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	 Nuclear pleomorphism is considered to be one of the most significant shape based 
feature adapted in grading the cancer through the pathological studies of the H&E stained tissue 
slides. Microscopic study of manually extracting the feature is highly laborious and misleads 
the pathologists during grading. Digitization of the slides has given rise to various segmentation 
approaches to extract the nuclei shape to assess the degree of pleomorphism. Here, a novel 
approach of initializing and evolving the distance regularized level sets (DRLS) for the detection 
and segmentation of the nuclei has been presented. In this work, two major objectives have been 
achieved. First, a novel geometric approach has been devised for the detection of centroids of 
each nuclei in the occluded region and second, a shape prior model has been presented for the 
extraction of gradient information through morphological operations. The multiple level set 
implementation of the DRLS contours are initialized using the centroids detected and driven 
through the gradient computed. The proposed method has been experimented over the images 
of benign and malignant breast cancer tissue obtained from BeakHis dataset. A quantitative 
analysis of the results have shown that a 97% of object detection accuracy and 78% of overlap 
resolution has been achieved through the proposed model. A comparative study with that of 
geodesic active contours have indicated an improvement in the segmentation accuracy measure 
of 9-10 pixel difference.
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	 Extraction of the significant biomarker 
play a significant role in the diagnosis and 
prognosis of the cancer. Pathologists have 
considered the nuclear pleomorphism as an 
important shape based biomarker in the process 
of staging the disease. A manual delineation of the 
nuclear boundary fetches the pleomorphic features 
based on the shape detected through microscopic 
observation of the histopathological slides. This is a 
very laborious and time consuming activity due to 
the heterogeneity of the tissue objects observed on 
the slides. This will mislead the diagnosis process 
resulting in wrong staging. This may also, be due 

to inter and intra-observer variabilities existing 
among the pathologists.
	 Many automated staging systems have 
been proposed following the advent of digitization 
of the slides. The digitized image is considered as a 
2-D scene I

s
, represented as a matrix M, consisting 

of pixel intensity values of RGB components. 
It is defined as I

s
= (M, ω), where ω = χ(x,y) is 

the pixel intensity function representing a vector  
ω e M, consisting of intensity levels of red, green 
and blue components. Various imaging techniques 
have been presented in the literature, addressing 
the object detection, segmentation and followed 
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by classification. Segmentation of nuclei is an 
important phase in the process of extracting the 
pleomorphic features. Since the boundary to be 
extracted is irregular and presents discontinuity, 
many low level approaches fail in segmenting 
the nuclei to the required accuracy. Hence, due to 
complex morphological features and heterogeneity 
of the image, segmentation of the nuclei is 
considered to be a challenging task.
Existing Literature
	 Most of the works presented in the 
literature have highlighted significance of 
various features and similarity measures in 
addressing the object detection in an overlapped 
region and segmenting the irregular boundary. 
An unsupervised segmentation has been 
presented based on the features computed using 
magnitude and spectra in the frequency domain1.  
A morphologically seeded watershed based method 
has been proposed extract the overlapped nuclei2. 
In a work presented, a Gaussian based hierarchical 
voting and repulsive balloon model has been used 
for a cell segmentation3. An improved hybrid 
active contour model driven by both boundary and 
region information is used for an effective nuclear 
segmentation4.  In the work presented by5,6 a multi-
scale radial line scanning has been proposed  to 
delineate the boundaries of nuclei detected using 
Laplacian  of Gaussian kernels. An integrated 
model of adaptive morphology and curvature scale 
space has been used to segment the overlapped 
cells7. A color decomposition based active contours 
and a sparse shape prior and occlusion constraint 
based levels sets have also been proposed for a 
robust nuclei segmentation8,9. A large feature set 
based adaboost classifier technique has been used 
to perform nuclear detection10. There are methods 
based on deep convolution networks applied to 
perform nuclear segmentation11,12. It has also 
been shown that the edge based approaches are 
inefficient due to irregularity and missing boundary 
information, whereas region based approaches 
suffer from over and under segmentation. 
System overview
	 There are two major challenges need to 
addressed during the segmentation of the nuclei 
in a digitized H&E images. First, the detection of 
the number of nuclei present in an occluded region 
and second, to compute the boundary information 
accurately to segment the nuclei shape presenting 

the pleomorphic features. The work presented in 
this research has been able to address both the 
issues efficiently. Following are the main objectives 
achieved in this proposed methodology.
	 First, the computation of geometric 
centroid C

g 
= {c

i 
:

