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ABSTRACT

Ultrasound (US) imaging is a valuable imaging technique for clinical diagnosis. It is non-
invasive in nature and imaging the internal structure of the body to identify the probabilistic diseases
or, abnormalities in tissues behavior. However, inherent response of speckle noise in US images limit
the fine and edge details which affect the contrast resolution. This makes clinical diagnosis more
difficult. In this paper, we proposed a non-linear anisotropic diffusion filtering for speckle reduction
approach based on non-linear progression partial differential equation (PDE). For analysis purpose,
we have considered the set of eight-real clinical B-Mode US images of human liver from different
patient. These real US images are used for quantitative analysis. We compare the performance of
four speckle reduction filters as Perona-Malik Filter, LEE Filter, FROST Filter, ADMBSS Filter with
our proposed filter in terms of peak signal to noise ratio (PSNR) value performance index under
various noise variance selection Parmenter. Finally, we see that our proposed approach preserves
the clinical details in US images and minimizing the noise level. Results for set of eight US images
shows that our proposed filtering approach is more efficient for speckle noise reduction in comparison
to other discussed filters in term of higher PSNR value (dB).
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INTRODUCTION

Medical Ultrasound (US) Imaging technique
is a non-ionizing radiations imaging modality that
enables real time diagnosis treatment. This technique
has non-invasive nature. It is widely used in medical
field for diagnosis, patient routine check-ups for
good health, and more and more use in surgeries
and intrusions as a supervision modality. This
inferior image quality is a challenging issue in US
imaging as compared to other imaging modalities.
The degree of degradation in US image quality
can be highly varying and it depends on patients
to patients. Sometimes it is an important challenge
to imaging desired structures in particular pose of
a fatty patient" 2. US images suffers from numerous

acoustic imaging objects including resonance,
deviations and effect of speckle noise. In this paper,
we focused on minimization of speckle noise effect
in US images. Speckle noise effect seems like a
granular texture effect on the US image. It is an
inherent response of the backscattered interfering
signal from the desired interrogated medium3. In
fact, an accurate description of the speckle noise
pattern statistics is still an active research area
which involves complex analytical modelling. Speckle
noise behavior statistics may be characterized into
different modules*. Speckle noise effect is spatially
correlated with correlation length which is calculated
by the autocorrelation of the point spread function
(PSF). In various US imaging cases, need for depth
of diffusion leads to important speckle correlation
lengths.
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Earlier speckle reduction LEE filter® and
FROST filter® were believed that speckle noise has
additive and multiplication noise component in it.
These filters are suitable for speckle reduction by
minimizing mean squared error (MSE). These filter
statistics are based estimation in local windows. The
limitations with these filters are that it smoothed the
image near structured and edges region. Perona
and Malik filter” is firstly adopted the anisotropic
diffusion technique for speckle noise reduction
in US Images. This filter avoids the unnecessary
smoothing related with linear diffusion techniques,
but not preserve edges details. A recent speckle
reduction method ADMBSS filter® proposes a
memory based on speckle statistics filtering. This
simple technique aims to apply memory mechanism
as delay differential equation (DDE) for the diffusion
tensor. The behavior of this memory mechanism
follows the statistics of the tissues and preserves
the clinical details in US images.

Finally, the main challenges with US filtering
techniques are preserving the relevant clinical
details and avoiding over filtering problem. Keep in
mind these limitations and challenges of state-of-
the-art filters, we proposed an efficient anisotropic
diffusion filter for speckle reduction in US images.
Our proposed filter gives better result for experiment
with eight real US test images of different patients.
This is the novelty of our proposed work.

Related studies
LEE Filter for Speckle

The Lee filter reduces the speckle noise
by applying a spatial filter to each pixel in an image,
which filters the data based on local statistics
calculated within a square window. The value of the
center pixel is replaced by a value calculated using
the neighboring pixels*5. This pointwise linear filter is
based on the Minimum Mean Square Error (MMSE),
and produced speckle noise free image based on
the following equation (value of filtered pixel):

Fleowz) = Ly + K= (B — M= Ly) (1)

where,

K=Ms- Zv - and MV =
Irlllf',".l'..l"'r}'"“"l- :IJI NLaaks

and K= weight function,
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P.—Center pixel value of kernel/window (Median
value)

L,,—Local mean of filter window

L,—Local variance of filter window

M —Multiplicative noise mean (Default value: 1)
M, —Multiplicative noise variance (Default value:
0.25)

N, ,..—Number of looks (Specifies the number
of looks of the image. This is used to calculate
the Multiplicative noise variance and control the
amount of smoothing applied to the image. Using
a smaller value for the Number of Looks leads to
more smoothing, and a larger value preserves more
image features °.)

