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ABSTRACT

	 High mobility group box 1 (HMGB1) is known as non-histone nuclear protein which has 
many biological functions, and it plays a significant role in many diseases inhibition, such as  
inflammatory and cancer diseases. HMGB1 in cancer cells could induce cell proliferation, cell 
differentiation, carcinogenesis, and tumorigenesis. In addition, HMGB1 function and location highly 
depends on the redox states. Our work focuses on molecular interaction studies of quercetin and 
its derivatives with HGMB1 protein target. Early reports showed that quercetin could inhibit tumors 
and cancers in different experimental examinations. However, clinical studies of quercetin showed 
low performance in its bioavailability. Therefore, structural modification of quercetin is needed to 
enhance its pharmacological properties. Here, we found 9 molecules of quercetin derivatives (QD) 
which have favorable interaction with HGMB1 and improved pharmacological properties. These 
findings indicate that QD might be the potential candidates against HMGB1 as therapeutic target 
for anticancer. 
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INTRODUCTION

	 High mobility group box 1 (HMGB1) is a 
non-histone chromosomal and highly conserved 
protein that serves various roles in intracellular 
and extracellular systems. This group of proteins 
was appointed as the “high mobility group,” due to 

their rapid mobility properties in polyacrylamide gel 
electrophoresis. HMGB1 is discovered firstly as a 
chromatin-associated protein, extensive studies of 
this group have directed to the identification of many 
critical functions of HMGB1. In eukaryotic organisms, 
HMGB1 protein is mainly found in the nucleus, 
where its function is chaperoning DNA molecules 
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alleviating replication, recombination, transcription, 
DNA repair, and nucleosome formation stabilization 
by forming the DNA helical structure and promoting 
the binding of regulatory complexes to DNA. HMGB1 
takes part in regulating autophagy and maintaining 
balance between autophagy and apoptosis within 
the cytoplasm compartment 1, 2.

	 HMGB1 is also implicated as an important 
mediator in cancer. HMGB1 expression is high 
in many cancer cells, especially in colon cancer, 
breast cancer, cervical cancer, lung cancer, prostate 
cancer, and pancreatic cancer 3-6. Previous studies 
exhibited that there is a correlation between HMGB1 
and various malignant cancer mechanisms. The 
principle behind this connection may be due to the 
role of extracellular HMGB1 in angiogenesis, cell 
migration, and macrophages recruitment, which 
could contribute to tumor growth and metastasis. 
HMGB1 has an elaborated role in carcinogenesis 
which could suppress tumorigenesis by interacting 
with tumor suppressor genes such as p53, p73 and 
RB. Moreover, HMGB1 has mixed effects on the 
superiorities of cancer including unlimited replicative 
potential, ability to blood vessels development 
(angiogenesis), deflection of programmed cell 
death (apoptosis), self-sufficiency in growth signals, 
insensitivity to inhibitors of growth, tissue invasion 
and metastasis which cause inflammation 7, 8. This 
exhibits that HMGB1 is a potential target for cancer 
treatment. 

	 Suppression of HMGB1 is important 
and it becomes prospective strategy for treating 
various cancers. Recently, various synthetic and 
natural products have been used to inhibit HMGB1 
expression. Quercetin is a secondary metabolite 
compound which has polyphenol groups, and it 
belongs to the flavonol class of flavonoids. The 
broad range of biochemical and pharmacological 
properties of quercetin and its metabolites are due 
to the relative substitution of various functional 
groups on the flavonol molecule 9. Phytochemical 
investigations of various plant extracts have 
revealed that quercetin can exist in a free state as 
an aglycone, or as its derivative by conjugating with: 
carbohydrates as quercetin glycosides 10; alkyls 
as quercetin methyl or ethyl 11, 12; hydroxyl group 
as quercetin ethers 13-15; and a sulfate group as 
quercetin derived-sulfates 16. Our research aim is to 
investigate the interaction binding between quercetin 
derivatives (QD) and HMGB1 through molecular 
docking analysis. Furthermore, the best docking 
hit of QD were analysed the ADMET (absorption, 
distribution, metabolism, excretion and toxicity) 
prediction 17, 18 to evaluate its pharmacological 
properties of QD in different mechanisms in the body. 
Here, we report the highlight molecular nature of 
QD action mechanims with various pharmacological 
properties as HGMB1 inhibitors.