 
M(x

i 
,y

i
) e I

s
} of each nuclei 

objects present in the occluded region of interest 
(ROI) extracted through proposed shape prior 
based morphological enhancements. In the existing 
literature, various methods of centroid detection 
have been proposed. A review on centroid detection 
techniques based on Euclidian distance map, Hough 
transform and H-Maxima transform has been 
presented13,14. Nuclear size has been considered as 
a biomarker representing the ground truth for the 
detection of the centroids15,16. Detection schemes 
based on support vector machine (SVM) and deep 
learning approaches have been presented17,18. In the 
work presented in this research, a novel approach of 
generating the centroids of the irregular curvature 
has been presented. This is achieved by computing 
the intersecting points X
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={x
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norms N
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} obtained orthogonal to the 
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} drawn over each boundary 

point B
c
(x,y) on the curve. Considering the 

Euclidian distance function over the m intersecting 
points, k number of clusters are obtained using 
k-means clustering. The k value is computed for 
each region, by taking the fractional area of the 
overall region keeping the average area of the 
nuclei as the fractional value given by Eq. 1.

	 	 ...(1)
	 where A

region 
is the area of the occluded 

region and A
avg

 is the mean area of the nuclei 
computed using the shape prior model. Through 
this approach an approximate centroid of each 
nuclei present in the occluded region is obtained, 
hence detecting the existence of nuclei.  
	 Second, the segmentation of the nuclei 
boundary through the evolution of contours 
implemented as multiple level sets of distance 
regularized level set (DRLS) function. Active 
contours, originally proposed as energy minimizing 
deformable models19 have been considered to 
be most effective in segmenting the irregular 
boundaries. The basic idea is to evolve the contour 
u, which is represented as a polynomial function in 
a level set functional model. The level set function 
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Table 1. List of symbols and notations used in this research

Symbol 	 Description	 Symbol	 Description

I
s	

2-D image scene	 M	 2-D image grid
c	 Pixel intensity function	 w	 RGB vector
C

g	
Set of centroids	 c

i	
Centroid of each nuclei

X
i	

Points of intersecting norms	 N
c	

Set of norms orthogonal to the tangent over the curve
T

c	
Set of the tangents drawn on the 	 A

region	
Total area of ROI

	 boundary points of the curve (B
c
)

A
avg	

Average nuclei area	 f(u)	 Level set function of the contour u
f
G	

Gradient function	 D	 Diffusion rate of DRLS
F

roi	
Foreground region of interest	 I

g	
Energy gradient

s
f	

Signal frequency of the image	 N	 Noise component
D

cf	
Denoised signal co-efficient	 b,g	 Structural elements for erosion and dilation

Fig. 1. H&E stained images of Benign and malignant samples at 400X zoom

FE(u) is represented as a partial differential 
equation as given in Eq.2

	 ...(2)
	 Where f

G
  is the function which computes 

the gradient information. The evolution of the 
contour towards the object boundary is controlled 
by the gradient information, obtained as the function 
of E

I 
 and E

u
 representing the energy gradient 

of image and the contour respectively. As the 
contour evolves towards the boundary, the energy 
difference reduces to null value. Various active 
contour models have been proposed in the existing 
literature emphasizing the importance of gradient 
computation to drive the contours effectively. An 
active shape model based on a statistical approach 
constrained by point distribution20, has been 
presented to drive the active contours effectively21. 
A multiple level set implementation based on 
both region and edge gradient is also presented22. 
Geodesic active contours23 have been shown to 
be quite effective segmentation approach24. A 
novel method of computing adaptive energy and 

integrating the shape, region and the boundary 
features have been presented25,26. A region gradient 
based active model has also been proposed27, which 
is based on an energy minimizing model28. 
	 In this research, an improved edge 
based distance regularized level set (DRLS)29 
active contour model has been adapted. Here, 
two important terms viz., forward and backward 
diffusion effects of contour evolution have been 
integrated in a distance regularization model. 
It results in reduced initialization with fewer 
iterations of contour evolution. The DRLS model 
is as shown in Eq.3

	 	
...(3)

