	 20	 70	 24	 20	 7.35
4.	 10	 25	 24	 1	 8.18
5.	 10	 30	 24	 2	 8.41
6.	 10	 60	 12	 15	 9.35
7.	 10	 70	 12	 20	 9.78
8.	 5	 25	 24	 1	 10.46
9.	 5	 40	 12	 5	 10.86
10.	 5	 70	 6	 20	 11.82
11.	 2	 25	 6	 1	 12.37
12.	 2	 30	 6	 2	 12.49
13.	 2	 40	 3	 5	 12.73
1.	 2	 50	 3	 10	 12.96
15.	 2	 70	 3	 20	 13.78
16.	 1	 25	 3	 1	 14.36
17.	 1	 30	 1	 2	 14.55
18.	 1	 40	 1	 5	 14.65
19.	 1	 50	 1	 10	 14.85
20.	 1	 70	 1	 20	 15.32
Validating Set
21.	 20	 30	 48	 2	 5.18
22.	 10	 50	 24	 10	 9.11
23.	 5	 60	 6	 15	 11.69
24.	 2	 60	 3	 15	 13.47
25.	 1	 60	 1	 15	 14.93
Testing Set
26.	 20	 25	 24	 1	 4.90
27.	 20	 60	 48	 15	 6.67
28.	 10	 40	 24	 5	 8.85
29.	 5	 30	 12	 2	 10.74
30.	 5	 50	 6	 10	 11.23

of CG are determined by computational means of 
the constant, ²

k
6.

Powell/Beale Restarts (traincgb)
	 Powell/Beale (CGB) technique will restart 
if the current and previous gradient have very little 
orthogonality between them9. 
Fletcher-Reeves Update (traincgf)
	 For the Fletcher-Reeves Update (CGF), 
the constant is calculated as the ratio of the norm 
squared of the present gradient to the norm squared 
of the previous gradient7. 

Polak-Ribiére Update (traincgp)
	 Another practice of the CG algorithm is 
Polak-Ribiére Update (CGP). In CGP, the constant 
is calculated by the inner product of the previous 
gradient change with the current gradient divided 
by the norm squared of the previous gradient. CGP 
requires more storage than CGF6.
Scaled Conjugate Gradient (trainscg)
	 Scaled Conjugate Gradient (SCG) does 
not call for a line search at each and every iteration 
and employs the step size scaling mechanism 
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Table 2. Results And Comparison Of Algorithms Using Different Architectures And Transfer Functions

Algorithm	 Training	 H	        Transfer Function	 Best Validation 	 Epoch	 R on	 R on 	 R on
	 Function		  Hidden 	 Output	 at Epoch	 Training	Validation	 Testing	

