
Biomedical & Pharmacology Journal, September 2018.	 Vol. 11(3), p. 1593-1602

Biomedical Prediction of Radial Size of Powdered
Element using Artificial Neural Network

Yaagyanika Gehlot1, Bhairvi Sharma1, P Muthu1,*,
Hariharan Muthusamy1 and S.Latha2

1Department of Biomedical Engineering, India.
2Department of Electronics and Communication Engineering, India.

SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India.
*Corresponding author E-mail: muthu.p@ktr.srmuniv.ac.in

http://dx.doi.org/10.13005/bpj/1526

(Received: 26 January 2018; accepted: 13 September 2018)

	 Silver nitrous aqueous solution is used to biosynthesize Silver nanoparticles (Ag-NPs)
through a green and easy way using tuber powder extracts of Curcuma Longa (C. longa). The
aim is to model an Artificial Neural Network (ANN) using seven existing algorithms in MATLAB
for forecasting the size of the silver nanoparticle with volume of both C. longa extraction and
AgNO3, time of stirring and temperature of reaction as input functions. Several techniques
including Quasi-Newton, Conjugate Gradient and Levenberg-Maquardt are employed for
training the designed ANN model, a feed-forward backpropagation network with different
combinations of architecture and transfer functions. Each algorithm is fashioned to obtain the
best performance by calculating the Regression (R), Mean Square Error (MSE), Mean Absolute
Error (MAE) and Error Sum of Squares (SSE), thereby comparing the results and propounding
the optimum algorithm technique for the discussed application in nanoengineering. Finally,
based on the findings, the optimum network is proposed through the simulation results.

Keywords: Artificial Neural Network, Feed-forward back propagation,
Learning Algorithms, Nanoengineering, Silver nanoparticles.

	 THE Nanoparticles (NPs) are a broad
class of materials including particulate substances
having a dimension less than 100 nm at least1.
Noble metals like Silver in metal Nanoparticles
mainly have been used for experimental purposes
because of their robust properties in optics. This
creates large amount of applications in areas
such as photography, dentistry, electronics, food
industries, clothing etc2. The shape and size of
metal nanoparticle is measured typically using
discrete techniques such as Scanning Electron

Microscopy, Transmission Electron Microscopy
etc3.
	 In the last decade an increasing use
of artificial intelligence tools was observed in
nanotechnology research. Artificial Intelligence can
be used in classification of material properties of
nanoscale, designing, simulation, nanocomputing
etc4. Artificial neural network (ANN) is an efficient
as well as dynamic simulation tool which allows
one to classify, predict or estimate relationships
among inputs and outputs2. They can expertly

Published by Oriental Scientific Publishing Company © 2018

This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY).

1594 Gehlot et al., Biomed. & Pharmacol. J, Vol. 11(3), 1593-1602 (2018)

solve difficult problems such as stock exchange
prediction, image compression, face recognition
etc. These tasks may be carried out without any
prior information.
Artificial neural network
	 An ANN is a computational technique that
uses the assistance of a learning paradigm along
with processing nodes and attempts to present
an affiliation between the input and output data5.
Majorly, there are two learning paradigms that
an ANN can employ; supervised learning and
unsupervised learning6.
	 A basic ANN network comprises of
three primitive layers; input layer, hidden layer
and output layer as illustrated in Fig. 1. These
layers contain various mathematical functions,
nodes which are also called artificial neurons,
associated with weights or coefficients that builds
the structure of the neural network7. When an
input and the corresponding target is provided
to the ANN model (the training in this case is
supervised), the error is calculated from the
difference between the system output and the
target response. This information of the error is
fed back (Back propagation or BP learning) during
the training phase and consequently the weights
are adjusted accordingly, thereby improving the
system parameters. Reiteration is done until the
desired performance is achieved8.
	 Several types of ANNs have been
designed with different configurations either with a
single-layer or multiple layer neurons. A multilayer
perceptron (MLP) is the best model for complex
problems. By introducing more number of hidden
layers a MLP outlives the drawback of the single-
layer perceptron. In a conventional feed-forward
MLP network, the input responses are multiplied

with the weights and these multiplied signals
from each input are then summed and guided to a
transfer function which gives the output result for
that particular neuron7.
Learning algorithms
	 There are several types of training
algorithms that can be adopted to train an ANN.
MATLAB provides 9 different types of algorithms
for an Engine Data Set problem, out of which top
7 algorithms are explored in this study.
Conjugate Gradient
	 Conjugate Gradient (CG) starts by
searching the negative of the descent in their first
iteration. Before the next search is determined, a
line search is implemented for acquiring the prime
distance to travel forth the existing search direction,
so that the two search directions are conjugate.
The novel search direction is determined when the
new steepest descent direction and the preceding
search direction are combined9. Several versions