The for a homogeneous region of an

image is the ratio between the mean squared to the
variance. The is defined as follows:

NLooks = _

-r:lll"r|

(2)

The local mean L of filter window is
defined as:

Ex+r.' EJ- +b EXH[f{I ¥, z:]]
..(3)

L :—
M T (2o +10002b+10(2c+1)

Similarly, the local variance Ly of the filter
window is defined as:

TEE TN TI v, 2) — Ly]
(4)

. =7
v (za+1002b+1002c+1)

From eq. (4), if value of is negative, in that
case we have a very homogeneous area, should
be set to zero. Then estimate is given by the local
mean . If value of is very high, this indicates a very
high contrast region (or, an edge presence) and

flx.y.2)=f(x 5.2 These extreme cases are in
accordance with the Bayesian approach that is
adopted in this linear MMSE filters.

FROST Filter for Speckle

The FROST filter is used to design an
adaptive filter algorithm to reduce speckle noise in
spatial domain and computationally very efficient.
This filter preserves the important features of image
at the edges. It is a MMSE convolutional filter for
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speckle reduction. The Frost filter is an exponentially
damped circularly symmetric filter that uses local
statistics within individual filter windows. The pixel
being filtered is replaced with a value calculated
based on the distance from the filter center, the
damping factor, and the local variance. The Frost
filter requires a damping factor (define the extent
of smoothing). The Damping Factor value defines
the extent of exponential damping. The smaller
the value is, the better the smoothing ability and
filter performance. After application of the Frost
filter, the denoised images show better sharpness
at the edges® ' . The algorithm used in the
implementation of the Frost filter is as follows:
From eq. (1):

floyz) =Ly + K=E ..(5)

— o —LlE=3) BE=D (i
where, K = ¢ , where, : »w] , and

S—Absolute value of the pixel distance from the
center pixel to its neighbors in the filter window,
D—Exponential damping factor (Default value:1)

The factor D is chosen such that when in a
homogeneous region, B approaches zero, yielding
the mean filter output; at an edge B becomes so
large that filtering is inhibited completely'2.

Perona Malik Filter

Perona Malik filter is a classical diffusion
filter technique for speckle reduction in US images.
This diffusion filter is a linear and space invariant
transformation of the original image. The resulting
image in this filter obtained by convolution between
the images and an isotropic Gaussian filter's.
Perona and Malik7 have given a name to their filter
called anisotropic diffusion filter. This diffusion filter
technique typically looks like the process that creates
a scale space not a diffusion tensor, where an image
generates a parameterized family of successively
more and more blurred images based on a diffusion
process. Diffusion is a physical process to create
equilibrium concentration differences without
destroying or, creating body mass. The Perona Malik
filter is based on the equation:

dulxy.zt)

o = V[DGy.z )Vulx y.zt)]
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ulxyzt) i( . 8 o ]
= T Dlx,v.z:t) % axu(_r,},z. £)

+%(D (xy.z:8) xaij_u(x,y,z:t]) %(D (x.yzit) x%u(x,y,z:t]]

with initial condition %o (. 3.2} = ulx.y. 2z £ = 0)
which is noisy image/inputimage. u{ x. v, z; £} is the
output image. D {x, v, z; t) is diffusion coefficient,
known as symmetric positive definite tensor. also
controls the rate of the diffusion. depends on local
structure of (if D is constant, then filter is isotropic
diffusion filter and if D is not constant, then filter
is anisotropic diffusion filter) and and denote
the divergence operator and gradient operator,
respectively, is the initial image, i.e. noisy image,
t is temporal variable. Eq. (7), Linear Anisotropic
Diffusion (LAD), is an elliptic Partial Differential
Equation (PDE).

By using finite difference method, eq. (7)
given as:

g g
= (D (x,y.z:t) X Eu[:r, ¥, I t])
which is expressed as

% (D (x.v.zt) X %u(x, ¥, £ tj)

e % [D(x, .7 t) i[u(x + Ax, v,z ) —ulx, vz t)]}
. ulx +Av, vz t) —ulx v,z t)
N L ( DGyzt) [—u(x,y,z; £) + ulx — Ax,y, 2 £) )
ArZ i+ [DGx + Aty z: £) — DCxyoz: 2] ulx + Ax, vz t) }
o —ul(x, v,z t)
- L{D (x+ Ay, zt)ulx + Axy, z:8) —ulx y, 2 t)]}
TAxIl #D0x vz )ulx — Ax, vz 1) — ulx v ]
_ .(8)
where “®” shows that the R.H.S. part of the equation
is the difference approximation of the L.H.S. part.

