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	 Computed tomography (CT) is a powerful tool for medical diagnosis. Due to acquisition 
and transmission in CT imaging, the noise appears that leads to poor image quality. Noise 
reduction technique is applied in CT images where noise is reduced with preserving all clinical 
information.  In this paper, original noisy CT images are thresholded using bayes shrinkage 
rule in Shearlet domain. The proposed framework is compared with existing methods and it 
is observed that performance of proposed method is superior to existing methods in terms of 
visual quality, Image Quality Index (IQI) and Peak Signal-to-noise Ratio (PSNR).
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	 In medical science, Computed tomography 
(CT) is one of the important tools which provide 
the view in the form of digital image of the human 
body’s internal structure for diagnosis purpose. 
In computed tomography, X-rays are projected 
with different-different angels over the human 
body where soft and hard tissues of human body 
are observed and other side, a detector is used 
to collect the observed data (raw data).  Using 
Radon transform, these raw data are further 
mathematically computed and CT images are 
generated. Because of acquisition, transmission 
and mathematical computation, the reconstructed 
CT images may be degraded in terms of noise.
	 With the invention of CT, the research 
on noise reduction in CT has come into existence. 
The first articles1 and2 of CT image denoising were 
published shortly after the invention of CT, where 
the concept of low-pass filtering was used. Authors 
concluded that the noise is effectively reduced and 
also enhanced the detectability of big objects from 

the noisy CT image. However, these methods have 
major problems such as over-smoothing of edges 
and decreasing the detectability of small structures.
	 Various techniques were investigated 
for controlling the noise in CT scan imaging. 
Projection based techniques in CT works on raw 
data or sinogram which comes through Radon 
transform where noise filtering was applied 
on raw data using linear or non-linear filters 
followed by filtered back-projection (FBP)3. 
Many iterative reconstruction approaches for 
noise suppression in CT were also investigated4 by 
optimizing statistical objective functions. Iterative 
reconstruction techniques have the advantage that 
the noise statistics in the projections can directly 
be taken into account during the reconstruction 
process. The disadvantage, however, is the high 
computational cost of iterative methods. The other 
popular techniques are based on post-processing 
approaches. The main goal of these techniques are 
the structure preserving reduction of pixel noise in 
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reconstructed CT images and improved signal-to-
noise ratio (SNR) without increasing the radiation 
dose. A very important requirement for any noise 
reduction in CT images is that all clinically relevant 
image contents must be preserved. Especially, 
edges and small structures should not be affected.
	 Generally, images can be denoised into 
two domains: 
(i) Spatial and (ii) transform domains. 
	 Initially, in spatial domain, linear filters 
were used to denoised the images but it was not 
successful for preserving details over the images. 
Mean filtering was used to reduce the Gaussian 
noise but for high noise it produces blurry images. 
To overcome that, bilateral filtering5 was further 
used. With non-linear filters in spatial domain, the 
noise is removed without any attempt to explicitly 
identify it. Spatial filters employ a low pass filtering 
on group of pixels with the assumption that the 
noise occupies the higher region of frequency 
spectrum. Generally, linear filters are used to 
remove noise but blurring problem may occur. 
	 Naidich et al.6 analyzed the effect of low 
dose on CT images and found that low dose can 
help to provide CT images for diagnosis purpose. 
However, the quality of CT images was not as good 
as conducted by high dose CT images. Mayo et al.7 
also tested on low dose CT images and observed 
that the photon detectors adapting less data will 
create the visual noise in the reconstructed CT 
images. They concluded that low dose CT images 
also meet with diagnostic requirements and 
further image processing algorithms would help 
to improve the quality of CT images.
	 In  t r ans fo rm-domain  deno i s ing 
techniques, the input data is decomposed into its 
scale-space representation and have a property 
of energy compaction. It is observed from multi 
resolution based denoising techniques that (i) the 
noise and clean signal behave differently. (ii) Noise 
is detected on geometrical components and sharp 
transitions of images, and (iii) Most of the noise 
can be de detected from low resolution images.
	 In another approach, Shih et al.8 proposed 
a method to reduce the noise from the low-dose 
computed tomography (LDCT) images using 
multiresolution total variation minimization 
(MRTV) method. Here, discrete wavelet transform 
was performed over the CT images to decompose 
low and high frequency wavelet coefficients. These 