METHOD

Protein  Preparation
	 The protein sequence of human High 

Table 1: Pharmacophore properties following Lipinski rule of five with ACD/I-LAB

No.	 Compound Name	 HBA	 HBD	 MW	 Log P	 Rotatable 	 TPSA	 Violation 
						      Bonds		  of Ro5

1	 Quercetin	 7	 5	 302.24	 2.07	 1	 127.45	 0
2	 Quercetin, 3-glucuronide	 13	 8	 478.36	 2.10	 4	 223.67	 3
3	 Quercetin, 3-O-glucuronide 	 13	 7	 492.39	 1.73	 5	 212.67	 3
	 methyl esther
4	 Isoquercetin glucose	 12	 8	 464.38	 1.75	 4	 206.6	 3
5	 Isoquercetin galactose	 12	 8	 464.38	 1.75	 4	 206.6	 3
6	 Quercetin, 3-sulfate	 10	 5	 382.3	 1.66	 3	 179.2	 0
7	 Quercetin, 3-sodium sulfate	 10	 1	 382.3	 1.66	 7	 135.2	 0
8	 Quercetin, 3’-methyl ether	 7	 4	 316.26	 1.76	 2	 116.45	 0
9	 Quercetin, 3’-ethyl ether	 7	 4	 330.29	 2.36	 3	 116.45	 0



1975 SIMANJUNTAK et al., Biomed. & Pharmacol. J.,  Vol. 10(4), 1973-1982 (2017)

mobility group box 1 (UNIPROT ID: P09429) was 
retrieved from Protein Sequence Databank: Uniprot 
(http://www.uniprot.org/). The three-dimensional 
structure of human High mobility group box 1 was 
built by I-TASSER (Iterative Threading ASSEmbly 
Refinement) 19. The coordinates of hHGMB1 only 
consists of amino acid residues in .pdb format file.

Ligand Preparation
	 The structure of the ligands were obtained 
from PubChem 20, 21 in .sdf format files (Fig. 1). 
Ligands were converted into .pdb format using GUI 
OpenBabel 22. Some of ligand structures were drawn 
and the 3D structures were optimized by using 
ChemDraw 23. Pharmacokinetic properties of all the 

ligands were analysed by using SwissADME 17.

Molecular Docking Analysis
	 Molecular docking was conducted by using 
Autodock Vina 24, 25. The grid box site parameters 
was set up on xyz center coordinates at 73x68x73, 
and grid box size at (40x40x40) Å. Before running 
docking, receptor and ligands were prepared using 
AutoDock Tools 26 with activated Polygon Stipples 
and visualized by PyMOL Viewer 27. All receptor and 
ligand files were saved as pdbqt. Binding energies 
were obtained from molecular docking. Furthermore, 
these values were calculated to have inhibitor 
constant (Ki) values by using equation below 28:

Fig. 1: Structure of quercetin and its derivatives
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Table 2: Molecular Docking Analysis 

No.	 Compound Name	 Affinity 	 Ki(M)	 Hydrogen 	 Residues involved in 
		  Binding 		  Bond	 Hydrophobic interaction
		  (kcal/mol)

1	 Quercetin	 -6.8	 1.02x10-5	 1	 Arg97, Ala148, Lys152, 
					     Lys180
2	 Quercetin, 3-glucuronide	 -11.1	 7.16x10-9	 0	 Ala69, Glu72, Arg73, Lys76, 
					     Glu203, Glu204, Asp211
3	 Quercetin, 3-O-glucuronide 	 -7.5	 3.14x10-6	 0	 Met63, Ala66, Lys65, Arg70, 
	 methyl esther				    Glu210, Asp212, Asp213, 
					     Asp214, Glu215
4	 Isoquercetin glucose	 -7.2	 5.20x10-6	 2	 Lys65, Ala66, Asp67, Glu210, 
					     Asp211, Asp212, Asp213, 
					     Asp213, Glu215
5	 Isoquercetin galactose	 -6.6	 1.43x10-5	 2	 Lys68, Glu72, Met75, Lys76, 
					     Glu201, Asp211, Glu215
6	 Quercetin, 3-sulfate	 -7.7	 2.24x10-6	 2	 Arg97, Ala148, Ala149, 
					     Lys152, Tyr155
7	 Quercetin, 3-sodium sulfate	 -11.2	 6.04x10-9	 0	 Ala69, Glu72, Arg73, Lys76
8	 Quercetin, 3’-methyl ether	 -9.8	 6.44x10-8	 0	 Lys96, Pro95, Arg97
9	 Quercetin, 3’-ethyl ether	 -7.3	 4.40x10-6	 0	 Ala69, Glu72, Met75, Lys76, 
					     Glu215