Conjugate 	 traincgb	 10	 logsig	 purelin	 0.0033 at epoch 14	 20	 0.9864	 0.9877	 0.9711
Gradient			   logsig	 logsig	 0.0582 at epoch 16	 22	 0.8845	 0.9633	 0.9969
			   logsig	 tansig	 0.0099 at epoch 12	 18	 0.9815	 0.9697	 0.9649
			   tansig	 purelin	 0.0245 at epoch 7	 13	 0.9740	 0.8949	 0.9554
			   tansig	 logsig	 0.0027 at epoch 7	 13	 0.9753	 0.9807	 0.9802
			   tansig	 tansig	 0.0021 at epoch 10	 16	 0.9791	 0.9977	 0.8021
		  20	 logsig	 purelin	 0.0022 at epoch 31	 37	 0.9942	 0.9915	 0.9942
			   logsig	 logsig	 0.054 at epoch 21	 27	 0.8904	 0.9408	 0.9457
			   logsig	 tansig	 0.0226 at epoch 3	 9	 0.9263	 0.9901	 0.9967
			   tansig	 purelin	 0.0195 at epoch 12	 18	 0.9925	 0.8846	 0.9703
			   tansig	 logsig	 0.0026 at epoch 26	 32	 0.9687	 0.9941	 0.9043
			   tansig	 tansig	 0.0031 at epoch 7	 13	 0.9855	 0.9975	 0.9556
		  30	 logsig	 purelin	 0.0029 at epoch 11	 17	 0.9800	 0.9892	 0.9901
			   logsig	 logsig	 0.0053 at epoch 10	 25	 0.8769	 0.9189	 0.9645
			   logsig	 tansig	 0.0439 at epoch 4	 10	 0.9556	 0.9353	 0.9667
			   tansig	 purelin	 0.0024 at epoch 34	 40	 0.9969	 0.9886	 0.9398
			   tansig	 logsig	 0.0233 at epoch 15	 21	 0.9521	 0.8570	 0.9058
			   tansig	 tansig	 0.0620 at epoch 5	 11	 0.9674	 0.7895	 0.9405
	 traincgf	 10	 logsig	 purelin	 0.0014 at epoch 15	 21	 0.9880	 0.9981	 0.9784
			   logsig	 logsig	 0.0022 at epoch 28	 34	 0.9077	 0.9805	 0.8597
			   logsig	 tansig	 0.0376 at epoch 12	 18	 0.9278	 0.9710	 0.9496
			   tansig	 purelin	 0.0030 at epoch 22	 28	 0.9905	 0.9869	 0.9605
			   tansig	 logsig	 0.0122 at epoch 7	 13	 0.8446	 0.9763	 0.9576
			   tansig	 tansig	 0.0056 at epoch 17	 23	 0.9921	 0.9963	 0.9871
		  20	 logsig	 purelin	 0.0021 at epoch 11	 17	 0.9748	 0.9805	 0.9729
			   logsig	 logsig	 0.0563 at epoch 11	 17	 0.8751	 0.9625	 0.8621
			   logsig	 tansig	 0.0419 at epoch 17	 23	 0.9844	 0.9325	 0.9494
			   tansig	 purelin	 0.0067 at epoch 17	 23	 0.9694	 0.9557	 0.9883
			   tansig	 logsig	 0.0075 at epoch 5	 11	 0.8501	 0.9856	 0.9855
			   tansig	 tansig	 0.0456 at epoch 2	 8	 0.9355	 0.9439	 0.9823
		  30	 logsig	 purelin	 0.0057 at epoch 6	 12	 0.9776	 0.9891	 0.9697
			   logsig	 logsig	 0.0109 at epoch 15	 21	 0.9228	 0.8781	 0.8880
			   logsig	 tansig	 0.3116 at epoch 10	 16	 0.9444	 0.9129	 0.8875
			   tansig	 purelin	 0.0179 at epoch 43	 49	 0.9943	 0.9211	 0.9739
			   tansig	 logsig	 0.05417 at epoch 9	 15	 0.9145	 0.9727	 0.9466
			   tansig	 tansig	 0.0152 at epoch 6	 12	 0.9748	 0.9746	 0.9537
	 traincgp	 10	 logsig	 purelin	 0.0020 at epoch 9	 15	 0.9679	 0.9922	 0.9927
			   logsig	 logsig	 0.0700 at epoch 2	 3	 0.90502	 0.8122	 0.8055
			   logsig	 tansig	 0.0206 at epoch 25	 31	 0.9848	 0.9788	 0.9905
			   tansig	 purelin	 0.0142 at epoch 6	 12	 0.9437	 0.9612	 0.9716
			   tansig	 logsig	 0.0036 at epoch 16	 22	 0.9924	 0.9824	 0.9634
			   tansig	 tansig	 0.0190 at epoch 2	 8	 0.9204	 0.9852	 0.8885
		  20	 logsig	 purelin	 0.0245 at epoch 6	 12	 0.96421	 0.9669	 0.954
			   logsig	 logsig	 0.0117 at epoch 5	 11	 0.90012	 0.8776	 0.8624
			   logsig	 tansig	 0.0383 at epoch 16	 22	 0.9648	 0.9761	 0.8404
			   tansig	 purelin	 0.0144 at epoch 13	 19	 0.9787	 0.9465	 0.9966
			   tansig	 logsig	 0.0090 at epoch 9	 15	 0.9696	 0.9914	 0.9392
			   tansig	 tansig	 0.0171 at epoch 9	 15	 0.9677	 0.9962	 0.9835
		  30	 logsig	 purelin	 0.004 at epoch 8	 14	 0.9777	 0.98295	 0.86807
			   logsig	 logsig	 0.0516 at epoch 9	 15	 0.8800	 0.98295	 0.8680
			   logsig	 tansig	 0.1150 at epoch 5	 11	 0.9097	 0.9547	 0.9543
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			   tansig	 purelin	 0.0112 at epoch 22	 28	 0.9936	 0.9039	 0.9850
			   tansig	 logsig	 0.0399 at epoch 45	 51	 0.9970	 0.7896	 0.928
			   tansig	 tansig	 0.01950 at epoch 9	 15	 0.9890	 0.9885	 0.9848
	 trainscg	 10	 logsig	 purelin	 0.0017 at epoch 18	 24	 0.9852	 0.9917	 0.9808
			   logsig	 logsig	 0.0372 at epoch 13	 19	 0.9109	 0.9056	 0.8883
			   logsig	 tansig	 0.0112 at epoch 17	 23	 0.9831	 0.9925	 0.8805
			   tansig	 purelin	 0.0010 at epoch 12	 18	 0.9882	 0.9885	 0.9932
			   tansig	 logsig	 0.0176 at epoch 26	 26	 0.7811	 0.9223	 0.9363
			   tansig	 tansig	 0.0612 at epoch 17	 23	 0.9806	 0.9985	 0.9007
		  20	 logsig	 purelin	 0.0025 at epoch 22	 28	 0.9843	 0.9897	 0.9264
			   logsig	 logsig	 0.0042 at epoch 12	 18	 0.8961	 0.9898	 0.9918
			   logsig	 tansig	 0.0385 at epoch 12	 18	 0.9618	 0.9428	 0.9344