Similarly, we have
£
=

1 {D(J:,y + oy, z ) ulx, y + Ay, z: £) — ulx,y, z; t]]}
272 U+ Dz y,zt)ulx, y — Ay, z;8) — ulx y, z:t])]

(9)

(D(x, v, Zt) % :Tu(.r,y, z t])

and,

;—(D(I, ¥zt ;—u(x, V.2 t))
1 {D(x,y,z+ﬂ.z:t][u(:r,y,z +Az; £) —ulx, v z; t]]}
a2 |+ Dix, v,z O ulx, v,z — Az t) —ulx, y, z; £)]

..(10)



1358

All the values of eq. (8), eq. (9), and eq. (10)
inserting in eq. (7) to obtain difference approximation

Bulxyzt)

of =5 —.Putdx=1,4y =1, and 42 = {we get:

Bulbryra) {D(I +Ly.zt)ulx+ Ly zt) —ulxy ztl]
5t +D(xy. zt)ulx — Ly zt]l —ulxy zt)]
Diz,y+ Lzt ulxy+ 1, zt)—ulxy z:t)
{ + Dix,y, ) ulx,y— 1,z t) —ulx, y, 2 £]] }
{D(:r,y,z + Litdulx, vy, z+ 1;t) —ulx,y, 2 t]]}
+ Dix, y, 2 t) [ulx, v,z — 1;8) — ulx, y, z: )]

(1)

So, obtaining discrete realization of
anisotropic diffusion filter for u(x.y.z: £} image from

eq. (11):

. _ . Dix+ Ly z B ulx+ 1y, z:8) —ulx y, z:t)]
urymes = unyno +{ + 00y z Oulx -1y zt) —ulxy zt)] }
{D(x,y +lztuzy+lant) —ulxyz t)]}

+D(x, y.z: Oulx,y — Lzt —ulx, yz ]
{D(I,y,z + L0y z + 18 —ulnyz t)]}
+D(x,y oz ) [ulx,y,z —1;8) —ulx,y,z;£)]

(12)

In eq. (12), we can see that the major
problem is selection of diffusion coefficient &' (x, v, z; )
in anisotropic diffusion filter.

Diffusion coefficient 2 (x.yz:8) is calculated
as's:

_[: TuleriN°

Dix,yz;t)=e ! %= : when diffusion
occurs across the boundaries and applies it in
homogeneous areas. And,

1

UIVulx y,z I
1 +[ kappa

D(xy.zt) =

when diffusion occurs
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near the boundaries and applies it in homogeneous
areas.

Where, kappa is the gradient modulus
threshold that controls the diffusion coefficient. Also,
kappa controls the sensitivity near the edges and
chosen experimentally or as a function of the noise
in the image (kappa > 0).

Anisotropic Diffusion for Memory Based on
Speckle Statistics (ADMBSS) Filter

ADMBSS filter® is to eliminate the effect
of gradient information due to the lack of contours
and low contrast of US images with objective of
preservation of relevant clinical details in interest
region using probabilistic-driven selective memory
mechanism filtering. This filter is adapted to the US
medical imaging context®. For preserving clinical
information in US images, G. Ramos-Llordén
et. aP consider two different methods for tissue
classification. 1%t selective diffusion tensor method
and 2" probability driven memory methods in region
of interest for tissue classification.

A selective filtering tensor operator
0(x,y.z:t) used as transformation of the
instantaneous diffusion tensor D{x,y.z: £} at
location (x.¥.Z) into a null tensor for suitable
tissue classification and preservation. In this
context, plr.yzit)l =1 — p (X, ¥. 2 t) where,
ple.y. z: ) for the probability of the tissue regions
and p [x, v, z; £} for the probability of the non-tissue
(meaningless) regions. For this selective behavior,
the diffusion tensor is multiplied by its Eigenvalues
by . Memory mechanism used, to know the

Fig. 1: Experiment results obtain from these eight B-mode US images of human liver
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Fig. 2: The graphs are plotted for PSNR result values for different filters. These graphs show that
our proposed filter is more efficient for removing Speckle noise
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anisotropic diffusion direction satisfy the condition
that , so Memory mechanism will be disable if
so that So the new reconstruct diffusion tensor by
using expansion of outer product:

O(D{x, vy, z:t) )= E(x,y.z; £)S E{x, y.z; £)7

..(13)
where
A (x,y.2: ) 0 0
S=plx.yzt) ] Az(x, y,2: £) ]
0 0 Az y.zt)
..(14)

and

sl 001 LI
ed

outS (0L0I_LEE ot 001 PHM epas ot 001 ADME  cut D01 FROST

153

T 001 P e D00 peepen ol OUDI_ADME
55

outl 001 piogos  out? OO AOME  cut? 007 TROAT
£

] =.h-.u ADLEE  zotd D024 FROST

et 1Y _LEE
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1}'1T
Elx,yzt)= (rlvy lvy) and E(x, v,z )7 = | v, 7
vsl

...(15)

Preserving pathway of the time dependent
probability for getting more robust characterization
than obtained from instantaneous probability,
v (x.v.z: t) | tensor operator 0. y.2:t) is not
directly applied to L{x,y.z; £}

This p(x;}aZ: £) provides more robust
characterization than .
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Now, delay differential equation (DDE), with
same initial and periodic condition as'® and T(¥: ¥+ Z)
is the spatial dependence of T, will be:

B _ g (L oy, z ) Vu(x y, 25 1)

o
..(16)
8L [xw. =z ) _ Lxwzt) _ . .
. - Tixyzl G(D(I,},Z.t:l]
.(17)

Where, L(x, ¥ t) is the diffusion tensor
matrix at point (x.¥.2) and time t.

] 007 LEE 1007 P

iea]_DOT_ADME &1 007 FROST

ol Q0T _LEL
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5

oul 0 |_LEE ot 01 prepowe
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Integrate eq. (52), we get:
—t
Liz,y,z:t) = G(D(x, ¥, I U])em +

. -9
[ ez 0(D(x,y, z.0)) dd
(18)

To turn ON/OFF the memory mechanism,
spatial dependence i x, ¥. =) should satisfied the
minimum conditions

that Tr.3.2):[0.1] = (0.99)  The anisotropic
diffusion flux F (x, y, z; t) = Lx, v, z: ) Vulx, y. z; £)

B2 Q0T _pedpin
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Catd DT ADME  ourl 007 FROET
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awit f0T propes  GuiT DRT_ADME o Q0T FROST ok ?_LOT LER
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el 01 FROST ownld 01_LEE

et 01 LEE et 0U1_ADMBS  owtl 0.1 FROST
5

et? (U1 FROST

et 01 _prcpone
d

Fig. 6: Noise Level Variance 0.1
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, then from eq. (18):

Flx,yz:t) = Fi(x,y.z:t) + Flx,y.zt)

...(19)
where filtered diffusion tensor

O(D(x,y,z, ). Q =t FE% (x, y,z) = 0(D(x, y, 20 )V ulx,y,z; £) and
F(x,yz:t) = 0(D(x,y,2,0))e"=52 Vulx,y, z;t)

= gcx._'.-'.z FErJ.‘J(xJ v.2)

...(20)

in—tj
erE=ral O(D(x, y,z, ) ) Vulx, y, z; £) b
F;_(J:,y,z:t)=_|: ( '}

-t
= _[: evixas FEaal {x,y,z) 402
..(21)

Proposed non-linear anisotropic diffusion filter

Most of the diffusion filters are simply
modifications of perona-malik filter” where D is
constant (scalar coefficient based on gradient of
the image DVu(x. 3. 21 ) \which avoids diffusion
near the boundaries and applies it in homogeneous
areas). Here, we propose an efficient non-linear
anisotropic diffusion for speckle reduction filtering
approach based on non-linear progression of PDE.
This proposed filter selects finite power intensity
image ¥e(*:¥:Z) and having none zero-valued
intensities over the image domain &!. Here,
D(x.y.z:£): 0 —= 57 is a given field of symmetric
positive definite diffusion tensors where &! is
an open region of R* and 9% is boundary of &!.