Fig. 1. Basic architecture of a Neural Network Model Fig. 2. Flowchart of the methodology used

1595Gehlot et al., Biomed. & Pharmacol. J, Vol. 11(3), 1593-1602 (2018)

Table 1. Experimental Values For Prediction Of The Size Of Ag-nps

S.No.	 Volume.	 Temperature	 Stirring 	 Volume 	 Ag-NPs
	 C. Longa 	 (°)	 Time	 of AgNO

3	
Particle

	 Extract 		 (h)	 (mL)	 Size (Actual)
	 (mL)				 (nm)

Training Set
1.	 20	 40	 48	 5	 5.52
2.	 20	 50	 48	 10	 6.08
3.	 20	 70	 24	 20	 7.35
4.	 10	 25	 24	 1	 8.18
5.	 10	 30	 24	 2	 8.41
6.	 10	 60	 12	 15	 9.35
7.	 10	 70	 12	 20	 9.78
8.	 5	 25	 24	 1	 10.46
9.	 5	 40	 12	 5	 10.86
10.	 5	 70	 6	 20	 11.82
11.	 2	 25	 6	 1	 12.37
12.	 2	 30	 6	 2	 12.49
13.	 2	 40	 3	 5	 12.73
1.	 2	 50	 3	 10	 12.96
15.	 2	 70	 3	 20	 13.78
16.	 1	 25	 3	 1	 14.36
17.	 1	 30	 1	 2	 14.55
18.	 1	 40	 1	 5	 14.65
19.	 1	 50	 1	 10	 14.85
20.	 1	 70	 1	 20	 15.32
Validating Set
21.	 20	 30	 48	 2	 5.18
22.	 10	 50	 24	 10	 9.11
23.	 5	 60	 6	 15	 11.69
24.	 2	 60	 3	 15	 13.47
25.	 1	 60	 1	 15	 14.93
Testing Set
26.	 20	 25	 24	 1	 4.90
27.	 20	 60	 48	 15	 6.67
28.	 10	 40	 24	 5	 8.85
29.	 5	 30	 12	 2	 10.74
30.	 5	 50	 6	 10	 11.23

of CG are determined by computational means of
the constant, ²

k
6.

Powell/Beale Restarts (traincgb)
	 Powell/Beale (CGB) technique will restart
if the current and previous gradient have very little
orthogonality between them9.
Fletcher-Reeves Update (traincgf)
	 For the Fletcher-Reeves Update (CGF),
the constant is calculated as the ratio of the norm
squared of the present gradient to the norm squared
of the previous gradient7.

Polak-Ribiére Update (traincgp)
	 Another practice of the CG algorithm is
Polak-Ribiére Update (CGP). In CGP, the constant
is calculated by the inner product of the previous
gradient change with the current gradient divided
by the norm squared of the previous gradient. CGP
requires more storage than CGF6.
Scaled Conjugate Gradient (trainscg)
	 Scaled Conjugate Gradient (SCG) does
not call for a line search at each and every iteration
and employs the step size scaling mechanism

1596 Gehlot et al., Biomed. & Pharmacol. J, Vol. 11(3), 1593-1602 (2018)

Table 2. Results And Comparison Of Algorithms Using Different Architectures And Transfer Functions

Algorithm	 Training	 H	 Transfer Function	 Best Validation 	 Epoch	 R on	 R on 	 R on
	 Function		 Hidden 	 Output	 at Epoch	 Training	Validation	 Testing	