			   tansig	 purelin	 0.0050 at epoch 47	 53	 0.999	 0.9554	 0.9797
			   tansig	 logsig	 0.0746 at epoch 16	 21	 0.8717	 0.8212	 0.8214
			   tansig	 tansig	 0.037 at epoch 10	 16	 0.9785	 0.9782	 0.9802
		  30	 logsig	 purelin	 0.0031 at epoch 14	 20	 0.9844	 0.9793	 0.9679
			   logsig	 logsig	 0.0056 at epoch 12	 18	 0.9055	 0.9891	 0.9556
			   logsig	 tansig	 0.0614 at epoch 7	 13	 0.8326	 0.9154	 0.8425
			   tansig	 purelin	 0.0380 at epoch 7	 13	 0.9321	 0.8106	 0.9403
			   tansig	 logsig	 0.0055 at epoch 8	 14	 0.9033	 0.8995	 0.8428
			   tansig	 tansig	 0.1157 at epoch 12	 18	 0.9405	 0.9755	 0.9374
quasi-Newton	trainbfg	 10	 logsig	 purelin	 0.0016 at epoch 21	 27	 0.9920	 0.9663	 0.9917
			   logsig	 logsig	 0.0440 at epoch 7	 13	 0.8967	 0.8775	 0.9213
			   logsig	 tansig	 0.0282 at epoch 22	 28	 0.9757	 0.977	 0.9918
			   tansig	 purelin	 0.0069 at epoch29	 35	 0.9961	 0.9538	 0.9941
			   tansig	 logsig	 0.0367 at epoch 18	 24	 0.8885	 0.9245	 0.9792
			   tansig	 tansig	 0.0142 at epoch 26	 32	 0.9820	 0.9817	 0.9786
		  20	 logsig	 purelin	 0.0063 at epoch 25	 31	 0.9896	 0.9625	 0.9624
			   logsig	 logsig	 0.0103 at epoch 9	 15	 0.9003	 0.9195	 0.9395
			   logsig	 tansig	 0.486 at epoch 17	 23	 0.9906	 0.9308	 0.8701
			   tansig	 purelin	 0.0195 at epoch 33	 39	 0.9969	 0.9450	 0.8070
			   tansig	 logsig	 0.0422 at epoch 21	 27	 0.8890	 0.8934	 0.9289
			   tansig	 tansig	 0.0019 at epoch 18	 24	 0.9846	 0.9965	 0.9578
		  30	 logsig	 purelin	 0.0028 at epoch 26	 32	 0.9955	 0.9708	 0.9906
			   logsig	 logsig	 0.0086 at epoch 15	 21	 0.9106	 0.9682	 0.8964
			   logsig	 tansig	 0.0070 at epoch 18	 24	 0.9572	 0.9811	 0.83
			   tansig	 purelin	 0.0022 at epoch 6	 12	 0.9664	 0.9821	 0.8168
			   tansig	 logsig	 0.0083 at epoch 7	 13	 0.8214	 0.9959	 0.9455
			   tansig	 tansig	 0.01 at epoch 4	 10	 0.9209	 0.9851	 0.9926
	 trainoss	 10	 logsig	 purelin	 0.0024 at epoch 12	 18	 0.97948	 0.9947	 0.97729
			   logsig	 logsig	 0.01568 at epoch 7	 13	 0.9164	 0.9802	 0.97626
			   logsig	 tansig	 0.0186 at epoch 15	 21	 0.9835	 0.9477	 0.9428
			   tansig	 purelin	 0.0076 at epoch 7	 13	 0.9731	 0.9663	 0.9337
			   tansig	 logsig	 0.0109 at epoch 3	 9	 0.9009	 0.9118	 0.9434
			   tansig	 tansig	 0.0322 at epoch 4	 10	 0.9603	 0.9877	 0.9173
		  20	 logsig	 purelin	 0.002 at epoch 34	 40	 0.9838	 0.9881	 0.9745
			   logsig	 logsig	 0.0574 at epoch 27	 33	 0.9009	 0.8239	 0.95261
			   logsig	 tansig	 0.0316 at epoch 13	 19	 0.9658	 0.9579	 0.9547
			   tansig	 purelin	 0.0045 at epoch 75	 81	 0.9931	 0.9492	 0.9996
			   tansig	 logsig	 0.0059 at epoch 4	 10	 0.8050	 0.9429	 0.9677
			   tansig	 tansig	 0.0803 at epoch 10	 16	 0.9554	 0.8986	 0.9422
		  30	 logsig	 purelin	 0.0035 at epoch 17	 23	 0.97342	 0.98861	 0.98923
			   logsig	 logsig	 0.0993 at epoch 13	 19	 0.8720	 0.96933	 0.8588
			   logsig	 tansig	 0.0196 at epoch 3	 9	 0.9402	 0.9858	 0.9810
			   tansig	 purelin	 0.0157 at epoch 29	 35	 0.9933	 0.8529	 0.9927
			   tansig	 logsig	 0.048 at epoch 6	 12	 0.8102	 0.9907	 0.9165
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			   tansig	 tansig	 0.0534  at epoch 35	 41	 0.9807	 0.9444	 0.9630
Levenberg	 trainlm	 10	 logsig	 purelin	 0.0008 at epoch 15	 21	 0.9977	 0.9968	 0.9959
-Marquardt			   logsig	 logsig	 0.0020 at epoch 15	 21	 0.9060	 0.9803	 0.9163
			   logsig	 tansig	 0.0144 at epoch 11	 17	 0.9994	 0.9913	 0.9863
			   tansig	 purelin	 0.0033 at epoch 2	 8	 0.9871	 0.9943	 0.9764
			   tansig	 logsig	 0.005 at  epoch 5	 11	 0.9132	 0.9876	 0.8244
			   tansig	 tansig	 0.0037 at epoch 10	 16	 0.9972	 0.9975	 0.9853
		  20	 logsig	 purelin	 0.0016 at epoch 2	 8	 0.9986	 0.9981	 0.9800
			   logsig	 logsig	 0.0121 at epoch 2	 8	 0.9087	 0.9234	 0.9166
			   logsig	 tansig	 0.0410 at epoch 2	 8	 0.9409	 0.9337	 0.8826
			   tansig	 purelin	 0.0023 at epoch 2	 8	 0.9910	 0.9957	 0.9934
			   tansig	 logsig	 0.0091 at epoch 149	 149	 0.9405	 0.8253	 0.8044
			   tansig	 tansig	 0.0095 at epoch 11	 17	 0.9979	 0.9364	 0.8362
		  30	 logsig	 purelin	 0.0036 at epoch 6	 10	 0.9998	 0.9669	 0.9375
			   logsig	 logsig	 0.0036 at epoch 5	 11	 0.9217	 0.9675	 0.9916
			   logsig	 tansig	 0.1298 at epoch 1	 7	 0.8216	 0.945	 0.9853
			   tansig	 purelin	 0.0040 at epoch 3	 6	 0.9991	 0.9744	 0.8632
			   tansig	 logsig	 0.012 at epoch 8	 14	 0.8805	 0.9335	 0.9389
			   tansig	 tansig	 0.0168 at epoch8	 14	 0.9990	 0.9985	 0.9953