high frequency wavelet coefficients were further 
processed using total variation minimization 
with suitable tuning parameters. The CT image 
reconstructed by inverse wavelet transform is the 
denoised CT image. The results were tested on 
the Shepp-Logan phantom added with Gaussian 
white noise and also real head CT images. They 
concluded that results were improved in terms of 
signal-to-noise ratio in compare to total variation 
minimization methods. In another hybrid approach, 
Shao et al.9 proposed a new approach where two or 
more denoising methods were combined together. 
They analyzed two methods named: constrained 
least square filter algorithm and Lucy-Richardson 
algorithm. In analysis, they concluded that both 
methods were good and effective for image 
resolution but not efficient for denoising. Similarly, 
they perform denoising using Non-local Means 
filter algorithm and wavelet filter. Here, both 
approaches work effectively for noise suppression 
but have less impact to enhance resolution.
	 Skiadopoulos et al . 10 analyzed a 
comparative study between multi-scale platelet 
denoising methods. They applied a Butterworth 
filter at the stage of pre and postprocessing on 
image reconstruction. The authors concluded 
that denoising by platelet and Butterworth 
postprocessing methods for without noise 
at tenuation condit ions outperformed on 
Butterworth pre-processing for large size defects. 
In another approach, Vandeghinste et al.11 proposed 
an alternative TV minimization based on split-
Bregman based algorithm to perform iterative 
CT reconstruction using shearlet regularization. 
Shearlet model contained the structure in image 
using a non-piecewise constant image model which 
leads to different artifacts than in the case of TV. 
However, on acquired CT data, the textures are 
more similar to the reference texture than TV.
	 Silva et al .12 presented denoising 
techniques on high-determination processed 
tomography (HRCT) images where denoising is 
performed for tumor discrimination. Here, authors 
performed Wiener filtering, geometric mean 
filtering and Wavelet based thresholding. After 
analysis of this work, the authors concluded that 
wavelet denoising performs well for denoising, but 
it is difficult to say that wavelet denoising works 
well for all CT reconstructed images. 
	 In transform domain, wavelet transform 
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is used where images are decomposed into low 
and high frequency subbands. The noise has a 
tendency that it affects over the edges or detail parts 
in most of the cases. Thresholding is one of the 
popular ways to denoised the images in transform 
domain. Before thresholding, a threshold value is 
estimated which helps to denoised the images. To 
overcome that, many other transforms are used 
such as, dual-tree complex wavelet transform, 
curvelet, tetrolet, shearlet and so on. Recently 
many methods13- 15 have been proposed based 
on the shearlet transform. These methods give 
better results in terms of noise reduction and edge 
preservation. However, thresholding concepts16-20 
have been differently performed via various 
transforms. Many image denoising methods21-30 
have been performed with the combination of 
spatial domain and transform domain methods.  
Some of the methods31-34 follow the approaches by 
estimating similarity from neighborhood pixels.  
Each denoising method has their drawback. The 
major drawback of previous denoising methods is 
to missing the edges for higher noise.
	 In CT images, every small detail has their 
own significance and may be used for diagnosis 
purpose. With this consideration, a new scheme 
has been proposed for reduction of pixel noise 
with structure preserving in shearlet domain, 
which combines the advantages of Bilateral filter 
and Bayes shrinkage rule in shearlet domain. 
Experiment results demonstrated that the proposed 
method produces good denoising and improved 
signal-to-noise ratio (SNR) without increased dose. 
The paper is organized as follows. Section 2 gives 
a brief overview of Shearlet transform. In section 
3, the proposed method is presented in details. 
Experimental results, including a comparison with 
other denoising methods, are given in section 4. 
Finally, conclusions are summarized in section 5.
Nonsubsampled shearlet transform (NSST)
	 The nonsubsampled shearlet transform 
(NSST) is an extended version of wavelet 
transform with a high directional sensitivity by 
inheriting the advantages of the classical theory 
of affine system. It contains five major properties: 
well localizing, spatial localizing, and highly 
directional sensitivity, parabolic scaling and 
optimally sparse. In NSST, the features of multi-
dimensional and multi-directional are enhanced by 
combining the multi-scale and directional analysis. 