	 Here the distance regularization term is 
as shown in Eq.4

	 		
...(4)
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	 The term D=µh
pv

 (

D

f) is the diffusion rate 
controlled by a positive or negative potential value 
pv indicating the forward and backward diffusion. 
The second term is the derivative of the external 
energy. 
	 The basic idea of the work presented in 
this research is to obtain the region of interest by 
adapting a shape prior model to morphologically 
extract the foreground regions F

roi
.. A novel 

geometrical approach of obtaining the set of norms 
n

i
 e N

c
 to the curvature orthogonal to a tangent t

i
 

drawn over each ith boundary point, is adapted to 
compute the set of centroids C

g
, representing the 

geometrical centers of each nuclei present in the 
region. The resultant of morphological processing 
based on the proposed shape prior is adapted to 
compute the energy gradient I

g, 
which represents 

the external driving force for the contour evolution. 
Hence, the DRLS contours implemented as 
multiple level sets are initialized at the centroids 
detected and made to evolve using the shape prior 
based gradient computed. Subsequent sections 
provide the description of the data set used and 

a detailed discussion of the various stages of the 
methodology, followed by experimentation and 
result analysis.

MATERIALS AND METHODS

	 In this section, a description of the data 
set used followed by a detailed discussion on each 
stages of the methodology is presented.
Description of the dataset
	 The digitized images of H&E stained 
histopathological slides have been obtained from a 
standard collection provided by BreakHis dataset30. 
The dataset represents the samples of surgical 
open biopsy(SOB) of benign and malignant breast 
cancer tissues. A total of 200 images representing 
adenosis of benign and ductal carcinoma of 
malignant samples, at a zooming level of 400x have 
been chosen for experimentation. Fig.1 shows the 
sample images of both clinical representations.
	 The images represented as a 2-D grid M, 
are considered at a resolution of 700x460. The 
various stages of methodology, as discussed in the 
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Fig. 2. Results of curvature-norm method for centroid detection (a) Occluded region (b) norms on the curvature 
points and (c) The centroids computed

Fig. 3. The results of each stages of the methodology (a) Original Image (b) Region of interest using k-means (c) 
morphological enhancement (d) foreground region of interest with centroids detected (e) The occluded regions (f) 
DRLS initialized at the centroids (g) Evolving contours (h) Final Segmentation

following section, have been applied to achieve the 
above listed objectives. Throughout this research 
many notation have been used as listed in Table.1
Proposed methodology
	 In this section, various stages of the 
proposed method has been presented in detail. 
Algorithm 1 shows the complete illustration of the 
various phases involved.
Image enhancement
	 The H&E stained image inherently 
presents both low and high frequency noise 
components, due to staining and zooming errors. 
Hence, Wiener filter is considered to be the 
promising technique in eliminating both the 

components. The frequency sub-bands, s
f
, are 

separated from noise components N=(s
low

,s
high

) and 
a denoised signal co-effiecient D

cf
 can be computed 

as shown in Eq. 5

	 	 ...(5)
	 Where µ and s2 represents mean and 
variance of the signal component computed as 
shown in Eq. 6 and 7

	 	 ...(6)
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Table 2. Object detection and overlap measures 
for DRLS-CN and DRLS

	 SN	 SP	 PPV	 OR

DRLS-CN	 0.97	 0.74	 0.82	 0.78
DRLS	 0.92	 0.66	 0.81	 0.70

Fig. 4. Charts showing the object detection accuracy and overlap resolution by comparing DRLS-CN and DRLS 
with actual count

	 	 ...(7)
	 A discrete wavelet transform (DWT) of 
the original signal component splits the signal 
into various spatial bands and separates both low 
and high frequency noise bands from the image as 
shown in Eq. 8 and 9.

	 	 ...(8)

	 	 ...(9)

	 The idea of integrating Weiner filter with 
DWT results in an efficient filtering of the noise 
components31. It has also been shown that DWT 
results in reduced over-segmentation32.
Computation of Shape prior
	 In this phase, the foreground region of 
interest F

roi 
is extracted using a suitable shape 

prior model representing the structural element b 
and g, to compute the area of the nuclei objects to 
be detected. The shape prior model is as shown as 
shown in Eq. 10 and 11.

