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 Laminopathy is a group of rare genetic disorders, including EDMD, HGPS, 
Leukodystrophy and Lipodystrophy, caused by mutations in genes, encoding proteins of the 
nuclear lamina. Analysis of protein interaction network in the cell can be the key to understand; 
how complex processes, lead to diseases. Protein-protein interaction (PPI) in network analysis 
provides the possibility to quantify the hub proteins in large networks as well as their interacting 
partners. A comprehensive genes/proteins dataset related to Laminopathy is created by analysing 
public proteomic data and text mining of scientific literature. From this dataset the associated PPI 
network is acquired to understand the relationships between topology and functionality of the 
PPI network. The extended network of seed proteins including one giant network consisted of 381 
nodes connected via 1594 edges (Fusion) and 390 nodes connected via 1645 edges (Coexpression), 
targeted for analysis. 20 proteins with high BC and large degree have been identified. LMNB1 
and LMNA with highest BC and Closeness centrality located in the centre of the network. The 
backbone network derived from giant network with high BC proteins presents a clear and visual 
overview which shows all important proteins of Laminopathy and the crosstalk between them. 
Finally, the robustness of central proteins and accuracy of backbone are validated by 248 test 
networks. Based on the network topological parameters such as degree, closeness centrality, 
betweenness centrality we found out that integrated PPIN is centred on LMNB1 and LMNA. 
Although finding of other interacting partners strongly represented as novel drug targets for 
Laminopathy.

Keywords: Protein-protein interaction network (PPIN),
Closeness centrality, Betweenness centrality, Laminopathy.

 Laminopathies, a group of rare genetic 
disorders caused by mutations in genes, encoding 
proteins of the nuclear lamina. Patients with 
classical laminopathy have mutations in the gene 
coding for lamin A/C (LMNA gene). Mutations 
in lamin B (LMNB2 gene) reported recently.1 
In addition to providing structural support to 
the nucleus, lamins also contributes to nucleo-
cytoskeletal coupling, cell cycle regulation, 
cell apoptosis, chromatin organization, DNA 
replication, transcriptional regulation and responses 
to oxidative stress.2 The nuclear envelope entered 

the medical area in the mid-1990s, when mutations 
in emerin were identified in patients with Emery-
Dreifuss muscular dystrophy.3 The LMNA gene, 
encoding all A-type nuclear lamins, was linked 
to EDMD a few years later4,5 and links between 
nuclear structure and human disease have been 
studied extensively since then in labs throughout 
the world.
 Biological networks can be used to 
describe biological interactions such as the 
atomic interactions occurring between protein 
structures, the interactions of metabolites and 
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proteins during specific cellular events such 
as the cell cycle and, on a macroscopic level, 
the interrelationships between organisms in an 
ecosystem.6,7 Systems approaches aim to develop 
an understanding of the inter-relationships between 
proteins, metabolites or other molecules across 
organisms.8 Modern high-throughput techniques, 
taking measurements on a system-wide level, are 
well suited to the global analysis and modelling of 
networks for different diseases.9,10,11 In comparison 
to wet lab techniques, computational methods 
have the potential to reduce noise and systematic 
errors.12 Protein complexes are remarkable for 
understanding principles of cellular organization 
and function.8 High throughput experimental 
techniques have generated a large amount of 
protein interactions, which makes it doable to 
uncover protein complexes from protein protein 
interaction networks.13,14 A PPI network (PPIN) can 
be modelled as an undirected graph, where vertices 
stand for proteins and edges represent interactions 
between proteins.15 Protein complexes are set of 
proteins that interact with one another, typically 
dense subgraphs in PPI networks.14,16 To reveal the 
significance of the laminopathy disease, insilico 
based methodology have been used to identify the 
key proteins and their interactor. The integration 
of proteins interface structure into interaction 
graph models gives a better explanation of hub 
proteins, and builds up the relationship between 
the role of the hubs in the cell and their topological 
properties.17,18 In this study, the interactions among 
the proteins have been implemented to produce and 
analyse a giant network by the topological analysis 
of the PPIN derived from the genes/proteins related 
to Emery-Dreifuss muscular dystrophy(EDMD),4,19 
Hutchinson-Gilford Progeria Syndrome (HGPS),20-