Fig. 2: Molecular docking interaction between 
Quercetin, 3 sodium sulfate with human 

HGMB1

 ;      

ADMET Prediction
	 Absorption, distribution, metabolism, 

excretion and toxicity (ADMET) prediction for the top 
docking of quercetin derivatives were predicted using 
ACD/I-Lab 18. This platform predicts physicochemical 
descriptors as well as to predict ADMET parameters. 
ACD/I-Lab provides particular molecule’s properties 
with 95% of known drugs. Evaluation of ADMET 
properties, were based on absorption involved 
maximum passive absorption through intracellular 
and paracellular pathways, Volume distribution 
(Vd) was also involved in this work. Plasma Protein 
Binding percentage (%PPB) and P-gp specificity 
were used to evaluate metabolism and excretion 
profiles, respectively. Additionally, LD50 mouse and 
probability of health effects predictions of QD were 
calculated using ACD/I-Lab which is a web-based 
service that provides instant access to spectral 
and chemical databases, ADME predictions, and 
toxicity characteristics. A comparative analysis 
was performed for mouse LD50 (intraperitoneal, 
oral, intravenous, subcutaneous) and probability 
of health effect of blood, cardiovascular system, 
gastrointestinal system, kidney, liver and lung by 
QD‘s biological activities.
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Table 3: ADME Prediction with ACD/I-LAB

No.	 Compound Name	 Absorptiona	 Distributionb	 Metabolismc	 Excretion 
		  (%)	 (L/kg)	 (%)	 Probabilityd

1	 Quercetin	 100	 0.60	 93.43	 2.5
2	 Quercetin, 3-glucuronide	 0	 0.25	 88.35	 5 
3	 Quercetin, 3-O-glucuronide 	 12	 0.62	 85.36	 0.5
	 methyl esther
4	 Isoquercetin glucose	 7	 0.61	 82.9	 0.5 
5	 Isoquercetin galactose	 7	 0.61	 82.9	 0.5
6	 Quercetin, 3-sulfate	 1	 0.25	 99.82	 5 
7	 Quercetin, 3-sodium sulfate	 2	 0.25	 99.36	 5 
8	 Quercetin, 3’-methyl ether	 100	 0.62	 94.9	 2.5
9	 Quercetin, 3’-ethyl ether	 100	 0.62	 94.9	  2.5

aMaximum passive absorption
b Volume of distribution (Vd)
c%Plasma Protein Binding (%PPB)
dP-gp specificity (AB/logP), value between 2.5-5 is possibly inhibitor

Table 4: Toxicity Prediction with ACD/I-LAB 

No.	 Compound Name		              LD50 (mg/Kg)
		  Intraperitoneal	 Oral	 Intravenous	 Subcutaneous
		
1	 Quercetin	 450	 670	 350	 160
2	 Quercetin, 3-glucuronide	 470	 3600	 1800	 1900
3	 Quercetin, 3-O-glucuronide 	 390	 3300	 1200	 740
	 methyl esther
4	 Isoquercetin glucose	 730	 1200	 740	 310
5	 Isoquercetin galactose	 730	 1200	 740	 310
6	 Quercetin, 3-sulfate	 760	 1500	 270	 730
7	 Quercetin, 3-sodium sulfate	 1100	 1600	 210	 1500
8	 Quercetin, 3’-methyl ether	 570	 550	 290	 120
9	 Quercetin, 3’-ethyl ether	 560	 570	 270	 120

RESULTS

	 The derivatives of Quercetin have been 
successfully built for further in silico analysis. The 
structures of Quercetin derivatives are based on the 
variation of their side group, as depicted in Fig. 1. 