Conjugate 	 traincgb	 10	 logsig	 purelin	 0.0033 at epoch 14	 20	 0.9864	 0.9877	 0.9711
Gradient			 logsig	 logsig	 0.0582 at epoch 16	 22	 0.8845	 0.9633	 0.9969
			 logsig	 tansig	 0.0099 at epoch 12	 18	 0.9815	 0.9697	 0.9649
			 tansig	 purelin	 0.0245 at epoch 7	 13	 0.9740	 0.8949	 0.9554
			 tansig	 logsig	 0.0027 at epoch 7	 13	 0.9753	 0.9807	 0.9802
			 tansig	 tansig	 0.0021 at epoch 10	 16	 0.9791	 0.9977	 0.8021
		 20	 logsig	 purelin	 0.0022 at epoch 31	 37	 0.9942	 0.9915	 0.9942
			 logsig	 logsig	 0.054 at epoch 21	 27	 0.8904	 0.9408	 0.9457
			 logsig	 tansig	 0.0226 at epoch 3	 9	 0.9263	 0.9901	 0.9967
			 tansig	 purelin	 0.0195 at epoch 12	 18	 0.9925	 0.8846	 0.9703
			 tansig	 logsig	 0.0026 at epoch 26	 32	 0.9687	 0.9941	 0.9043
			 tansig	 tansig	 0.0031 at epoch 7	 13	 0.9855	 0.9975	 0.9556
		 30	 logsig	 purelin	 0.0029 at epoch 11	 17	 0.9800	 0.9892	 0.9901
			 logsig	 logsig	 0.0053 at epoch 10	 25	 0.8769	 0.9189	 0.9645
			 logsig	 tansig	 0.0439 at epoch 4	 10	 0.9556	 0.9353	 0.9667
			 tansig	 purelin	 0.0024 at epoch 34	 40	 0.9969	 0.9886	 0.9398
			 tansig	 logsig	 0.0233 at epoch 15	 21	 0.9521	 0.8570	 0.9058
			 tansig	 tansig	 0.0620 at epoch 5	 11	 0.9674	 0.7895	 0.9405
	 traincgf	 10	 logsig	 purelin	 0.0014 at epoch 15	 21	 0.9880	 0.9981	 0.9784
			 logsig	 logsig	 0.0022 at epoch 28	 34	 0.9077	 0.9805	 0.8597
			 logsig	 tansig	 0.0376 at epoch 12	 18	 0.9278	 0.9710	 0.9496
			 tansig	 purelin	 0.0030 at epoch 22	 28	 0.9905	 0.9869	 0.9605
			 tansig	 logsig	 0.0122 at epoch 7	 13	 0.8446	 0.9763	 0.9576
			 tansig	 tansig	 0.0056 at epoch 17	 23	 0.9921	 0.9963	 0.9871
		 20	 logsig	 purelin	 0.0021 at epoch 11	 17	 0.9748	 0.9805	 0.9729
			 logsig	 logsig	 0.0563 at epoch 11	 17	 0.8751	 0.9625	 0.8621
			 logsig	 tansig	 0.0419 at epoch 17	 23	 0.9844	 0.9325	 0.9494
			 tansig	 purelin	 0.0067 at epoch 17	 23	 0.9694	 0.9557	 0.9883
			 tansig	 logsig	 0.0075 at epoch 5	 11	 0.8501	 0.9856	 0.9855
			 tansig	 tansig	 0.0456 at epoch 2	 8	 0.9355	 0.9439	 0.9823
		 30	 logsig	 purelin	 0.0057 at epoch 6	 12	 0.9776	 0.9891	 0.9697
			 logsig	 logsig	 0.0109 at epoch 15	 21	 0.9228	 0.8781	 0.8880
			 logsig	 tansig	 0.3116 at epoch 10	 16	 0.9444	 0.9129	 0.8875
			 tansig	 purelin	 0.0179 at epoch 43	 49	 0.9943	 0.9211	 0.9739
			 tansig	 logsig	 0.05417 at epoch 9	 15	 0.9145	 0.9727	 0.9466
			 tansig	 tansig	 0.0152 at epoch 6	 12	 0.9748	 0.9746	 0.9537
	 traincgp	 10	 logsig	 purelin	 0.0020 at epoch 9	 15	 0.9679	 0.9922	 0.9927
			 logsig	 logsig	 0.0700 at epoch 2	 3	 0.90502	 0.8122	 0.8055
			 logsig	 tansig	 0.0206 at epoch 25	 31	 0.9848	 0.9788	 0.9905
			 tansig	 purelin	 0.0142 at epoch 6	 12	 0.9437	 0.9612	 0.9716
			 tansig	 logsig	 0.0036 at epoch 16	 22	 0.9924	 0.9824	 0.9634
			 tansig	 tansig	 0.0190 at epoch 2	 8	 0.9204	 0.9852	 0.8885
		 20	 logsig	 purelin	 0.0245 at epoch 6	 12	 0.96421	 0.9669	 0.954
			 logsig	 logsig	 0.0117 at epoch 5	 11	 0.90012	 0.8776	 0.8624
			 logsig	 tansig	 0.0383 at epoch 16	 22	 0.9648	 0.9761	 0.8404
			 tansig	 purelin	 0.0144 at epoch 13	 19	 0.9787	 0.9465	 0.9966
			 tansig	 logsig	 0.0090 at epoch 9	 15	 0.9696	 0.9914	 0.9392
			 tansig	 tansig	 0.0171 at epoch 9	 15	 0.9677	 0.9962	 0.9835
		 30	 logsig	 purelin	 0.004 at epoch 8	 14	 0.9777	 0.98295	 0.86807
			 logsig	 logsig	 0.0516 at epoch 9	 15	 0.8800	 0.98295	 0.8680
			 logsig	 tansig	 0.1150 at epoch 5	 11	 0.9097	 0.9547	 0.9543