The low and high frequency components in NSST 
are obtained by using nonsubsampled Laplacian 
pyramid (NSLP). While, different subbands and 
direction shearlet coefficients are obtained using 
directional filtering. The shear matrix is generally 
used to perform the directional filtering which 
helps to provide the many more directions. The 
discrete shearlet transform can be represented 
effectively due to its mathematical framework. 
The discrete version of shearlets transform has an 
ability to deal with multi-dimensional functions. 
Proposed methodology
	 With the assumption, the CT images are 
corrupted by Gaussian noise with zero mean and 
different variances, the noisy CT image can be 
expressed as:

),(),(),( nmnmYnmX η+= 	 ...(1)

	 Where, ),( nmη  is a noise coefficient, 
),( nmY  and ),( nmX  are noiseless and noisy 

images respectively.
	 In our proposed algorithm, two parallel 
approaches have been processed using bilateral 
filter and thresholding in shearlet domain. 

	 To denoise high frequency subbands, a 
locally adaptive thresholding is performed using 
Bayes shrinkage function. By selecting small 
threshold value, the resultant image may be noisy. 
For large threshold value, the resultant image 
may blur on the edges. The selection of optimal 
threshold value is necessary and important task 
for preserving clinical details and suppression of 
noise. 
The threshold λ  can be selected as:
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	 Where the noise variance can be estimated 
using robust median estimation method [15] as 
follows:

	 ...(3)

Where, ),( nmX õ LHH , L represents respective level 
in wavelet decomposition. The standard deviation 
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Fig. 1. Input test CT image dataset Fig. 2. Noisy CT image dataset (σ=25)

Fig. 3. Results of  [13] Fig. 4. Results of [14]

of noise less image ( Yσ ) can be estimated as:  
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	 The proposed method can be expressed 
with the following major steps:  
	 Step 1: Apply nonsubsampled shearlet 
transform (NSST)  input noisy CT image (X) to 
obtain low and high frequency subbands.
	 Step 2: Perform thresholding over high 
frequency subbands using following steps:

i.	 Perform log transform on each high 
frequency subbands
ii.	 Estimate noise variance using equation 
(3)
iii.	 Perform thresholding on  high frequency 
subbands  using equation (5)
iv.	 Apply Exponential function on thresholded 
high frequency subbands

Step 5: Apply inverse NSST to obtain CT denoised 
image. 

EXPERIMENTAL RESULTS

	 The proposed framework is applied on 
some CT images (size 512x512) corrupted by 
additive Gaussian noise at five different noise level 
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Fig. 5. Results of [15] Fig. 6. Results of proposed scheme

Ã “ [10, 15, 20, 25, 30, 35]. The CT scanned test 
images shown in figure 1(a-f) are obtained from 
public access database (https://eddie.via.cornell.
edu/cgibin/datac/logon.cgi). Figure 1(a), 1(b), 1(c), 
1(d), 1(e) and 1(f) are indicated as CT1, CT2, CT3, 
CT4, CT5 and CT6, respectively. Figure 2(a-f) is 
showing noisy test image data set with Ã = 25. 
	 Over the noisy input images, bilateral filter 
has been applied to get sharp and smooth image. In 
our results, several parameters for bilateral filtering 
are used such as patch size is 10X10, Ã

S
 is 1.2 and 

Ã
r
 is 0.13. By performing subtraction between 

original image and bilateral filtered image, it was 
analyzed that some independent and small features 
are missing for higher noise and low contrast 
CT images. To recover that, NSST is performed 
on both noisy input CT image and subtracted 
image. Both images are thresholded using bayes 
shrinkage function. After filtering of subtracted 
image, it was added with bilateral filtered image. 
It was considered as first intermediate result. The 
result of NSST based thresholding on original 
input noisy CT image was considered as second 
intermediate result. Over the both intermediate 
results, again NSST was performed to get low and 
high frequencies coefficients. On low frequency 
subbands, the variance difference has been 
estimated. With the variance difference, the fusion 
has been performed. Similarly on high frequency 
subbands, the correlation based similarity has been 
calculated, and a threshold value also calculated 
by taking an average of all correlation values. A 
comparison has been performed between threshold 
value and correlation values. Above than threshold 