22 Leukodystrophy23 and Lipodystrophy24. Different 
bioinformatics tools related to the proposed 
methodology are implemented to construct the 
PPI network of candidate genes and analyzed the 
topological properties like degree, betweenness 
centrality (BC) and closeness centrality (CC).17 

METHOD 

 Research methods used in this study 
mainly included five steps, first step: Extraction 
of candidate genes, second step: Construction of 
PPIN of the seed proteins, third step: Merging of 

all PPIN scanned from seed proteins, fourth step: 
Analysis of the giant PPIN according to topological 
properties, fifth step: Acquiring backbone network. 
Extraction of the Candidate Genes
 Extraction of the candidate genes 
related to EDMD, HGPS, Leukodystrophy and 
Lipodystrophy disease done by PolySearch text 
mining systems25 and NCBI database, which 
are web-based text mining system for extracting 
relationships between human diseases, genes, 
mutations, drugs and metabolites system and 
produce relevant information regarding individual 
query. As a result, 245 candidate genes associated 
with examining diseases obtained. To check the 
accuracy, the association of genes with disease is 
manually confirmed, and sorted the genes on the 
basis of Z score. The threshold for candidate genes 
set as Z score > 0. Finally, total 88 candidate genes 
are obtained, Table 1.
Construction of PPI Network of the Seed 
Proteins
 Candidate genes are converted to seed 
proteins, for each protein a PPIN extracted from 
the STRING database.26 Interactions in STRING 
are provided with a confidence score, and 
accessory information such as protein domains 
and 3D structures is made available, all within a 
stable and consistent identifier space. Fusion and 
coexpression attributes are fixed to construct the 
PPIN. Finally, we obtained different PPIN for 
different seed proteins.
Merging of all PPI Network Scanned from Seed 
Proteins
 To merge all the PPIN of seed proteins 
within a single network called as extended 
network, Cytoscape v3.0.2 has been used,27,28 
it provides a platform to analyze and visualize 
the extended network Figure 1 (a,b). Extended 
network included different distinct sub network, 
according to clustering of the seed proteins. Among 
them, only one network has been considered with 
the highest existing nodes and edges for further 
analysis. Such network consists of maximum 
interactions among the seed proteins and termed 
as a giant network shown in Figure 2 (a,b). Other 
sub localized networks are to be ignored as they 
have less interaction. 
Analysis of the Giant PPI Network According 
to Topological Properties
 PPI Network of relevant disease 
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Table 1. The list of genes extracted from NCBI and PolySearch Text mining system database 
showing association with Progeria, EDMD, Leukodystrophy and Lipodystrophy