1597 Gehlot et al., Biomed. & Pharmacol. J, Vol. 11(3), 1593-1602 (2018)

			 tansig	 purelin	 0.0112 at epoch 22	 28	 0.9936	 0.9039	 0.9850
			 tansig	 logsig	 0.0399 at epoch 45	 51	 0.9970	 0.7896	 0.928
			 tansig	 tansig	 0.01950 at epoch 9	 15	 0.9890	 0.9885	 0.9848
	 trainscg	 10	 logsig	 purelin	 0.0017 at epoch 18	 24	 0.9852	 0.9917	 0.9808
			 logsig	 logsig	 0.0372 at epoch 13	 19	 0.9109	 0.9056	 0.8883
			 logsig	 tansig	 0.0112 at epoch 17	 23	 0.9831	 0.9925	 0.8805
			 tansig	 purelin	 0.0010 at epoch 12	 18	 0.9882	 0.9885	 0.9932
			 tansig	 logsig	 0.0176 at epoch 26	 26	 0.7811	 0.9223	 0.9363
			 tansig	 tansig	 0.0612 at epoch 17	 23	 0.9806	 0.9985	 0.9007
		 20	 logsig	 purelin	 0.0025 at epoch 22	 28	 0.9843	 0.9897	 0.9264
			 logsig	 logsig	 0.0042 at epoch 12	 18	 0.8961	 0.9898	 0.9918
			 logsig	 tansig	 0.0385 at epoch 12	 18	 0.9618	 0.9428	 0.9344
			 tansig	 purelin	 0.0050 at epoch 47	 53	 0.999	 0.9554	 0.9797
			 tansig	 logsig	 0.0746 at epoch 16	 21	 0.8717	 0.8212	 0.8214
			 tansig	 tansig	 0.037 at epoch 10	 16	 0.9785	 0.9782	 0.9802
		 30	 logsig	 purelin	 0.0031 at epoch 14	 20	 0.9844	 0.9793	 0.9679
			 logsig	 logsig	 0.0056 at epoch 12	 18	 0.9055	 0.9891	 0.9556
			 logsig	 tansig	 0.0614 at epoch 7	 13	 0.8326	 0.9154	 0.8425
			 tansig	 purelin	 0.0380 at epoch 7	 13	 0.9321	 0.8106	 0.9403
			 tansig	 logsig	 0.0055 at epoch 8	 14	 0.9033	 0.8995	 0.8428
			 tansig	 tansig	 0.1157 at epoch 12	 18	 0.9405	 0.9755	 0.9374
quasi-Newton	trainbfg	 10	 logsig	 purelin	 0.0016 at epoch 21	 27	 0.9920	 0.9663	 0.9917
			 logsig	 logsig	 0.0440 at epoch 7	 13	 0.8967	 0.8775	 0.9213
			 logsig	 tansig	 0.0282 at epoch 22	 28	 0.9757	 0.977	 0.9918
			 tansig	 purelin	 0.0069 at epoch29	 35	 0.9961	 0.9538	 0.9941
			 tansig	 logsig	 0.0367 at epoch 18	 24	 0.8885	 0.9245	 0.9792
			 tansig	 tansig	 0.0142 at epoch 26	 32	 0.9820	 0.9817	 0.9786
		 20	 logsig	 purelin	 0.0063 at epoch 25	 31	 0.9896	 0.9625	 0.9624
			 logsig	 logsig	 0.0103 at epoch 9	 15	 0.9003	 0.9195	 0.9395
			 logsig	 tansig	 0.486 at epoch 17	 23	 0.9906	 0.9308	 0.8701
			 tansig	 purelin	 0.0195 at epoch 33	 39	 0.9969	 0.9450	 0.8070
			 tansig	 logsig	 0.0422 at epoch 21	 27	 0.8890	 0.8934	 0.9289
			 tansig	 tansig	 0.0019 at epoch 18	 24	 0.9846	 0.9965	 0.9578
		 30	 logsig	 purelin	 0.0028 at epoch 26	 32	 0.9955	 0.9708	 0.9906
			 logsig	 logsig	 0.0086 at epoch 15	 21	 0.9106	 0.9682	 0.8964
			 logsig	 tansig	 0.0070 at epoch 18	 24	 0.9572	 0.9811	 0.83
			 tansig	 purelin	 0.0022 at epoch 6	 12	 0.9664	 0.9821	 0.8168
			 tansig	 logsig	 0.0083 at epoch 7	 13	 0.8214	 0.9959	 0.9455
			 tansig	 tansig	 0.01 at epoch 4	 10	 0.9209	 0.9851	 0.9926
	 trainoss	 10	 logsig	 purelin	 0.0024 at epoch 12	 18	 0.97948	 0.9947	 0.97729
			 logsig	 logsig	 0.01568 at epoch 7	 13	 0.9164	 0.9802	 0.97626
			 logsig	 tansig	 0.0186 at epoch 15	 21	 0.9835	 0.9477	 0.9428
			 tansig	 purelin	 0.0076 at epoch 7	 13	 0.9731	 0.9663	 0.9337
			 tansig	 logsig	 0.0109 at epoch 3	 9	 0.9009	 0.9118	 0.9434
			 tansig	 tansig	 0.0322 at epoch 4	 10	 0.9603	 0.9877	 0.9173
		 20	 logsig	 purelin	 0.002 at epoch 34	 40	 0.9838	 0.9881	 0.9745
			 logsig	 logsig	 0.0574 at epoch 27	 33	 0.9009	 0.8239	 0.95261
			 logsig	 tansig	 0.0316 at epoch 13	 19	 0.9658	 0.9579	 0.9547
			 tansig	 purelin	 0.0045 at epoch 75	 81	 0.9931	 0.9492	 0.9996
			 tansig	 logsig	 0.0059 at epoch 4	 10	 0.8050	 0.9429	 0.9677
			 tansig	 tansig	 0.0803 at epoch 10	 16	 0.9554	 0.8986	 0.9422
		 30	 logsig	 purelin	 0.0035 at epoch 17	 23	 0.97342	 0.98861	 0.98923
			 logsig	 logsig	 0.0993 at epoch 13	 19	 0.8720	 0.96933	 0.8588
			 logsig	 tansig	 0.0196 at epoch 3	 9	 0.9402	 0.9858	 0.9810
			 tansig	 purelin	 0.0157 at epoch 29	 35	 0.9933	 0.8529	 0.9927
			 tansig	 logsig	 0.048 at epoch 6	 12	 0.8102	 0.9907	 0.9165

