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ABSTRACT

	 This paper evaluates the use of wavelet packet entropy to classify upper limb motions using 
myoelectric signals(MES). Being non-stationary, suitable analysis is essential for myoelectric signals 
recorded at varying force levels.  In this paper, different entropy measures calculated from wavelet 
packet transform coefficients, termed as wavelet packet entropies(WPE) are compared with power 
spectral entropy and permutation entropy in terms of their performance in myoelectric prosthetic 
control. The system was trained using MES corresponding to six upper limb movements at three 
different force levels. WPE feature was found to exhibit better classification accuracy compared to 
other entropy features. Among the WPE features log-energy WPE outperformed the other four WPE 
features; while a combination of log-energy and sure WPE yielded the best classification accuracy 
when used with a simple linear discriminant analysis(LDA) classifier for medium force level testing.
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INTRODUCTION

	  Upper limb prosthetic control using surface 
EMG (SEMG) signal or myoelectric signal(MES) has 
become popular over years due to its convenient 
and non invasive access. MES which contains 
information about the neuromuscular activities 
serves as the control input for the prosthesis1. 
Most of the commercially available myoelectric 
prostheses use amplitude level based control in 
which a threshold value is set for SEMG amplitude 
, based on which movements are classified.But for 
robust control of multiple tasks, a mere comparison 
af amplitudes to predict muscle activity is not a 
feasible solution6,7. This paved the way for pattern 

recognition(PR) based myoelectric prosthetic control 
which assumes certain similarities in the patterns 
of MES whem same type of muscle activities are 
repeated2. Data acquisition, feature extraction and 
classification are the three primary steps in any PR 
systems. 

	 Numerous PR based algorithms based on 
time domain, frequency domain and time-frequency 
domain have been proposed in literature5. In spite 
of the tremendous progress in the research of PR 
based myoelectric prosthetic algorithms which 
yielded classification accuracies greater than 90%, 
usability of these systems is challenged by factors 
which give rise to non-stationary changes to EMG 
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signals between training and control phases3,8. 
These factors include shift in electrode location, 
variation in muscle contraction levels, variation in 
arm and trunk positions, changes in pattern over 
time etc.

	 It was shown by that variation in force 
of contraction between training phase and control 
phase, hinders the performance of PR based 
systems. Training the classifier with all possible 
contraction level is not a practical approach when 
the number of classes is large4. Features of SEMG 
signal which is invariant to contraction levels 
could yield better control. In He et al., a frequency 
based feature set was proposed and applied on to 
MES collected from healthy subjects at different 
contraction levels. This new feature set outperformed 
the classical time domain feature set. However, 
the special arrangement of electrode placement 
described in the paper is not practically feasible on 
a transradial amputee. Al Timemy et al. extracted 
a set of power spectrum moments called time 
dependent power spectrum descriptors, directly from 
the time domain signal, to classify movements with 
different contraction levels. Training strategy which 
included muscle contractions with all the three force 
levels in the training set proved most efficient. Poor 
performance was obtained when the classifier is 
trained with unseen force levels .

	 In this paper, Wavelet packet entropy which 
gives a measure of randomness of nonlinear time 
series data is used as features.  Findings from the 
paper reveal that wavelet packet entropy performed 
better when compared with other entropy features.  
Also, among different wavelet packet entropies, log-
energy entropy gave excellent performance. 

Experimental protocol
	 Myoelectr ic data used to test the 
performance of entropy features were collected from 
the open data base (https://www.rami-khushaba.
com/electromyogram-emg-repository.html).  EMG 
signals corresponding to six movements, thumb 
flexion, index flexion, fine pinch, tripod grip, hook 
grip and spherical grip collected from nine transradial 
amputees for three different force levels comprised 
the data set13.  Eight pairs of Ag/AgCl electrodes 
connected to a differential amplifier were placed 
around the stump of the amputees. EMG data at 

a sampling rate of 2000Hz was acquired using 
a custom-made multi channel EMG acquisition 
system. A virtual instrument implemented in 
LABVIEW was used for signal acquisition and 
display. After electrode placement, each of the 
amputees examined their EMG signal on the screen 
provided by LABVIEW software in real time. Thus 
they get familiarized with the amplitude of the signal 
when different force levels are applied for different 
movements.

	 Producing different force levels was a 
challenging task for the amputees. For this, they 
imagined the movements with their intact hand, while 
collecting the signals from the amputed one. Three 
force levels: low, medium and high, were produced 
by the amputees for each of the six patterns. Five 
to eight trials of 8-12 second duration are taken 
for each force level. Thus, total number of trials 
performed by each amputee is the product of number 
of  movements, number of force levels and number  
of trials.