S.No. Symbol Description

HGPS
1 BANF1 Barrier To Autointegration Factor 1
2 C myc Avian Myelocytomatosis
3 DDX12 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 12, pseudogene
4 ELN Elastin
5 EMD Emerin
6 ERCC1 Excision repair cross-complementing rodent repair deficiency, 
  complementation group 1
7 ERCC4 Excision repair cross-complementing rodent repair deficiency, 
  complementation group 4
8 ROBO3 Roundabout, Axon Guidance Receptor, Homolog 3
9 LMNA Lamin A/C
10 MMP20 Matrix Metallopeptidase 20
11 SIRT1 Sirtuin 1
12 SUN2 Sad1 and UNC84 domain containing 2
13 WRN Werner syndrome,RecQ helicase-like
14 ZMPSTE24 Zinc metallopeptidase STE24
EDMD
15 BCLAF1 BCL2-associated transcription factor 1
16 EMD Emerin
17 LMNA Lamin A/C
18 SUN2 Sad1 and UNC84 domain containing 2
19 SYN1 Synapsin I
20 SYN2 Synapsin 2
21 TMEM43 Transmembrane protein 43
22 TMPO Thymopoietin
23 YTHDC1 YTH domain containing 1
LEUKODYSTROPHY
24 ACOX1 Acyl-CoA oxidase 1, palmitoyl
25 AIMP1 Aminoacyl tRNA synthetase complex-interacting multifunctionalprotein 1
26 ARSA Arylsulfatase A
27 ARSB Arylsulfatase  B
28 ASPA Aspartoacylase
29 C8orf38 Chromosome 8 Open Reading Frame 38
30 C17orf68 Chromosome 17 Open Reading Frame 68
31 C20orf7 Chromosome 20 Open Reading Frame 7
32 CLCN2 Chloride channel, voltage-sensitive 2
33 EIF2B1 Eukaryotic translation initiation factor 2B, subunit 1 alpha
34 EIF2B2 Eukaryotic translation initiation factor 2B, subunit 2 beta
35 EIF2B3 Eukaryotic translation initiation factor 2B, subunit 3 gamma
36 EIF2B4 Eukaryotic translation initiation factor 2B, subunit 4 delta
37 EIF2B5 Eukaryotic translation initiation factor 2B, subunit 5 epsilon
38 FA2H Fatty acid 2-hydroxylase
39 FAM126A Family with sequence similarity 126, member A
40 FOLR1 Folate receptor 1
41 FOXRED1 FAD-dependent oxidoreductase domain containing 1
42 GALC Galactosylceramidase
43 GFAP Glial fibrillary acidic protein
44 GJC2 Gap junction protein, gamma 2
45 LMNB1 Lamin B1
46 MAG Myelin associated glycoprotein
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47 MT-ND5 Mitochondrially encoded NADH dehydrogenase 5
48 NDUFAF2 NADH dehydrogenase (ubiquinone) complex I, assembly factor 2
49 NDUFAF4 NADH dehydrogenase (ubiquinone) complex I, assembly factor 4
50 NDUFS1 NADH dehydrogenase (ubiquinone) Fe-S protein 1,
51 NDUFS2 NADH dehydrogenase (ubiquinone) Fe-S protein 2,
52 NDUFS7 NADH dehydrogenase (ubiquinone) Fe-S protein 7,
53 NDUFV1 NADH dehydrogenase (ubiquinone) flavoprotein 1, 51kDa
54 NUBPL Nucleotide binding protein-like
55 PLP1 Proteolipid protein 1
56 POLR3A Polymerase (RNA) III (DNA directed) polypeptide A
57 POLR3B Polymerase (RNA) III (DNA directed) polypeptide B
58 POU2F1 POU class 2 homeobox 1
59
60 SOX10 SRY (sex determining region Y)-box 10
61 ST8SIA4 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4
62 SUMF1 Sulfatase modifying factor 1
63 TREX1 Three prime repair exonuclease 1
64 TUBB4 Tubulin, beta 4A class Iva
LIPODYSTROPHY  
65 AGPAT2 1-acylglycerol-3-phosphate O-acyltransferase 2
66 BANF1 Barrier to autointegration factor 1
67 BSCL2 Berardinelli-Seip congenital lipodystrophy 2 (seipin)
68 CAV1 Cavolin 1, Cavolae protein
69 CIDEC Cell death-inducing DFFA-like effector c
70 ENSG0000235715 -
71 FBN1 Fibrillin 1
72 FOS FBJ murine osteosarcoma viral oncogene homolog
73 GLMN Glomulin, FKBP associated protein
74 LMF1 Lipase maturation factor 1
75 LMNA Lamin A
76 LMNB2 Lamin B2
77 LPIN1 Lipin1
78 LPIN2 Lipin2
79 LPIN3 Lipin3
80 PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1
81 PLIN1 Perilipin1
82 POLD1 Polymerase (DNA directed), delta 1, catalytic subuni1
83 PPARG Peroxisome proliferator-activated receptor gamma
84 PTRF Polymerase I and transcript release factor
85 RXRG Retinoid X receptor, gamma
86 STAR Steroidogenic acute regulatory protein
87 WRN Werner syndrome,RecQ helicase-like
88 ZMPSTE24 Zinc metallopeptidase STE24