value, the maximum value of high frequency has 
been taken. Otherwise, inverse variance based 
average has been performed. Finally, inverse NSST 
has been performed to get the final denoised CT 
image. 
	 The denoising results are obtained by 
proposed scheme and also compared with some 
existing methods. The existing methods for 
comparison are [13], [14] and [15]. Figures 3(a-f), 
4(a-f), 5(a-f) and 6(a-f) are showing the results of 
[13], [14], [15] and proposed method respectively. 
For CT images (1-4), IQI and PSNR are measured 
for proposed method as well as existing methods 
with noise level Ã: [10, 15, 20, 25, 30, 35]. Peak 
Signal-to-noise Ratio (PSNR) is an important 
factor to evaluate denoising performance. The high 
PSNR value represents more similarity between 
the denoising and original image than lower PSNR 
value. The objective quality of the denoised image 
is measured by PSNR as:

	 Where mse is the mean square error 
between the original and the denoised image:

	 Image quality index (IQI) is another 
important factor to analyze the performance of 
image denoising in terms of correlation, luminance 
distortion and contrast distortion. For input image 
(X) and denoised image (W), the IQI can be defined 
as: 



676Diwakar & lamba, Biomed. & Pharmacol. J,  Vol. 11(2), 671-677 (2018)

])()[()(

4

2222
−−

−−

++
=

WX

WX
IQI

WX

XW

σσ

σ

               

Where,
∑
=

−

=
N

i
iX

N
X

1

1

,
∑
=

−

=
N

i
iW

N
W

1

1

, 
∑
=

−

−
−

=
N

i
iX XX

N 1

22 )(
1

1
σ

,
∑
=

−

−
−

=
N

i
iW WW

N 1

22 )(
1

1σ
 and 

)()(
1

1

1

−

=

−

−−
−

= ∑ WWXX
N i

N

i
iXWσ

.
	 The quality of image index range lies 
between 1 and -1. The highest value 1 represents an 
identical value of input image pixel and denoised 
image pixel. The lowest value -1 shows that the 
pixels values are uncorrelated.
	 The obtained results of proposed scheme 
as shown in fig. 7, gives better results in terms of 
visual aspects. The IQI and PSNR results are shown 
in tables 1 and 2 respectively. The results of IQI and 
PSNR indicates that the proposed scheme obtained 
better values in compare of existing methods that 
most in the cases. The result of proposed scheme 
shows improved texture, noise suppression and 
sharp preserved edges.

CONCLUSIONS

	 For CT image denoising, the proposed 
method has been prepared by taking the advanteges 
of thresholded in shearlet domain and bilateral 
filtering. To make a balance between noise 
suppression and edge preservation, two outputs are 
obtained and a fusion process has been performed 
by using a single image. Visually, the results are 
excellent in terms of other similar kind of existing 
schemes. PSNR and IQI also indicate that proposed 
work gives better outcomes. Experimental 
evaluation demonstrate that proposed work: (i) 
effectively eliminate the noise in CT images, (ii) 
preserve the edge and structural information, and 
(iii) retain clinically relevant details.

References

1.	 R. A. Rutherford, B. R. Pullan, and I. Isherwood. 
“Measurement of effective atomic number 
and electron density using an EMI scanner,” 
Neuroradiology 11(1): 15-21 (1976).

2.	 E. Chew, G. H. Weiss, R. A. Brooks, and G. Di 
Chiro. “Effect of CT noise on detectability of test 
objects.” American Journal of Roentgenology 
131(4): 681-685 (1978).

3.	 J. A. Fessler, Edward P. Ficaro, Neal H. 
Clinthorne, and Kenneth Lange. “Grouped-

coordinate ascent algorithms for penalized-
likelihood transmission image reconstruction.” 
IEEE transactions on medical imaging 16(2): 
166-175 (1997).