MATERIALS AND METHODS

Feature extraction
Wavelet Packet Entropy
	 Wavelet packet transform(WPT) which is 
a more comprehensive form of standard wavelet 
transform is an appropriate tool for time frequency 
analysis of MES which are inherently non-linear. 
In WPT analysis, high pass and low pass filters 
are employed to split the signal into approximate 
and detail coefficients. A complete subband tree 
decomposition is obtained by repeated filtering 
an decimation by two. But WPT yields enormous 
amount of data which makes it unsuitable for a 
classifier. Entropy measured from specific subbands 
could serve as a better representation for MES. This 
type of entropy measured from wavelet packets 
termed as wavelet packet entropy gives a measure 
of randomness of nonlinear time series data10,11. 

Following are the steps to calculate wavelet entropy:
•	 Detail and approximate coefficients are 
derived from MES by multilevel wavelet packet 
decomposition principle using Symlet wavelet at 
level4. 
•	 Total power contained in MES can be 
expressed as the sum of individual power of all the 
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(SEN-spec tral energy entropy; PEN-permutation entropy; NWPE-norm WPE; SWPE-shannon’s  WPE
LEWPE-log-energy WPE; SWPE-sure WPE; TWPE-threshold WPE; CLS-WPE-combination of LEWPE 
and SWPE; CLT-WPE-combination of LEWPE and TWPE; CTS-WPE—combination of TWPE and SWPE
CLTS-WPE—combination of LEWPE TWPE and SWPE; CA-classification accuracy)

Fig. 1: Performance evaluation of different entropy features

Fig. 2: Performance evaluation at different force levels

wavelet coefficients. i.e. Pt = S Pwi; where Pt and Pwi 

are the total power and individual component power 
respectively.
• If Pi = Pwi/Pt, then wavelet entropy is defined as 
Wen = - S Pi logPi

	 In this paper Shannon, Sure, Log-energy, 
Norm and Threshold entropies derived from 

wavelet packets are employed as features for MES 
classification.  In the following expressions, s is the 
signal and (si)i the coefficients of s in an orthonormal 
basis.

	 The entropy  E  must be an additive cost 
function such that E(0) = 0 and E(s) = S E(si)
The (nonnormalized) Shannon entropy.
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so,

,

with the convention 0log(0) = 0.
• The concentration in lp norm entropy with 1 < p.

E2(si ) = |si|
p so 

• The “log energy” entropy.

so,

,
with the convention log(0) = 0.
• The threshold entropy.
E4(si) = 1 if |si| >  p  and 0 elsewhere so E4(s) = 
#{i such that |si | > p} is the number of time instants 
when the signal is greater than a threshold p.

• The “SURE” entropy.

E5(s) = n - #{i such that

	 These wavelet entropy features are 
compared with Spectral energy entropy and 
Permutation entropy, which are explained below.

Spectral energy entropy(SEN)
	 Spectral energy entropy, a normalized form 
of Shannon entropy makes use of the amplitude 
components of the power spectrum of the given 
signal as probabilities for entropy calculations11,12. 
Following are the steps to calculate the spectral 
energy entropy of a signal x(t), 
• Take DFT of the signal X(w) and calculate the 
Power Spectral Density(PSD), P(w) 
P(w) = 1/N IX(w)I2.
• Obtain PSD distribution  function by normalizing 
P(w)
• Spectral energy entropy is now given by, Pse = - S 
Pi logPi

Permutation entropy(PEN)
	 Permutation entropy is a measure of 
chaotic and non-stationary time series signal which 
elevates with asymmetry of the time series at high 
frequencies and drops at low frequencies. PE is 
given by, PE = - S Pi logPi, where Pi represents the 

relative frequency of the possible sequence patterns, 
n implies permutation order of n>2. The advantage 
of this type of entropy is that no model assumptions 
are required and is suitable for the analysis of non 
linear processes. Also it could analyze huge data 
sets with less pre-processing time and fine tuning 
of parameters.

	 Feature extraction and classification are 
done in R2013a MATLAB Version. Once the feature 
sets are extracted, 60% of the extracted features are 
used to train the classifier and the remaining 40% are 

Fig. 3: Performance evaluation of different classifiers
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used for testing. Classification is done using linear 
discriminant analysis (LDA), Probabilistic Neural 
Network(PNN) and Support Vector Machine(SVM) 
classifiers.

RESULTS AND DISCUSSION

	 On classifying movements subjected to 
different force levels, classification accuracy of 
features based on wavelet packet entropy outweigh 
that of permutation entropy and spectral energy 
entropy. The main advantages of wavelet packet 
entropy are that fine changes in a non-stationary 
signal can be easily detected,  computationally simple, 
noise contributions can be easily eliminated and 
performance does not depend on any parameters. 
This accounts for the superior performance of 
wavelet packet entropy features. 