represented by an undirected graph G(V, E), where 
V represents the set of vertices in the graph G and 
E represents the set of edges.29 NetworkAnalyzer, 
was used to compute various network parameters.30 
To predict and study the key nodes or hub proteins 
of the giant network topological parameters have 
been calculated. Therefore, after analyzing the 
giant network, according to each distinct attribute 
degree, BC and CC values for each node have 
been calculated. That helps in finding the proteins 

of central positions in the network, as they can be 
highly important from a functional point of view 
too. In undirected networks, the node degree of a 
node n is the number of edges linked to n.29,31 The 
number of links of a node was observed to follow 
a power law distribution, that is, the probability 
of a node having degree k is proportional to k”³, 
and the distribution is independent of the number 
of nodes; hence these networks are called scale 
free. Scale-free networks have many nodes with 
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Fig. 1. Overview of the extended network. (a) Fusion: 581 nodes and 2270 edges. (b) Coexpression: 585 nodes and 
2340 edges, includes one giant network and thirteen separated small networks

small degrees and allow nodes with high degrees 
(hubs) with decreasing probability.31 Betweenness 
measures how often nodes occur on the shortest 
paths between other nodes.32 For a graph G(V, E), 
with n vertices, the betweenness centrality C

B
(v) 

a vertex v is defined as,
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Closeness centrality33 C

c
(n) of a node n is defined 

as the reciprocal of the average shortest path length 
and is computed as,
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 Where L(n,m) is the length of the shortest 
path between two nodes n and m. The closeness 
centrality of each node is a number between 0 
and 1. In the PPIN the nodes with high degree 
defined as hub proteins and the nodes with high 
betweenness defined as bottleneck proteins.18

Acquiring Backbone Network
 The proteins with high BC and degree 
should be profoundly used intersections, these 
proteins and links between them extracted from 
giant network, are called backbone network. To 
evolve a high BC range particular threshold fixed at 
15% of the total nodes set of the network.34,35 As the 
founding of Backbone Network by both fusion and 
coexpression attribute is almost similar, so fusion 

attribute has been chosen for further analysis. Total 
number of nodes in the giant network is 381(fusion) 
among them  20 proteins with high BC value have 
been chosen which are LMNB1, TERF2, LMNA, 
CAV1, NDUFAF2, TP53, INS, MYC, PPARG, 
PCNA, KAT5, EMD, EP300, KAT2B, PLIN1, 
AIMP1, AGPAT2, TGFB1, SRC, PPARGC1A to 
form backbone network Figure 3.

RESULTS AND DISCUSSION

 In this study, the effects and important role 
of individual protein/gene of related disease has 
been illustrated. The analysis depends on the kind 
of methodology applied to construct the merged 
network. The aim is to find out the contribution of 
these proteins to the pathogenesis of Laminopathy 
and discover other key proteins cooperating with 
them by topological analyses. 
PPI Network
 Using PolySearch Text mining tools 
and NCBI database, 14 candidate genes related 
to HGPS, 9 to EDMD, 41 to the Leukodystrophy 
and 24 to the Lipodystrophy have been obtained, 
Table 1. These candidate genes are converted to 
seed proteins and obtained their interacting partners 
from STRING database, a precomputed database 
for the exploration of PPI. Coexpression and fusion 
attributes of PPI have been chosen to analyse the 
merged network, so two different merged networks 
are generated. Fusion attribute has been considered 
first, as it is the most relevant attribute described 
in, for the analysis of disease PPIN. In this case 
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the merged network with 581 nodes and 2270 
edges shown in Figure 1(a), is a combination of 
thirteen different sub networks. LMNB1, DDX12, 
SIRT1, ROBO3, TGFB3, ELN, MMP20, ERCC1, 
TMEM43, YTHDC1, ARSA, EIF2B3, GALC, 
PLP1 are the seed proteins while playing the central 
role in each fourteen sub networks. These nodes are 
distributed in fourteen different clusters according 
to interaction possibility. The large network among 
them, in which LMNB1 playing the role of central 
protein, consists of 381 nodes and 1594 edges 