Eigenvectors {v;, 77,73} of these tensors define
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preferential diffusion directions, and the Eigenvalues
their corresponding coefficients. Evolution rule
eq. (6) is complemented with an initial condition
ulx, v,z 0) =uy(x, v, ) attimet=0.If has pixels
of vector type, then their components are treated
independently 5. We get the output image u(x,y,z,t)
by following PDE:

(2028 _ g [D(xy,2:0) Vulx, 3.2 )]
J u(x,y,z;0) = wy(x, y,z)

| MEI.:-'.z;ﬂl -0

L & lan

.(22)

where €1 denotes the boundary of &!,
n is the outer normal to the , and is coefficient of
diffusion which is defined as a decreasing function
of the instantaneous coefficient of variation.
1

Plry.zt) = —mm

qfl[L= gfrd .(23)
or
gz v zEl—g5it]
D(x,y,2;¢) = exp|— i)
...(24)

In eq. (23) and (24), 9(*. % 2: ) js the
instantaneous coefficient of variation serves as the
edge detector in speckled imagery, gp(t} is the
speckle scale function and is estimation parameter
related to the coefficient of variation of noise.

q(x,y,z,t) is determined by:
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...(26)

Here, four stage iterative method can be
used to solve mathematically. Let anisotropic diffusion
time step &t and spatial step k in x.¥. = directions

Table 1: Performance Comparison of Different Filters for Image 1

PSNR(dB) Results for the image 1 experiment

Noise Perona LEE FROST ADMBSS Proposed
Level Malik Filter Filter Filter Filter
Filter

0.01 33.5863 30.7646 27.9208 33.0753 59.9532
0.04 26.8198 25.5545 241795 33.8953 52.0865
0.07 24.2403 23.0597 22.0432 43.5523 43.3213
0.1 22.8419 21.5929 20.7415 37.116 39.3994
0.5 18.6482 15.4397 15.0582 34.3762 28.4605

Table 2: Performance Comparison of Different Filters for Image 2

PSNR(dB) Results for the image 2 experiment

Noise Perona LEE FROST ADMBSS Proposed
Level Malik Filter Filter Filter Filter
Filter

0.01 31.8765 29.6114 27.4193 38.7373 60.1176
0.04 25.3038 24.1023 23.0549 37.0798 46.9497
0.07 23.1179 21.8245 21.0142 54.1903 39.5293
0.1 21.8242 20.3137 19.6463 47.3763 36.3813
0.5 18.2999 14.5549 14.2363 42.1617 27.4346

Table 3: Performance Comparison of Different Filters for Image 3

PSNR(dB) Results for the image 3 experiment

Noise Perona LEE FROST ADMBSS Proposed
Level Malik Filter Filter Filter Filter
Filter

0.01 33.6423 30.7505 27.9583 31.5686 60.4925
0.04 26.838 25.6038 24.1918 31.7607 51.1155
0.07 24.3578 23.1577 22.1389 44.7001 43.5445
0.1 22.8507 21.5427 20.7171 29.142 38.5877
0.5 18.6508 15.4617 15.0717 39.746 28.6693




KUSHWAHA et al., Biomed. & Pharmacol. J., Vol. 10(3), 1355-1367 (2017)

respectively, then the discretization of time and

space coordinates as ¢ = nit; n = 0,123, ......

vour = |FRweiie el weeendon
1Mey = : :

x=ihy=jhz=1lkhi=0123 . ., [ [ &
M—-1,j=0123 _  N-1k=0123 ., 6 K—-1 ...(27)
respectively, where Mh » Nh = Kh is supportimage V. = [.." ooy 2By whon—d rk_,v.]

size. For mathematical applications, we choose tf k] A A A

h = 1,andAt = 0.05.Letuf} ; ., = ulih, jh, kh; nit) ...(28)

, then iterative method can be described as:

Table 4: Performance Comparison of Different Filters for Image 4

PSNR(dB) Results for the image 4 experiment

Noise Perona LEE FROST ADMBSS Proposed
Level Malik Filter Filter Filter Filter
Filter

0.01 31.8291 29.5409 27.3701 37.9569 61.7416
0.04 25.2852 24.0751 23.0358 34.5986 45.9795
0.07 23.1725 21.8448 21.0474 50.9217 39.4964
0.1 21.8462 20.3749 19.6957 41.2622 36.0276
0.5 18.2611 14.545 14.2376 43.3388 27.3917

Table 5: Performance Comparison of Different Filters for Image 5

PSNR(dB) Results for the image 5 experiment

Noise Perona LEE FROST ADMBSS Proposed
Level Malik Filter Filter Filter Filter
Filter

0.01 32.7224 29.9306 27.1693 45.0071 59.175
0.04 27.2024 25.7441 24.1846 41.735 52.7133
0.07 24.9565 23.6137 22.4323 38.3478 44,5785
0.1 23.5763 22.1666 21.1989 40.7795 40.0525
0.5 19.3568 16.1321 15.705 42.24 29.3316