	 Among WPEs, maximum classification 
accuracy of 85% was given by Log-energy entropy, 
when used with LDA classifier. From fig1. It can be 
seen that combination of log-energy WPE and Sure 
WPE with 92% accuracy outperformed all the other 
combinations. The least performer among wavelet 
packet entropy features was norm entropy with an 
accuracy of only about 55%. 

	 Another notable result from this study is 
that performance was maximum when the classifier 
is tested with medium force level movements 
rather than high and low force levels. Classification 

accuracy of 86%, 95% and 89% were obtained 
respectively for high, medium and low force level 
testing when all force levels were included in the 
training set.

	 LDA classifier gave a superior performance 
compared to Support Vector Machine classifier 
and Probabilistic Neural Network classifier[9]. LDA 
classifier is generally less complex and easy to 
implement.

CONCLUSION

	 The proposed study suggested wavelet 
packet entropy feature which has time frequency 
domain characteristics to analyze myoelectric signal 
collected at different force levels. Performance of 
wavelet packet entropy feature was found to excel 
that of other entropy features. For all the training/
testing strategies used, log-energy entropy of 
wavelet coefficients outperformed other wavelet 
packet entropy features. For all the features, better 
classification was obtained when the classifier is 
trained with all the force levels and tested with 
medium force level.  The overall performance of 
the proposed method when evaluated based on 
classification accuracy proved that the combinational 
feature set consisting of log-energy entropy and Sure 
entropy extracted from wavelet coefficients, when 
classified using LDA at medium force level testing 
could be a  potential candidate in classifying upper 
limb movements subjected to different force levels.

REFERENCES

1. 	 D. Dorcas and R . N. Scott,  “Improved  
myoelectric control systems”,  Med. BioI. 
Eng., vol. 4. pp. 367-372, 1970

2.	 B. Hudgins, P. Parker and R. N. Scott, “A new 
strategy for multifunction myoelectric control,” 
IEEE Trans. Biomed. Eng., vol. 40, no. 1, pp. 
82-94, Jan. 1993.

3.	 Jiang, N., et al. “Myoelectric control of artificial 
limbs: is there the need for a change of focus? 
IEEE Signal Process. Mag. 152, 1–4. doi: 
10.1109/MSP. 2012.2203480.” (2008): 1221-
1224, 2012

4.	 A. H. Al-Timemy, R. N. Khushaba, G. 

Bugmann and J. Escudero, “Improving the 
Performance Against Force Variation of 
EMG Controlled Multifunctional Upper-Limb 
Prostheses for Transradial Amputees,”IEEE 
Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 
6, pp. 650-661, June 2016.

5.	 Nisheena V. Iqbal, Kamalraj Subramaniam 
& Shaniba Asmi P.(2017): A Review 
on Upper-Limb Myoelectric Prosthetic 
Control, IETE Journal of Research, DOI: 
10.1080/03772063.2017.1381047 

6.	 Erik Scheme MSc, PEng, and PEng Kevin 
Englehart PhD. “Electromyogram pattern 



380 IQBAL et al., Biomed. & Pharmacol. J.,  Vol. 11(1), 375-380 (2018)

recognition for control of powered upper-limb 
prostheses: State of the art and challenges for 
clinical use.” Journal of rehabilitation research 
and development 48.6 : 643, 2011

7.	 N. Jiang, K. Englehart and P. Parker, 
“Estimating forces at multiple degrees of 
freedom from surface EMG using non-
negative matrix factorization for myoelectric 
control,” 2008 First Intl. Symposium on 
Applied Sciences on Biomed. and Commun. 
Tech., Aalborg, pp. 1-5, 2008.

8.	 Cordella, F., Ciancio, A. L., Sacchetti, R., 
Davalli, A., Cutti, A. G., Guglielmelli, E., 
& Zollo, L. “Literature review on needs of 
upper limb prosthesis users.” Frontiers in 
neuroscience 10, 2016.

9.	 M. F. Kelly, P. A. Parker and R. N. Scott, “The 
application of neural networks to myoelectric 

signal analysis: a preliminary study,” IEEE 
Trans. Biomed. Eng., vol. 37, no. 3, pp. 221-
230, Mar. 1990

10.	 Daqrouq, Khaled. “Wavelet entropy and 
neural network for text-independent speaker 
identification.”  Engineering Applications of 
Artificial Intelligence 24.5 (2011): 796-802.

11.	 Aydýn S, Saraoðlu HM, Kara S. Log 
energy entropy-based EEG classification 
with multilayer neural networks in seizure. 
Annals of biomedical engineering. 2009 Dec 
1;37(12):2626.

12.	 Kumar SP, Sriraam N, Benakop PG, 
Jinaga BC. Entropies based detection of 
epileptic seizures with artificial neural network 
classifiers. Expert Systems with Applications.; 
37(4):3284-91 (2010).