1598 Gehlot et al., Biomed. & Pharmacol. J, Vol. 11(3), 1593-1602 (2018)

			 tansig	 tansig	 0.0534 at epoch 35	 41	 0.9807	 0.9444	 0.9630
Levenberg	 trainlm	 10	 logsig	 purelin	 0.0008 at epoch 15	 21	 0.9977	 0.9968	 0.9959
-Marquardt			 logsig	 logsig	 0.0020 at epoch 15	 21	 0.9060	 0.9803	 0.9163
			 logsig	 tansig	 0.0144 at epoch 11	 17	 0.9994	 0.9913	 0.9863
			 tansig	 purelin	 0.0033 at epoch 2	 8	 0.9871	 0.9943	 0.9764
			 tansig	 logsig	 0.005 at epoch 5	 11	 0.9132	 0.9876	 0.8244
			 tansig	 tansig	 0.0037 at epoch 10	 16	 0.9972	 0.9975	 0.9853
		 20	 logsig	 purelin	 0.0016 at epoch 2	 8	 0.9986	 0.9981	 0.9800
			 logsig	 logsig	 0.0121 at epoch 2	 8	 0.9087	 0.9234	 0.9166
			 logsig	 tansig	 0.0410 at epoch 2	 8	 0.9409	 0.9337	 0.8826
			 tansig	 purelin	 0.0023 at epoch 2	 8	 0.9910	 0.9957	 0.9934
			 tansig	 logsig	 0.0091 at epoch 149	 149	 0.9405	 0.8253	 0.8044
			 tansig	 tansig	 0.0095 at epoch 11	 17	 0.9979	 0.9364	 0.8362
		 30	 logsig	 purelin	 0.0036 at epoch 6	 10	 0.9998	 0.9669	 0.9375
			 logsig	 logsig	 0.0036 at epoch 5	 11	 0.9217	 0.9675	 0.9916
			 logsig	 tansig	 0.1298 at epoch 1	 7	 0.8216	 0.945	 0.9853
			 tansig	 purelin	 0.0040 at epoch 3	 6	 0.9991	 0.9744	 0.8632
			 tansig	 logsig	 0.012 at epoch 8	 14	 0.8805	 0.9335	 0.9389
			 tansig	 tansig	 0.0168 at epoch8	 14	 0.9990	 0.9985	 0.9953