which reduces the time consumption, making 
SCG the fastest among the second order algorithm. 
Although the number of iteration may increase for 
the algorithm to converge9.
Quasi-Newton
	 Newton’s technique provides improved 
optimization and converges faster than CG 
techniques but the Hessian matrix of the 
performance index at the present values of the 
biases as well as weights, which is the elementary 
step to the Newton’s method, takes more time 
hence making the method complex for feed forward 
ANN. Based on this a class of algorithms, quasi-
Newton or secant method, does not require the 
computation of second derivatives. In each iteration 
of the algorithm the approximate Hessian Matrix 
is updated6. 
Broyden–Fletcher–Goldfarb–Shanno (trainbfg)
	 In Broyden–Fletcher–Goldfarb–Shanno 
(BFGS), the approximate Hessian matrix is stored 
with an n x n dimension, where n represents the 
number of weights and biases in the ANN model. 
Although it converges in fewer iterations, it has 
more calculations and storage requirements than 
CG methods7, 9. 
One Step Secant Algorithm (trainoss)
	 The One Step Secant (OSS) technique 
adopts that at every iteration, the preceding Hessian 
matrix is the identity matrix thereby not storing the 
complete Hessian giving it an additional benefit 

of calculating the new search direction without 
calculating the matrix inverse6. 
Levenberg-Marquardt (trainlm)
	 The Levenberg-Marquardt (LM) training 
algorithm is a numerical least-squares non-linear 
function minimization technique10. LM method 
computes a Jacobian matrix that contains first 
derivatives of the network error with respect to 
the weights as well as biases. The calculation of 
Jacobian matrix by standard BP technique is less 
complicated than the Hessian matrix6. 
	 LM algorithm first initializes the weights 
of the network following the computation of the 
outputs and errors for all the input responses. 
Subsequently, the Jacobian matrix is calculated 
and the new weights are obtained. A new error 
value is determined from these weights and a 
comparison between the new and the current error 
value is carried out. Accordingly, the regularization 
parameter, µ is reduced by a factor of ² if error 
is smaller otherwise it is increased by ². It is re-
iterated until the error is below the predefined value 
or a stopping condition is met10.
	 Other types of algorithms used are 
Variable Learning Rate (traingda, traingdx) and 
Resilient Backpropagation (trainrp)6.
Network design
Data Set
	 In this study, the sample data employed 
to train the ANN model is presented in [2, Table I]. 
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Fig. 3. Effect of Mean Squared Error on total nodes in the hidden layer and activation function on each algorithm