4.	 A. I. Elbakri., and Jeffrey A. Fessler. “Efficient 
and Accurate Llikelihood for Iterative 
Image Reconstruction in X-Ray Computed 
Tomography.” SPIE, (2003).

5.	 A. Manduca, L. Yu, J. D. Trzasko, N. Khaylova, 
J. M. Kofler, C. M. McCollough and J. G. 
Fletcher, “Projection space denoising with 
bilateral filtering and CT noise modeling for 
dose reduction in CT,” International Journal of 
Medical Physics Research and Practice, 36(11):  
pp.4911-4919 (2009).

6.	 D. P. Naidich, Christopher H. Marshall, 
Christopher Gribbin, Ronald S. Arams, and 
Dorothy I. McCauley. “Low-dose CT of the 
lungs: preliminary observations.” Radiology 
175(3): 729-731 (1990). 

7.	 J. R. Mayo, Thomas E. Hartman, Kyung Soo Lee, 
Steven L. Primack, S. Vedal, and N. L. Müller. 
“CT of the chest: minimal tube current required 
for good image quality with the least radiation 
dose.” AJR. American journal of roentgenology 
164(3): 603-607 (1995).

8.	 C. H. Shih, Shu-Jun Chang, Yan-lin Liu, and Jay 
Wu. “Noise reduction of low-dose computed 
tomography using the multi-resolution total 
variation minimization algorithm.” In Proc SPIE, 
8668, pp. 86682H-1 (2013).

9.	 W. Shao, Jun Ni, and Changming Zhu. “A Hybrid 
Method of Image Restoration and Denoise of CT 
Images.” In Internet Computing for Science and 
Engineering (ICICSE), 2012 Sixth International 
Conference on, pp. 117-121. IEEE, (2012).

10.	 S. Skiadopoulos, A. Karatrantou, P. Korfiatis, L. 
Costaridou, P. Vassilakos, D. Apostolopoulos, 
and G. Panayiotakis. “Evaluating image 
denoising methods in myocardial perfusion 
single photon emission computed tomography 
(SPECT) imaging.” Measurement Science and 
Technology 20(10):  104023 (2009).

11.	 B. Vandeghinste, Bart Goossens, Roel Van 
Holen, Christian Vanhove, Aleksandra Pižurica, 
Stefaan Vandenberghe, and Steven Staelens. 
“Iterative CT reconstruction using shearlet-based 
regularization.” IEEE Transactions on Nuclear 
Science 60(5): 3305-3317 (2013).

12.	 J. Silva, Augusto Silva, and Beatriz Sousa 
Santos. “Image denoising methods for tumor 
discrimination in high-resolution computed 
tomography.” Journal of digital imaging 24(3): 
464-469 (2011).

13.	 S. Singh, Deep Gupta, R. S. Anand, and Vinod 
Kumar. “Nonsubsampled shearlet based CT and 



677 Diwakar & lamba, Biomed. & Pharmacol. J,  Vol. 11(2), 671-677 (2018)

MR medical image fusion using biologically 
inspired spiking neural network.” Biomedical 
Signal Processing and Control 18: 91-101 
(2015).

14.	 Y. Shen, Qing Liu, Shuqin Lou, and Ya-Li Hou. 
“Wavelet-Based Total Variation and Nonlocal 
Similarity Model for Image Denoising.” IEEE 
Signal Processing Letters 24(6): 877-881 (2017).

15.	 W. Guo, Jing Qin, and Wotao Yin. “A new detail-
preserving regularization scheme.” SIAM journal 
on imaging sciences 7(2): 1309-1334 (2014).

16.	 D. Kim, S. Ramani and J. A. Fessler,” Accelerating 
X-ray CT ordered subsets image reconstruction 
with Nesterov’s first-order methods” In Proc. 
Intl. Mtg. on Fully 3D Image Recon. in Rad. and 
Nuc. Med  pp. 22-5 (2013).

17.	 F. Durand and J. Dorsey, “Fast bilateral filtering 
for the display of high dynamic range images,” 
ACM Transactions on Graphics, 21(3):  pp.257–
266 (2002). 