	 The pharmacophore properties showed no 
violation Lipinski‘s rule of five on Quercetin; Quercetin, 
3-sulfate; Quercetin, 3-sodium sulfate; Quercetin, 
3’-methyl ether; and Quercetin, 3’-ethyl ether. 
Meanwhile, Quercetin, 3-glucuronide; Quercetin, 

3-O-glucuronide methyl esther; Isoquercetin glucose; 
and Isoquercetin galactose showed 3 violations 
following Lipinski‘s rule of five (Table 1).

	 Molecular docking analysis showed that 
Quercetin, 3 sodium sulfate showed the best 
interaction with HMGB1, base don its affinity energy 
(-11.2 kcal/mol) and Ki value (6.04x10-9 M). This 
interaction does not involve hydrogen bond, but it 
involves hydrophobic interaction with the residues in 
HMGB1 binding site, including: Ala69, Glu72, Arg73, 
and Lys76 (Table 2, Fig. 2)
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Table 5: Health Effects Prediction with ACD/I-LAB

No.	 Compound Name			  Probability of Health Effects	
		  Blood	 Cardiovas-	 Gastroin-	 Kidney	 Lung	 Liver
			   cular	 testinal

1	 Quercetin	 0.69	 0.27	 0.45	 0.54	 0.38	 0.09
2	 Quercetin, 3-glucuronide	 0.96	 0.9	 0.68	 0.75	 0.81	 0.82
3	 Quercetin, 3-O-glucuronide 	 0.95	 0.98	 1	 0.68	 0.9	 0.77
	 methyl esther
4	 Isoquercetin glucose	 0.96	 0.93	 0.99	 0.62	 0.80	 0.84
5	 Isoquercetin galactose	 0.96	 0.87	 0.88	 0.55	 0.80	 0.74
6	 Quercetin, 3-sulfate	 0.19	 0.27	 0.2	 0.56	 0.2	 0.27
7	 Quercetin, 3-sodium sulfate	 0.79	 0.48	 0.99	 0.51	 0.23	 0.38
8	 Quercetin, 3’-methyl ether	 0.6	 0.64	 0.44	 0.5	 0.37	 0.27
9	 Quercetin, 3’-ethyl ether	 0.29	 0.61	 0.41	 0.49	 0.4	 0.34

	 ADME  and toxicity predictions of Quercetin 
derivatives showed various results (Table 3 and Table 
4). These analyses were conducted by using ACD/I-
LAB program.

DISCUSSION

	 Quercetin is categorized by a benzo-(g)-
pyrone skeletal structure with C6-C3-C6 carbon 
form, consisting of two benzene rings, A and B, linked 
by  three carbons pyrone ring C as shown in Fig. 1. 
Quercetin is referred to pentahydroxy flavonol due to 
the presence of five hydroxyl groups on its flavonol 
skeletal framework at 3, 30, 40, 5, and 7 carbons 29-31. 
The broad range of biochemical and pharmacological 
properties of quercetin and its derivatives are due to 
functional group substitutions of  flavonol molecule 
32. However, glycosylation of other hydroxyl groups 
has also been found from plants 33, 34. The sugar 
moieties could be in the form of monosaccharides, 
disaccharides, or polysaccharides. The most 
common monosaccharides substituents are glucose, 
galactose, rhamnose, and xylose. Isoquercetin 
glycosides also has been reported having radical 
scavenging properties 35, 36.

	 Quercetin (3,31,41,5,7-pentahydroxy  
flavone) is natural flavonoid and its common 
derivative as flavone (2-phenylchromen-4-one). 
Quercetin contains five hydroxyl groups that are 
responsible for its biological activities and derivative 
diversification. Flavonoids generally consist of two 
benzene rings linked by pyran or pyrone rings30, 32. 

In addition, the conformational analysis of quercetin 
showed the presence of 12 conformations of this 
molecule having Gibbs energies in the range of 
0 to 5.33 kcal/mol37,38. Furthermore, quercetin 
exhibits strong intramolecular Hydrogen bond 
interactions, which displaying its biological multi-
functional activities and renders its ability to form 
strong complex interactions, including with metals, 
affecting its bioavailability and transport system in 
the cells (39-41). Among these H-bonds, two bonds 
are with carbonyl groups and third one is between 
hydroxyl groups (42, 43). Moreover, the derivatives of 
quercetin glycosides may also contain acyl and 
sulfur substituents becomes sugar moieties. In the 
case of quercetin derivatives, the hydroxyl groups of 
quercetin are attached with alcohols via ether bonds. 
Although quercetin is lipophilic, the glycosylation of 
quercetin derivatives can increase the hydrophilicity 
and enable the molecules to transport through all 
parts of the plant (44, 45).