Fig. 4. Effect of Mean Absolute Error on total nodes in hidden layer and activation function on each algorithm

Fig. 5. Effect of Error Sum of Squares on total nodes in hidden layer and activation function on each algorithm

The database is split into; training set, validating 
set and testing set. A training set is adopted for 
learning to fit the parameters and is specifically 
applied to alter the varying weights and errors of the 
network in each iteration2, 11. Validation set tunes 

the parameters. It is used to vary and enhance the 
structure of ANN like training function, transfer 
function, number of hidden layers and neurons etc2, 

11. A test set is used only to assess the effectiveness 
and efficiency of the ANN [2]. Table [2, I] presents 
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the four parameters produced as a function to 
predict the size of the Ag-NPs along with the actual 
size of the nanoparticle obtained.

Methodology

	 An appropriate ANN model requires 
a learning algorithm, transfer function, suitable 
number of hidden layers and neurons. The 
framework to build and elect the appropriate ANN 
model for the chosen application is shown in Fig. 
2. The most common learning in ANN is the BP 
technique which uses a supervised learning. A 
supervised learning paradigm compares the output 
response to the target response to calculate the 
learning error. This learning error is used to adjust 
the network parameters to enhance the performance 
of the network5. In this paper, the designed network 
has four input parameters and one output parameter. 
Thus, the ANN is constructed with 4 neurons in 
the input layer and the output layer with 1 neuron. 
The number of neurons in the hidden layer and 
the transfer function is tested against to find the 
best suitable architecture for the application. The 
final evaluation of each network operation is done 
using Mean Square Error (MSE), Mean Absolute 
Error (MAE), Error Sum of Squares (SSE) and 
Regression (R). 
	 The values of these indices can be 
calculated using the following equations, 

	 ...(1)

	 ...(2)

	 ...(3)
	 where, n is the number of points, Yi is the 
value predicted from the ANN model and Pi is the 
actual value2. R, the determination coefficient of 
linear regression, is a line between the predicted 
values from the ANN model and the target output. 
It fits better to the actual data when the R value 
tends to 112.