extracted as giant network shown in Figure 2(a). 
Similarly, considering the coexpression attribute 
the merged network consists of 585 nodes and 
2340 edges and 14 subnetworks shown in Figure 
1(b). It is notified that in all two cases foresaid 
seed proteins are playing the key role in each sub 
network. The giant network consists of 390 nodes 
and 1645 edges, according to coexpression attribute 
shown in Figure 2(b). Similar to fusion attributes 
in case of coexpression attribute LMNB1 is found 
as central protein of the giant network. 

Fig. 2. Topology of giant network (a) Fusion: 381 nodes and 1594 edges (b) Coexpression: 390 nodes, 1645 edges
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Fig. 3. Topology of the backbone network. The backbone network consists from 20 nodes with high BC value

Key nodes in the PPI network
 To predict and study the key nodes or 
hub proteins of the giant network, Topological 
parameters  have  been  ca lcu la ted  wi th 
NetWorkAnalyzer. Three topological properties 
are essential to find out the key nodes of any 
network. Therefore, after getting the giant network, 
according to each distinct attribute the BC value 
of each node has to be measured and comparison 
can be made to find out the ascending order of 
the BC values. After calculation twenty proteins 
have been selected by a large BC value in case of 
fusion attributes they are LMNB1, TERF2, LMNA, 
CAV1, NDUFAF2, TP53, INS, MYC, PPARG, 
PCNA, KAT5, EMD, EP300, KAT2B, PLIN1, 
AIMP1, AGPAT2, TGFB1, SRC, PPARGC1A and 
these proteins form a backbone network. Among 
these proteins LMNB1 has highest BC value 0.287. 
TERF2, LMNA, CAV1, NDUFAF2, TP53, INS, 
MYC, PPARG, PCNA, KAT5, EMD, EP300, 
KAT2B, PLIN1, AIMP1, AGPAT2, TGFB1, 
SRC, PPARGC1A are other proteins with high 
BC and CC value, described in Table 2. The most 
interesting fact is that though TERF2, TP53, INS, 
PCNA, KAT5, EP300, KAT2B, TGFB1, SRC, 
PPARGC1A are having the high BC value but 
these proteins are not in the list of 88 seed proteins. 
Therefore, only ten proteins of the backbone 
network are in the list of seed proteins while having 
the highest BC value. 
 Similarly for the giant network of 
coexpression attribute the topological result is 
obtained and summarized in Table 3, in which 
LMNB1 and LMNA are the highest BC value 