which reduces the time consumption, making
SCG the fastest among the second order algorithm.
Although the number of iteration may increase for
the algorithm to converge9.
Quasi-Newton
	 Newton’s technique provides improved
optimization and converges faster than CG
techniques but the Hessian matrix of the
performance index at the present values of the
biases as well as weights, which is the elementary
step to the Newton’s method, takes more time
hence making the method complex for feed forward
ANN. Based on this a class of algorithms, quasi-
Newton or secant method, does not require the
computation of second derivatives. In each iteration
of the algorithm the approximate Hessian Matrix
is updated6.
Broyden–Fletcher–Goldfarb–Shanno (trainbfg)
	 In Broyden–Fletcher–Goldfarb–Shanno
(BFGS), the approximate Hessian matrix is stored
with an n x n dimension, where n represents the
number of weights and biases in the ANN model.
Although it converges in fewer iterations, it has
more calculations and storage requirements than
CG methods7, 9.
One Step Secant Algorithm (trainoss)
	 The One Step Secant (OSS) technique
adopts that at every iteration, the preceding Hessian
matrix is the identity matrix thereby not storing the
complete Hessian giving it an additional benefit

of calculating the new search direction without
calculating the matrix inverse6.
Levenberg-Marquardt (trainlm)
	 The Levenberg-Marquardt (LM) training
algorithm is a numerical least-squares non-linear
function minimization technique10. LM method
computes a Jacobian matrix that contains first
derivatives of the network error with respect to
the weights as well as biases. The calculation of
Jacobian matrix by standard BP technique is less
complicated than the Hessian matrix6.
	 LM algorithm first initializes the weights
of the network following the computation of the
outputs and errors for all the input responses.
Subsequently, the Jacobian matrix is calculated
and the new weights are obtained. A new error
value is determined from these weights and a
comparison between the new and the current error
value is carried out. Accordingly, the regularization
parameter, µ is reduced by a factor of ² if error
is smaller otherwise it is increased by ². It is re-
iterated until the error is below the predefined value
or a stopping condition is met10.
	 Other types of algorithms used are
Variable Learning Rate (traingda, traingdx) and
Resilient Backpropagation (trainrp)6.
Network design
Data Set
	 In this study, the sample data employed
to train the ANN model is presented in [2, Table I].

1599Gehlot et al., Biomed. & Pharmacol. J, Vol. 11(3), 1593-1602 (2018)

Fig. 3. Effect of Mean Squared Error on total nodes in the hidden layer and activation function on each algorithm

Fig. 4. Effect of Mean Absolute Error on total nodes in hidden layer and activation function on each algorithm

Fig. 5. Effect of Error Sum of Squares on total nodes in hidden layer and activation function on each algorithm

The database is split into; training set, validating
set and testing set. A training set is adopted for
learning to fit the parameters and is specifically
applied to alter the varying weights and errors of the
network in each iteration2, 11. Validation set tunes

the parameters. It is used to vary and enhance the
structure of ANN like training function, transfer
function, number of hidden layers and neurons etc2,

11. A test set is used only to assess the effectiveness
and efficiency of the ANN [2]. Table [2, I] presents

1600 Gehlot et al., Biomed. & Pharmacol. J, Vol. 11(3), 1593-1602 (2018)

the four parameters produced as a function to
predict the size of the Ag-NPs along with the actual
size of the nanoparticle obtained.

Methodology

	 An appropriate ANN model requires
a learning algorithm, transfer function, suitable
number of hidden layers and neurons. The
framework to build and elect the appropriate ANN
model for the chosen application is shown in Fig.
2. The most common learning in ANN is the BP
technique which uses a supervised learning. A
supervised learning paradigm compares the output
response to the target response to calculate the
learning error. This learning error is used to adjust
the network parameters to enhance the performance
of the network5. In this paper, the designed network
has four input parameters and one output parameter.
Thus, the ANN is constructed with 4 neurons in
the input layer and the output layer with 1 neuron.
The number of neurons in the hidden layer and
the transfer function is tested against to find the
best suitable architecture for the application. The
final evaluation of each network operation is done
using Mean Square Error (MSE), Mean Absolute
Error (MAE), Error Sum of Squares (SSE) and
Regression (R).
	 The values of these indices can be
calculated using the following equations,

	 ...(1)

	 ...(2)

	 ...(3)
	 where, n is the number of points, Yi is the
value predicted from the ANN model and Pi is the
actual value2. R, the determination coefficient of
linear regression, is a line between the predicted
values from the ANN model and the target output.
It fits better to the actual data when the R value
tends to 112.