Table 6: Performance Comparison of Different Filters for Image 6

PSNR(dB) Results for the image 6 experiment

Noise Perona LEE FROST ADMBSS Proposed

Level Malik Filter Filter Filter Filter
Filter

0.01 34.1398 31.1547 28.1883 32.4728 60.5218

0.04 25.2852 26.0935 24.6419 28.4759 53.269

0.07 24.9829 23.8935 22.6956 33.6521 44.4787

0.1 23.474 22.2108 21.3055 32.4591 40.083

0.5 18.9455 15.9552 15.5656 43.2921 29.074
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B et 4l el .
U kg PR g kP e K S -
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g g1yt k-1 By

R

VUl a =

..(29)

Here, we are using symmetric boundary conditions.
So:

Uit ey = Winga Uiae-1j 5 = Uineja!
f=0123. .  N-1.k=0123_ K-1
..(30)
u?ﬂ,—ij«:j = u?ﬂ,ﬂ_j:j.- H?m'—ucj = u?ﬂ,ﬁ',kj:
i=0123. . M—-1:k=0123 . K—-1
.(31)
Ui -1y = Ul Wija—17) = Uiz
i=0123. . M-1:f=0123 .. N-1
.(32)

EXPERIMENT AND DISCUSSION

In this experiment, we have considered
the set of eight-real clinical B-Mode US images of

1365

human liver from different patient'”'8. These real US
images are used for quantitative analysis. The size
of these real clinical B-Mode US images of human
liver is 296 % 236 X 24 (in pixel unit) in x, y, and z
directions respectively. This data set is fed into the
MATLAB' platform for quantitative analysis. For
measuring the all filters performance, we have used
Peak Signal to Noise Ratio (PSNR) value (measured
in dB)?°. Higher PSNR value means higher level
of image quality reconstruction. We have tested
the performance of the filters (LEE Filter®, FROST
Filter®, Perona Malik Filter’, ADMBSS Filter®, and
Proposed Filter) for all US images under different
noise variance as 0.01, 0.04, 0.07, 0.1, and 0.5. All
quantitative analysis results are represented in table
form from Table | to VIII, and also shown in graphical
form in figure 2. The output image of all filters under
different noise variances are shown sequentially
from figure 3 to figure 7. Now, we have seen that
our proposed filter gives higher PSNR value under
different noise variances in comparison to other
discussed filters. This shows that our proposed filter
is work efficiently for speckle noise reduction in US
images under different noise variances.

Table 7: Performance Comparison of Different Filters for Image 7

PSNR(dB) Results for the image 7 experiment

Noise Perona LEE FROST ADMBSS Proposed
Level Malik Filter Filter Filter Filter
Filter

0.01 33.7113 30.9191 28.3638 36.439 60.8786
0.04 27.2024 25.6571 24.4113 44.4852 49.149
0.07 24.6137 23.355 22.4096 34.3248 41.7057
0.1 23.2736 21.9426 21.1419 29.9298 38.9144
0.5 19.0164 15.8372 15.4541 18.3136 29.0295

Table 8: Performance Comparison of Different Filters for Image 8

PSNR(dB) Results for the image 7 experiment

Noise Perona LEE FROST ADMBSS Proposed
Level Malik Filter Filter Filter Filter
Filter

0.01 31.4013 28.6532 26.1152 38.0811 62.3628
0.04 25.9988 24.4407 23.009 39.4908 49.7713
0.07 24.7752 22.3701 21.2703 40.2364 41.8029
0.1 22.447 20.9436 20.0514 26.1845 38.1168
0.5 18.6631 15.1269 14.73583 20.7533 28.1388
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CONCLUSION

Speckle noise is inherent response in US
images. Since it degraded the image quality and
affecting fine and edge details. So, it is difficult task
to see the clinical details in patient diagnosis. In
this paper, we proposed a non-linear anisotropic
diffusion filtering based speckle reduction approach
based on non-linear progression PDE. This approach
minimizes the speckle noise, preserves the clinical
diagnosis details of patient. The experimental
analysis tested on set of eight-real clinical B-Mode
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US images of human liver from different patient
under various noise variance selection Parmenter.
We compare the performance of Perona-Malik Filter,
LEE Filter, FROST Filter, ADMBSS Filter with our
proposed non-linear anisotropic diffusion based
speckle reduction filter. We see that our proposed
approach preserves the clinical details in US images
and minimizing the noise level in term of higher
PSNR value (dB). This is very helpful approach for
radiologists/Doctors to accurate clinical diagnosis.
Future works will include speckle reduction for more
real time US images as well as in real time US
imaging video.
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