0.28 and 0.27 proteins among the twenty proteins 
TERF2, CAV, NDUFAF2, TP53, INS, MYC, 
PPARG, PCNA, KAT5, UBC, EP300, PLIN1, 
KAT2B, AIMP1, AGPAT2, EMD, TGFB1, 
PPARGC1A with high BC according to threshold. 
While in both cases if we consider degree and CC 
parameter, then we observed that LMNB1 had a 
larger degree 60 and CC 0.287009, 56 and CC 
0.288362 for fusion and coexpression attribute 
respectively, Table 4 and Table 5. These results are 
in agreement with experimental results obtained by 
earlier research workers.2,3,5 
Sub-Network Consisting of All Shortest Paths 
between the Candidate Genes
 In general, for any arbitrary network, it is 
not necessary that each node can be connected to 
each other. But in case of PPIN of any disease the 
giant network consists of those nodes which can be 
connected directly or indirectly to each node. So the 
interaction between the nodes significantly depends 
on the shortest path length between these two 
nodes, the shortest path length gives a description 
about active interactions among the nodes. Again 
the high BC value of any node depends on the 
number of shortest paths passing through a specific 
node. Therefore the high BC value of any nodes 
implies, having more number of shortest paths. 
The Robustness of the Backbone Network and 
LMNA as a Central Protein
 As a result twenty proteins with the largest 
BC value in the test networks acquired are LMNB1, 
TERF2, LMNA, CAV1, NDUFAF2, TP53, INS, 
MYC, PPARG, PCNA, KAT5, EMD, EP300, 
KAT2B, PLIN1, AIMP1, AGPAT2, TGFB1, 



1098Yadav & Chouhan, Biomed. & Pharmacol. J,  vol. 11(2), 1091-1103 (2018)

Table 2. List of high BC nodes and their CC values 
in giant network of (FUSION)

SN NODE BC CC

1 LMNB1 0.287009 0.291562
2 TERF2 0.264808 0.236192
3 LMNA 0.26648 0.211383
4 CAV1 0.252828 0.185034
5 NDUFAF2 0.166011 0.181954
6 TP53 0.255548 0.179216
7 INS 0.246593 0.143685
8 MYC 0.191243 0.134733
9 PPARG 0.240202 0.131876
10 PCNA 0.211228 0.12723
11 KAT5 0.223136 0.11442
12 EMD 0.257627 0.110797
13 EP300 0.240964 0.11072
14 KAT2B 0.223925 0.106568
15 PLIN1 0.248204 0.104925
16 AIMP1 0.233846 0.102976
17 AGPAT2 0.247235 0.102683
18 TGFB1 0.21814 0.090545
19 SRC 0.237204 0.082378
20 PPARGC1A 0.246914 0.080442

Table 3. List of high BC nodes and their CC Values 
in giant network (COEXPRESSION) 

SN NODE BC CC

1 LMNB1 0.288362 0.28601
2 LMNA 0.271648 0.235578
3  TERF2 0.264806 0.23418
4 CAV1 0.255753 0.184785
5 NDUFAF2 0.164761 0.178153
6 TP53 0.253916 0.173889
7 INS 0.246671 0.139105
8 MYC 0.189756 0.131964
9 PPARG 0.24042 0.128324
10 PCNA 0.20993 0.124217
11 KAT5 0.2214 0.112157
12 UBC 0.245581 0.110331
13 EP300 0.239827 0.107364
14 PLIN1 0.249679 0.105244
15 KAT2B 0.222159 0.104436
16 AIMP1 0.234479 0.100686
17 AGPAT2 0.248721 0.09985
18 EMD 0.258988 0.097815
19 TGFB1 0.219898 0.088545
20 PPARGC1A 0.246984 0.077938

Table 4. List of large Degree nodes 
and their CC values (FUSION)

SN NODE DEGREE CC

1 LMNB1 60 0.287009
2 NDUFS7 44 0.144597
3 NDUFS8 37 0.144542
4 NDUFAF2 36 0.166011
5 LMNA 34 0.26648
6 PPARG 33 0.240202
7 PCNA 33 0.211228
8 C20orf7 33 0.144377
9 AGPAT2 29 0.247235
10 SYNE1 29 0.265549
11 SYNE2 28 0.264993
12 BRCA1 27 0.24532
13 NDUFS2 27 0.144432
14 NDUFAF3 27 0.144103
15 NDUFA1 26 0.143939
16 AIMP1 25 0.233846
17 NDUFAF4 25 0.144049
18 FOXRED1 25 0.144049
19 EMD 24 0.257627
20 NDUFS1 23 0.144213

Table 5. List of large Degree nodes 
and their CC values (COEXPRESSION)