RESULTS AND DISCUSSIONS

	 All 7 algorithms used are coded in
MATLAB with R2012b (8.0.0.783) version. The
study is carried out by choosing one input, hidden
and an output layer. The architecture of the ANN
model is changed by altering the number of neurons
in the hidden layer (10, 20, and 30) along with

the transfer functions (purelin, logsig and tansig)
in both hidden and output layer. Table II presents
the values obtained by various architectures and
transfer function arrangements of each algorithm.
Normalization of all the input data in accordance
with the transfer function is the first step of the
calculation before using the neural networks. The
last step is the de-normalization of the output
data2. For enhanced performance and selecting
the optimum architecture for the application, the
performance indicators ((1)-(3)) and R between
the target response and the output obtained are
analyzed.
	 Other values of the indices comprising
MSE, MAE and SSE are recorded in Fig. 3, 4 and
5. The transfer function is applied to both hidden
and output layer in the ANN model. Therefore for
example, in Fig. 3. (2-1) explains the use of Logsig
transfer function in the hidden layer and Purelin
transfer function in the output layer. All the other
combinations follow the same pattern.
	 The values of indices are computed
using the MATLAB syntax in the code itself.
As presented in Table II, the optimum network
model for this application for traincgb is when
the network has 10 neurons in the hidden layer
and logsig; purelin as the activation function in the
network. The MSE corresponding to this is 0.003. It
can be seen that all the other readings for MSE are
bigger than MSE reading for the optimum network
found. The R values for this network are 0.9864,
0.9877 and 0.9711. For traincgf the optimum
network is found to be 10, logsig; purelin with MSE
value as 0.027 and R value as 0.9880, 0.9981 and
0.9784 whereas traincgp gives the optimal results
when the network architecture and parameters are
set to 10, tansig; logsig where MSE value is seen
to be 0.0026 and R values as 0.9924, 0.9824 and
0.9634. The trainscg algorithm gives better results
with 10, tansig; purelin as its architecture and
activation function. The MSE value for the same
is found to be 0.0028. 0.9882, 0.9885 and 0.9932
are the R values. However, it is seen that MSE
values for trainbfg algorithm, 0.0018, is same for
when the network is 10, logsig; purelin and 10,
tansig; purelin. In this case, the optimal network
is chosen by comparing the R values and the best
validation giving the most favorable architecture in
trainbfg as 10, logsig; purelin with best validation
performance being 0.0016 at epoch 21 and 0.9920,

1601Gehlot et al., Biomed. & Pharmacol. J, Vol. 11(3), 1593-1602 (2018)

0.9663, 0.9917 being the R values. In trainoss the
finest value of MSE is 0.0027 whereas R is 0.9838,
0.9881, 0.9745 with the network parameters as 20,
logsig; purelin. Finally for trainlm, MSE value
is recorded as 0.00007 with R values nearest to
1; 0.9977, 0.9968 and 0.9959 when the network
had 10 number of neurons in the hidden layer and
logsig; purelin as the activation function.
	 Effect of each of the seven algorithms
on the output response by varying the architecture
of the ANN model and the transfer function in
hidden and output layer is shown in Fig. 3, 4 and
5. ANN models that are simulated using numerous
training functions are altered in accordance with
the number of neurons in their hidden layer. MSE
of all the responses recorded is illustrated in Fig.
3. MSE is an important criterion for measuring the
overall performance of a designed ANN model.
Fig. 4 illustrates a graph between the MAE and total
number of nodes in the hidden layer and activation
function for all the 7 algorithms used to design the
various ANN models. The absolute value of the
difference between the target value provided to the
ANN model to train and the actual value obtained is
the absolute error. Fig. 5 illustrates a graph between
error sum of squares, which computes the total
deviation of the obtained values from the fitting line
or the regression line, and total number of nodes in
the hidden layer and activation function. Smaller
the value of SSE, better will be the regression line.
It is sometimes

CONCLUSION

	 In this research, the size of the Ag-
NPs is determined using ANN modeling from
different combinations of architectures and transfer
functions by means of a feed-forward neural
network model which renders the effect of volume
of C. longa extraction, stirring time, temperature,
and volume of AgNO3 on the nanocomposites
behavior. The ANN model is simulated, trained
and tested with the learning algorithms like Quasi-
Newton, Conjugate Gradient and Levenberg-
Maquardt using the dataset. In the projected work
it is evident that Levenberg-Maquardt is the best
suited algorithm when considering engine data set
type for the particular application. It converges
in lesser epochs and indeed takes shorter time
period than all the other training algorithms. Some

suitable architectures gave worthy performances
within the same algorithms as their R value is
observed nearest to 1. The experiment shows that
ANN is an effectual tool in pondering subjects
related to nanoengineering as the size of the silver
nanoparticle is predicted in the absence of the
costly and time-consuming tests.