RESULTS AND DISCUSSIONS

	 All 7 algorithms used are coded in 
MATLAB with R2012b (8.0.0.783) version.  The 
study is carried out by choosing one input, hidden 
and an output layer. The architecture of the ANN 
model is changed by altering the number of neurons 
in the hidden layer (10, 20, and 30) along with 

the transfer functions (purelin, logsig and tansig) 
in both hidden and output layer. Table II presents 
the values obtained by various architectures and 
transfer function arrangements of each algorithm. 
Normalization of all the input data in accordance 
with the transfer function is the first step of the 
calculation before using the neural networks. The 
last step is the de-normalization of the output 
data2. For enhanced performance and selecting 
the optimum architecture for the application, the 
performance indicators ((1)-(3)) and R between 
the target response and the output obtained are 
analyzed. 
	 Other values of the indices comprising 
MSE, MAE and SSE are recorded in Fig. 3, 4 and 
5. The transfer function is applied to both hidden 
and output layer in the ANN model. Therefore for 
example, in Fig. 3. (2-1) explains the use of Logsig 
transfer function in the hidden layer and Purelin 
transfer function in the output layer. All the other 
combinations follow the same pattern. 
	 The values of indices are computed 
using the MATLAB syntax in the code itself. 
As presented in Table II, the optimum network 
model for this application for traincgb is when 
the network has 10 neurons in the hidden layer 
and logsig; purelin as the activation function in the 
network. The MSE corresponding to this is 0.003. It 
can be seen that all the other readings for MSE are 
bigger than MSE reading for the optimum network 
found. The R values for this network are 0.9864, 
0.9877 and 0.9711. For traincgf the optimum 
network is found to be 10, logsig; purelin with MSE 
value as 0.027 and R value as 0.9880, 0.9981 and 
0.9784 whereas traincgp gives the optimal results 
when the network architecture and parameters are 
set to 10, tansig; logsig where MSE value is seen 
to be 0.0026 and R values as 0.9924, 0.9824 and 
0.9634. The trainscg algorithm gives better results 
with 10, tansig; purelin as its architecture and 
activation function. The MSE value for the same 
is found to be 0.0028. 0.9882, 0.9885 and 0.9932 
are the R values. However, it is seen that MSE 
values for trainbfg algorithm, 0.0018, is same for 
when the network is 10, logsig; purelin and 10, 
tansig; purelin. In this case, the optimal network 
is chosen by comparing the R values and the best 
validation giving the most favorable architecture in 
trainbfg as 10, logsig; purelin with best validation 
performance being 0.0016 at epoch 21 and 0.9920, 
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0.9663, 0.9917 being the R values. In trainoss the 
finest value of MSE is 0.0027 whereas R is 0.9838, 
0.9881, 0.9745 with the network parameters as 20, 
logsig; purelin. Finally for trainlm, MSE value 
is recorded as 0.00007 with R values nearest to 
1; 0.9977, 0.9968 and 0.9959 when the network 
had 10 number of neurons in the hidden layer and 
logsig; purelin as the activation function.
	 Effect of each of the seven algorithms 
on the output response by varying the architecture 
of the ANN model and the transfer function in 
hidden and output layer is shown in Fig. 3, 4 and 
5. ANN models that are simulated using numerous 
training functions are altered in accordance with 
the number of neurons in their hidden layer. MSE 
of all the responses recorded is illustrated in Fig. 
3. MSE is an important criterion for measuring the 
overall performance of a designed ANN model. 
Fig. 4 illustrates a graph between the MAE and total 
number of nodes in the hidden layer and activation 
function for all the 7 algorithms used to design the 
various ANN models. The absolute value of the 
difference between the target value provided to the 
ANN model to train and the actual value obtained is 
the absolute error. Fig. 5 illustrates a graph between 
error sum of squares, which computes the total 
deviation of the obtained values from the fitting line 
or the regression line, and total number of nodes in 
the hidden layer and activation function. Smaller 
the value of SSE, better will be the regression line. 
It is sometimes

CONCLUSION

	 In this research, the size of the Ag-
NPs is determined using ANN modeling from 
different combinations of architectures and transfer 
functions by means of a feed-forward neural 
network model which renders the effect of volume 
of C. longa extraction, stirring time, temperature, 
and volume of AgNO3 on the nanocomposites 
behavior. The ANN model is simulated, trained 
and tested with the learning algorithms like Quasi-
Newton, Conjugate Gradient and Levenberg-
Maquardt using the dataset. In the projected work 
it is evident that Levenberg-Maquardt is the best 
suited algorithm when considering engine data set 
type for the particular application. It converges 
in lesser epochs and indeed takes shorter time 
period than all the other training algorithms. Some 

suitable architectures gave worthy performances 
within the same algorithms as their R value is 
observed nearest to 1. The experiment shows that 
ANN is an effectual tool in pondering subjects 
related to nanoengineering as the size of the silver 
nanoparticle is predicted in the absence of the 
costly and time-consuming tests.
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