SN NODE DEGREE CC

1 LMNB1 56 0.288362
2 NDUFS7 49 0.143595
3 LMNA 41 0.271648
4 NDUFS8 41 0.143542
5 NDUFAF2 37 0.164761
6 C20orf7 35 0.143384
7 PPARG 33 0.24042
8 PCNA 33 0.20993
9 NDUFS2 32 0.143437
10 NDUFV2 32 0.143278
11 NDUFA2 31 0.143067
12 FOXRED1 30 0.143067
13 AGPAT2 29 0.248721
14 NDUFV1 28 0.143225
15 NDUFS1 28 0.143225
16 AIMP1 26 0.234479
17 EMD 25 0.258988
18 NDUFAF4 25 0.143067
19 NDUFA1 25 0.142962
20 MT-ND1 25 0.126217
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Table 6. Frequency of nodes with the largest BC value and accuracy of backbone in the 248 test networks

Number of          Frequency of nodes with the largest BC value in the test networks Accuracy of  Number of 
omitted genes LMNB1 LMNA TERF2 CAV1 NDUFAF2 TP53 INS the backbone the test 
         networks 
  
1 88 0 0 0 0 0 0 0.78478 88
2 59 1 0 0 0 0 0 0.78206 60
3 14 4 1 0 1 0 0 0.76458 20
4 13 4 2 0 0 0 1 0.74654 20
5 13 4 1 1 0 0 1 0.74452 20
6 11 3 2 1 1 1 1 0.74255 20
7 12 4 3 0 1 0 0 0.74147 20
Summary 210 20 9 2 3 1 3 0.75807 248

Table 7. Comparative network statics for Fusion and Coexpression

SN Network statics Fusion Coexpression

1 Clustering Coefficient 0.727 0.726
2 Network diameter 12 12
3 Network radius 6 6
4 Network centralization 0.072 0.071
5 Shortest paths 144780 151710
6 Characteristic path length 5.426 5.400
7 Avg. No.of neighbours 7.617 7.595
8 Number of nodes 381 390
9 Network density 0.02 0.02
10 Network heterogeneity 0.713 0.712

SRC, PPARGC1A. The occurrence of LMNB1 
and LMNA is more frequent than the other nodes 
which have high BC value. Among the total of 
248 test network, the number of frequency of 
LMNB1 in test network is 210. The accuracy of the 
backbone network is 0.75807. It is examined that 
whenever the number of omitting genes is larger 
than 3 then the accuracy of backbone networks 
and frequency of the LMNB1 and LMNA are 
decreased continuously. Accuracy of backbone 
network (Fusion attribute) given in Table 6.
Comparative network statics for Fusion and 
Coexpression
 In this attempt the comparative analysis 
of the network was also performed, according to 
fusion and coexpression attributes to understand 
how the attributes can make an effect on our 
experimental disease network, is summarized in 
Table 7. The result of all the parameters has the 
same numeric value, only shortest path in case 
of coexpression is slightly higher which does not 

affect other parameters like BC value, CC value, 
clustering coefficient etc., in both cases we get 
LMNB1 as a central protein and same hub proteins.
 Graphical results of different topological 
parameters shown Figure 4 (a,b), explains the 
highest betweenness centrality in the giant 
network is approximate 0.3 and in that case the 
number of nodes is 60. This implies, the node 
having the highest betweenness value also having 
the highest number of neighbors which signifies 
evidences of the key node of the network. If we 
compare the second highest beetweenness value 
of the network, it is 0.25 (approx.) and consists of 
around 25 neighbors. Therefore the node having 
the first position in both cases of BC value and 
neighborhood, proving better candidature for 
the key role in extended merged giant network 
rather than the node having second position. 
NetworkAnalyzer can fit a power law to some 
topological parameters and follow the least 
squares method,36 and only points with positive 
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Fig. 4. Betweenness centrality of the network with a fitted line (a) Fusion (b) Coexpression