	 Pharmacophore properties of quercetin and 
its derivatives showed various properties according 
to Lipinski‘s rule of five (Ro5). Ro5 consist of HBA/
HBD value up to 10 and 5, respectively; MW less 
than 500, Log P value less than 5 and  total polar 
surface area  (TPSA) value less than 140 Å (46). From 
the results showed that there was no violation of 
Ro5 for quercetin; Quercetin, 3-sulfate; Quercetin, 
3-sodium sulphate; Quercetin, 3’-methyl ether; and 
Quercetin, 3’-ethyl ether, while the 4 other derivatives 
showed 3 violations of Ro5 as shown on Table 1.
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	 Analysis of molecular docking was 
performed by using Autodock Vina. The best 
docking is Quercetin, 3-sodium sulfate with Affinity 
binding -11.2 kcal/mol. This favorable binding was 
contributed by hydrophobic interactions from four 
amino acid residues from HGMB1 protein including 
Ala69, Glu72, Arg73, and Lys76 (Fig.2). The 
inhibition constant (Ki) of Quercetin, 3-sodium sulfate 
is 6.04x10-9 M. The result of docking interaction, Ki 
value, and HGMB1 residues involved in hydrophobic 
interaction is shown on Tabel 2.

	 Prediction of ADME properties of quercetin 
and its derivatives were done by using ACD/I-Lab 
platform as shown on Table 3. Maximum passive 
absorptions of Quercetin, Quercetin, 3’-methyl ether 
and Quercetin, 3’-methyl ether were found 100%. 
Meanwhile, other quercetin derivatives were found 
less than 15%. Volume distribution rates of quercetin 
and its derivatives we found within 0.25 – 0.65 L/kg. 
Plasma binding protein ability rate in metabolisms 
prediction from quercetin and its derivatives were 
within 85.36 – 99.82. Excretion probabilities by 
involving P-gp specificity (AB/logP) from quercetin 
and its derivatives had value between 2.5-5 were 
possibly inhibitor, meanwhile P-gp specificity value 
less than 2.5 indicated were not inhibitors as well. 

	 Moreover, toxicity analyses of quercetin 
and its derivatives were done by using ACD/I-Lab 
platform as shown on Table 4 and health effects 
prediction on Table 5. Quercetin, 3-sodium sulfate 
was found as acceptable ADME value, meanwhile 
toxicity of  Quercetin, 3-sodium sulfate seems high 
on oral system with LD50 = 1600 mg/kg, whatsoever 
other derivatives gave toxicity prediction values in 
various deposition in the body tissues. To evaluate 
health effect in the body system responses, we 

also analysed the health effect prediction in blood, 
cardiovascular, gastrointestinal, kidney, lung, and 
liver. Quercetin, 3-sodium sulfate might give high 
effect to gastrointestinal which causes dysfunction 
of gastrointestinal.

CONCLUSION

	 The molecular docking studies with 
quercetin and its derivatives into the binding cavity 
of human HGMB1 inducible showed the derivatives 
having more favorable interaction than quercetin with 
docking score involving hydrogen bond and ligand-
protein interaction energy compared to quercetin. 
As earlier reported in literature, quercetin is known 
for having anticancer property and inhibiting the 
HGMB1 protein, the derivatives were docked at the 
binding cavity could have also possess some sort of 
anticancer property as it is 95% similar to quercetin 
retrieved form the NCBI PubChem database. The 
docked compounds used in the present study do 
not violate the Lipinski rule of five parameters. 
Also, from the ADME-Toxicity prediction using 
ACD/I-Lab revealed the docked compounds are in 
the acceptable range of various pharmacological 
parameters and they have similar behaviour of health 
effects and LD50 compared to quercetin. Therefore, 
we conclude that quercetin derivative compounds 
could be potential candidate molecules and could 
support for experimental testing against HGMB1 
protein as anticancer agents. 
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