	 	 ...(10)

	 	 ...(11)
	 The parameters µ

D 
and s

D  
are the mean 

and standard deviation of the nuclei diameter, 
which is derived from the mean area of the 
foreground objects obtained from the outcome of 
the clusters generated using k-means algorithm. 
The area computed by b and g are used with erosion 
and dilation process respectively. The parameter ± 
corresponds to the thresholding factor for dilation. 
These morphological operations generates the 
foreground scene from which the image gradient 
I

g
 is computed. Binarization of the same results in 

the extraction of ROI.
Centroid detection
	 After obtaining the ROI from the previous 
stage, the detection of the existence of the nuclei 
is performed in this stage. As presented earlier, 
the novel curvature-norm technique is adapted to 
extract the centroid of the nuclei. Fig. 2 shows the 
outcome of the method over an occluded region. It 
shows the generation of norms over the boundary 
points of the curve and finally showing the centroid 
points of the number of nuclei present in the region.
	 The computation of the centroids is 
achieved using k-means clustering applied over 
the intersecting points of the norms. Here, the 
value of k is computed as shown in Eq. 1. Finally, 
the DRLS contours are initialized as multiple 
level set functions at the centroids detected and 
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Fig. 5. Charts showing the comparison of Hausdorff distance (HD) between DRLS-CN and GAC-CN

Fig. 6. Charts showing the comparison of Mean Absolute distance (MAD) between DRLS-CN and GAC-CN

the evolution of the same is guided by the image 
gradient I

g
, which is computed as discussed above.

RESULTS AND DISCUSSION

	 T h e  p r o p o s e d  m e t h o d o l o g y  i s 
experimented over 200 images selected from 
both benign and malignant samples in the dataset 
chosen. Fig.3 shows the results of each stages and 
the final outcome of the segmentation approach 
proposed. 
	 The proposed method DRLS with 
curvature-norm initialization (DRLS-CN) 
outperforms the DRLS without curvature-norm 
initialization.
Quantitative analysis
The efficacy of the proposed methodology has been 
studied using following two quantitative measures. 
First, object detection and occlusion resolution 
measures and, second, segmentation accuracy 
based on boundary error metrics. The object 

detection measures are computed using sensitivity 
(SN), specificity (SP), positive predictive value 
(PPV), and the overlap resolution (OR). Based on 
the ground truth, the above measures are computed 
using true positive (TP), true negative (TN), false 
positive (FP) and false negative (FN)24.  Since, the 
manual delineation performed by the pathologist 
is tedious, only 40 samples have been considered 
for quantitative analysis. A comparative results of 
DRLS segmentation with and without curvature-
norm initialization is presented in Table.2
	 The chart shown in Fig. 4 indicates the 
other two measures of object detection and overlap 
resolution viz., actual count (AC) and detected 
count (DC)24. These measures are computed by 
taking the average of 20 randomly chosen objects. 
	 Second, the measures of segmentation 
accuracy is computed using following two 
metrics33. They are Hausdorff distance (HD) and 
Mean absolute distance (MAD) as shown in Eq. 
12 and Eq. 13.
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	 ...(12)

	
...(13)

	 The key factor for computing the above 
measures is the distance in terms of pixel difference 
between the manual delineation performed over the 
object boundary and the final contour.  Since the 
manual delineation is a tedious task, pathologists 
have randomly chosen 20 objects for ground truth 
generation. These measures have been plotted in 
the charts shown in Fig.5 and Fig.6, in comparison 
with the Geodesic active contours driven by 
curvature-norm initialization. The proposed DRLS-
CN has shown a very less pixel difference of utmost 
4 pixels in contrast with that of GAC-CN, which 
measures in a range of 2-14 pixels. It is clearly 
evident from the result, that DRLS-CN outperforms 
GAC-CN in terms of segmentation accuracy.

CONCLUSION

	 The work presented in this research, has 
been able to address the importance of extracting the 
pleomorphic features for the purpose of diagnosis 
and prognosis of the cancer disease. An improved 
active contour technique has been adapted to 
perform the challenging task of segmenting the 
nuclei from an occluded region of a digitized 
H&E stained image. Here, a novel curvature-norm 
technique is devised to compute the geometric 
centroid of the occluded object and the DRLS 
contours are initialized at those centroids to evolve 
towards the object boundary to segment the nuclei 
shape resulting in pleomorphic features. Initially, 
the region of interest is extracted using a novel 
shape prior model, which is also used to compute 
the image gradient, representing the external energy 
in driving the DRLS contour efficiently towards 
the object boundary. Hence, this work has been 
able to present two novel techniques. First, The 
shape prior model and second, the curvature-norm 
technique for centroid detection. The results of 
the segmentation have been compared with other 
techniques and found to be quite promising in terms 
of object detection, overlap resolution and also 
with respect to segmentation accuracy.  Further, the 

results can be extended for the post segmentation 
classification process. 
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