Fig. 5. Node Degree distribution of the network  with a fitted power law, R-squared value reported is the R-squared 
value for the fitted line on logarithmized data. (a) Fusion (b) Coexpression

coordinate values are considered for the fit, gives 
the correlation between the given data points and 
the corresponding points on the fitted curve. In 
addition, the R-squared value (also known as 
coefficient of determination) is reported. This 
coefficient gives the proportion of variability in a 
data set, which is explained by a fitted linear model. 
Therefore, the R-squared value is computed on 
logarithmized data, where the power-law curve:  
y = bxa is transformed into linear model:  
ln y = ln b + b ln x., here correlation between the 
data points and corresponding points on the line is 
approximately 0.528 and 0.480, R-squared value 
is 0.258 and 0.257 respectively for fusion and 
coexpression.

 Figure 5 (a,b), Graphical representation of 
the number of nodes in a giant network, according 
to degrees, graph shows the distribution of those 
nodes which are following minimum number of  
connectivity i.e. nodes are connected by at least one 
edge. Here we identified that when the number of 
nodes are 70 then  the degree of such nodes is 10. 
Also, we observed that in some cases where the 
number of degrees was high, the number of nodes 
were less. This implies such nodes are not part of 
giant network and they made subnetwork which 
contains less nodes. Therefore the connectivity 
is high, but the node is less. NetworkAnalyzer 
provides another useful feature - fitting a line 
on the data points of some complex parameters. 
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The method applied is the least squares method 
for linear regression.37 Fitting a line can be used 
to identify linear dependencies between the 
values of the x and y coordinates in a complex 
parameter. Figure 5 shows the fitted line on degree, 
having correlation between the data points and 
corresponding points on the line is approximately 
0.607 and 0.463, R-squared value is 0.719 and 
0.700 respectively for fusion and coexpression.
 Figure 6 (a,b), explains the value of  
closeness centrality of each node of the giant 
network, according to the number of neighbors. 
Clearly, it shows that only single node consists of 
highest CC value which is 0.28 approximate worth 
having 38 neighbors and graph also fitted to power 
law having corelation between data points and 
corresponding point on the line is approximately 
0.237 and 0.238, R-squared value is 0.430 and 
0.423. From similar concept, it is possible to 
conclude that this particular node can play the key 
role in the network. 

CONCLUSION

 In  p resen t  s tudy,  we  c rea ted  a 
comprehensive initial dataset of genes statistically 
related to Laminopathy and a further expansion 
through the construction of related PPIN. Here we 
studies relationships between interacting proteins 
according to topological properties. We show that 
a protein or a hub of proteins can play an important 
role to interact with other proteins and also extend 
the PPI disease network. Again, it is possible to find 

out the key proteins, which are main mediator for 
two or more disease networks. Identifying such hub 
of proteins can help to understand the mechanism 
of pathways also it might be possible to emphasize 
that they have high functional importance in 
the cell. Most of seed proteins associated with 
Laminopathy and their PPI neighbors are connected 
to a giant network, which is analyzed by using 
different centrality indexes for hubs detection. 
Our findings suggested that Laminopathy disease 
mechanism and pathway is organized by an 
integrated PPI network centered on LAMIN gene 
product LMNA and LMNB1 proteins, while other 
proteins TERF2, LMNA, CAV1, NDUFAF2, TP53, 
INS, MYC, PPARG, PCNA, KAT5, EMD, EP300, 
KAT2B, PLIN1, AIMP1, AGPAT2, TGFB1, SRC, 
PPARGC1A with high BC values predict their 
significant role in a network. Also the analysis of 
backbone network presented a clear overview of all 
important genes, their related regulatory pathways 
for Laminopathy. The backbone network is robust 
against the changes of initial seed genes. The 
results may provide a basis for further experimental 
investigations to study PPI networks associated 
with Laminopathy and other relevant disease.
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