18.	 T. Goldstein and S. Osher, “The Split Bregman 
Method for L1 Regularized Problems,” SIAM 
Journal on Imaging Sciences, 2(2): pp.323-34 
(2009).

19.	 A. Chambolle, “An algorithm for total variation 
minimization and applications,” Journal of 
Matter Image and Visualization’, Journal Roy 
Statistic Society, 20(1): pp.89–97 (2004). 

20.	 C. Tomasi and R. Manduchi. Bilateral filtering 
for gray and color images. In Sixth International 
Conference on Computer Vision, pages 836–846; 
(1998).

21.	 Z. Li, L.Yu, J. D. Trzasko, D. S. Lake, D. J. 
Blezek, J. G.  Fletcher, C. H. McCollough and 
A. Manduca, “Adaptive nonlocal means filtering 
based on local noise level for CT denoising,” 
International Journal of Medical Physics 
Research and Practice, 41(1): (2014).

22.	 S. Mallat, “A theory for multiresolution signal 
decomposition: the wavelet representation,” 
IEEE Trans. on Pattern Anal. Mach. Intell., 
11(7): pp.674–693 (1989).

23.	 A. Fathi and A. R. Naghsh-Nilchi, “Efficient 
image denoising method based on a new adaptive 
wavelet packet thresholding function,” IEEE 
Trans Image Process, 21(9): pp.3981–3990 
(1989).

24.	 D. L. Donoho and I. M. Johnstone, “Ideal spatial 
adaptation via wavelet shrinkage,” Biometrika, 
81: pp.425–455 (1994).

25.	 A. Borsdorf, R. Raupach, T. Flohr  and J. 
Hornegger Tanaka,  “Wavelet Based Noise 
Reduction in CT-Images Using Correlation 
Analysis,” IEEE Transactions on Medical 
Imaging, 27(12): pp.1685–1703 (2008).

26.	 D. L. Donoho, “De-noising by soft-thresholding,” 
IEEE Transactions on Information Theory, Vol. 
41, No. 3, pp.613–627. , Signal Process. 90(8): 
pp 2529-2539: (2010).

27.	 F. Abramovitch, T. Sapatinas, and B. W. 
Silverman “Wavelet thresholding via a Bayesian 
approach,” Journal Roy Statistic Society, 60(4):  
pp.725– 749 (1998).

28.	 J. Romberg, H. Choi and R. G. Baraniuk, 
“Bayesian wavelet domain image modeling using 
hidden Markov models,” IEEE Transactions on 
Image Processing, 10: pp.1056–1068 (2001).

29.	 S. G. Chang, B. Yu and M. Vetterli, “Adaptive 
wavelet thresholding for image denoising and 
compression,” IEEE Trans. on Image Proc, 9(9): 
pp.1532–1546 (2000).

30.	 L. Xinhao, M. Tanaka and M. Okutomi,  
“Single- Image Noise Level Estimation for 
Blind Denoising,” IEEE Transactions on Image 
Processing, 22(12): pp.5226–5237 (2013).

31.	 H. S. Bhadauria and M. L. Dewal, “Efficient 
Denoising Technique for CT images to Enhance 
Brain Hemorrhage Segmentation,” International 
Journal of Digit Imaging, 25(6): pp. 782–791 
(2012).

32.	 P. Jain and V. Tyagi, “LAPB: Locally adaptive 
patch-based wavelet domain edge-preserving 
image denoising,” Journal of Information 
Sciences, 294: pp. 164–181 (2015).

33.	 N. C. Kingsbury. The dualtree complex wavelet 
transform: a new efficient tool for image 
restoration and enhancement. In 9th European 
Signal Processing Conference (EUSIPCO 98),, 
pages 319–322 (1998).

34.	 Luisier, Florian, and Thierry Blu. “SURE-
LET multichannel image denoising: interscale 
orthonormal wavelet thresholding.” Image 
Processing, IEEE Transactions on 17.4: 482-492 
(2008). 

35.	 Easley, G. Demetrio Labate, and Wang-Q. Lim. 
“Sparse directional image representations using 
the discrete shearlet transform.” Applied and 
Computational Harmonic Analysis 25(1): 25-46 
(2008).