ACKNOWLEDGEMENT

	 The authors would like to acknowledge &
thank Dr. V. Ganapathy, Professor in SRM Institute
of Science & Technology, Kattankulathur for his
immense help in this work.

REFERENCES

1.	 Ibrahim Khan, Khalid Saeed, Idree S khan,
“Nanoparticles: Properties, applications and
toxicities”, Arabian Journal of Chemistry
(2017), Available: http://dx.doi.org/ 10.1016/j.
arabjc.2017.05.011.

2.	 P. Shabanzadeh, N. Senu, K. Shameli, F. Ismail,
“Application of Artificial Neural Network
(ANN) for Prediction Diameter of Silver
Nanoparticles Biosynthesized in Curcuma Longa
Extract”, Digest Journal of Nanomaterials and
Biostructures, 8(3), pp. 1133 – 1144 (2013).

3.	 Steven J. Oldenburg, “Silver Nanoparticles:
Properties and Applications”, Sigma-Aldrich,
Available: https://www.sigmaaldrich.com/
technical-documents/articles/materials-science/
nanomaterials/silver-nanoparticles.html.
Accessed: (2018).

4.	 G M Sacha, P Varona, “Artificial intelligence
in nanotechnology”, Nanotechnology, 24: no.
452002 (2013).

5.	 Mohammad Hemmat Esfea, Masoud Afranda,
Somchai Wongwisesb, Ali Naderic, Amin
Asadid, Sara Rostamia, Mohammad Akbaria,
“Applications of feedforward multilayer
perceptron artiûcial neural networks and empirical
correlation for prediction of thermal conductivity
of Mg(OH)2–EG using experimental data”,
International Communications in Heat and Mass
Transfer, 67: pp. 46–50 (2015).

6.	 Howard Demuth, Mark Beale, Martin Hagan,
“Neural Network Toolbox™ 6 User’s Guide”,
COPYRIGHT 1992–2008. Available: http://
citeseerx.ist.psu.edu/viewdoc/ download?doi=
10.1.1.144.5444&rep=rep1&type=pdf.

7.	 Bhavna Sharma, Prof. K. Venugopalan,
“Comparison of Neural Network Training
Functions for Hematoma Classification in

1602 Gehlot et al., Biomed. & Pharmacol. J, Vol. 11(3), 1593-1602 (2018)

Brain CT Images”, IOSR Journal of Computer
Engineering (IOSR-JCE), 16(1): pp. 31-35
(2014).

8.	 A. D. Dongare, R. R. Kharde, Amit D. Kachare,
“Introduction to Artificial Neural Network”,
International Journal of Engineering and
Innovative Technology (IJEIT), 2(1): pp. 189-194
(2012).

9.	 Jonathan Richard Shewchuk, “An Introduction
to the Conjugate Gradient Method Without the

Agonizing Pain”, edition 1 , Carnegie Mellon
University, Pittsburgh, August 1994. Available:
https://www.cs.cmu.edu/~quake-papers/
painless-conjugate-gradient.pdf. Accessed:
March 17, 2018.

10.	 Islam El-Nabarawy, Ashraf M. Abdelbar, Donald
C. Wunsch Ii, “Levenberg-Marquardt and
Conjugate Gradient Methods Applied to a High-
Order Neural Network”, The 2013 International
Joint Conference on Neural Networks (IJCNN),
Dallas, TX, pp. 1-7 (2013).

11.	 Jason Brownlee, ”What is the Difference
Between Test and Validation Datasets? - Machine
Learning Mastery”, [Online]. Available: https://
machinelearningmastery.com/difference-test-
validation-datasets/. Accessed: March 17 (2018).

12.	 Shyam S Sablani, Oon-Doo Baik, Michele
Marcotte, “Neural networks for predicting
thermal conductivity of bakery products”,
Journal of Food Engineering, 52(3): pp. 299-304
(2002).

