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ABSTRACT 

	 The central nervous system (CNS) directs a large number of muscles to produce complex 
motor behavior’s. Moreover, human movement control is significantly compromised in neuromuscular 
diseases; many of which result from the imbalance in the sensorimotor control system. Forward 
models are also known to capture the casual relationship between the inputs to the system and its 
output. The aim of this study was to approximate a forward dynamic simulation by using feed forward 
neural networks in human elbow arm movement. Motion capture data was used to generate c3d data 
from Qualisys software via Qualisys track manager. The c3d data was then converted into marker 
data which contains the markers location in the form of x-y-z coordinate. OpenSim- biomechanical 
software was used to process the marker data for scaling, inverse kinematics and the subsequent 
forward dynamics simulation in the right human upper arm model. The results for the training error 
of the approximated forward dynamics simulation for 3 degrees of freedom (DOF) were 2.804429, 
1.468017 and   2.475500 with a constant validation error of 0.000000. The proposed control algorithm 
served as robust method for approximating a forward dynamic simulation, and can broaden the 
understanding the representations of neuromuscular control in the central nervous system as 
representations of movement plans that are eventually executed by the spinal cord and muscles in 
the periphery.
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INTRODUCTION 
	
	 Human movement control is significantly 
compromised in neuromuscular diseases; many of 
which result from the imbalance in the sensorimotor 
control system. Muscle excitation that follows the 
neural impulses to generate movements common 
in daily activities like reaching, grasping holding 
plays a key role in the mechanism of motion from 
the sensory input1,2. Neural Networks have also 
gained popularity in their usage in fields such as 
Natural Language Processing, Computer Vision, 
reinforcement learning, and even animation3,4. The 
primary motivation of this study was similar previous 
studies which discuss the control of multijoint 
movements by the CNS to perform complicated 

transformations from the desired behavioral goals 
into appropriate neural commands to muscles5. A 
model thus formulated was proposed by defining 
an objective function, which is considered as a 
performance measure for any possible movement: 
square of the rate of change of torque integrated over 
the entire movement6-8. Furthermore, many studies 
have also discussed the use of neural network 
model was developed to understand the internal 
organization of movement generation9-11. The use 
of recurrent neural networks is discussed in detail 
where recurrent neural network is trained to produce 
the muscle activity of the reaching monkeys resulting 
in a dynamics where  simple inputs were transformed  
into temporally and spatially complex patterns of 
muscle activity12 .Past researches in the field of 
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motor control have also discussed the criterion that 
is adopted for determination of the trajectory wherein 
the common invariant features were found in several 
researches that measured the hand trajectories 
of skilled movements13. The hand movement for 
instance, between a pair of targets, subjects tended 
to generate roughly straight hand paths with bell-
shaped speed profiles. These observations along 
with dynamic optimization theory, led to the design of 
a mathematical model which accounts for formation 
of hand trajectories13,5 .The use of neural networks 
which contains internal model of inverse dynamics 
as essential learning parts of the musculoskeletal 
system was the main feature in the learning of 
voluntary motor control14. Other studies emphasize 
the forward model as representation of motor system 
that predicts the next state using the current state of 
motor system and motor commands15.

	 This study will discuss its application to 
approximating and controlling muscle activation 
with feed forward neural networks. The only goal 
of this study is to see if we could achieve values 
using the above strategy in order to have a broader 
understanding as to how neural signals of the motor 
cortex relate to movement. We have selected a 
musculoskeletal model that we will use for our 
neural network approximation. In order to achieve 
our goal, we generate forearm flexion movements 
in an allowable range in order to train and test our 
neural network. 

MATERIALS

OpenSim
	 OpenSim is a software framework designed 
to build and share musculoskeletal models, simulate 
movements, and analyze and visualize those 
movements using specialized tools. This framework 
contains, amongst other things, a graphical user 
interface (GUI) scripted in java language, various 
built-in musculoskeletal models developed and 
published by an open source community of 
researchers and users, a software development 
kit, APIs and other various tools that are used by 
researchers or hobbyists for analysis16. OpenSim has 
many open source musculoskeletal models available 
in their repository. These include human and animal 
models that can vary in complexity and scope. In 
this study, we are only looking at the right arm of a 

human which consists of 2 degrees of freedom, with 
6 muscles and   muscle elements such as bones, 
ligaments, etc. and provides a dynamic graphical 
simulation to visualize and analyze moments about 
the joints of a human arm16. There are multiple arm 
models that are available and we have the liberty 
of choosing one that we believe can achieve our 
objective simply and effectively. There are many 
tools available on the platform that can be used to 
analyze muscle actuation and joint position. We use 
an arm model whose muscles are based on Hill’s 
muscle model16,17 , which is shown in fig 1.

Motion Capture System
	 The motion capture device used for this 
study was Qualisys motion capture system (Qualisys 
Inc) with Qualisys Track Manager (QTM) allows users 
to perform 2D, 3D and 6DOF capture of data in real-
time by the way of C3D data which is then converted 
into in a .trc file which provides the distances between 
markers on the model and experimental marker 
positions which are compared and determined by 
the scaling factors6. For this study the scaling factor 
was set to 1.0 which is the default scaling factor used 
in OpenSim software. The experimental markers set 
for 15 healthy subjects were right acromium; right 
humerus epicondyle and right styloid process of 
radius to match with the generic marker in model. 
The unscaled model should have a set of virtual 
markers placed in the same anatomical locations 
as the experimental markers. The modeling of the 
neural network architecture was carried out in Matlab 
2013 platform. Matlab is a high level language and 
interactive environment for numerical computation, 
visualization and programming. MATLAB provides 
a range of numerical computation methods for 
analyzing data, developing algorithms, and creating 
models .The inverse and forward simulation along 
with the conversion of motion capture data were 
performed via Matlab-OpenSim interface18,19.

Scaling
	 Scal ing is  performed based on a 
combination of measured distances between x-y-z 
marker locations which were obtained from the 
data specified in the track row column (trc) files 
and manually-specified scale factors. The marker 
locations are usually obtained using motion capture 
equipment. For pair 1 on the model (m1) the distance 
is computed by placing the model as all joint angles 
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get assigned their default values. The experimental 
distance between pair 1 (e1) is computed by looking 
at each frame of experimental marker data in the 
given .trc file, computing the distance between the 
pair for that frame, and taking the average across 
all frames in a user-specified time range. The scale 
factor due to pair is s1=e1/m1.

METHODS

	 The schematic of the proposed approach to 
perform neuromuscular control with forward dynamic 
approximation is shown in Fig.2

Inverse kinematics
	 The Inverse Kinematics (IK) tool computes 
generalized coordinate values which positions 
the model in a pose. This pose “best matches” 
experimental marker and coordinate values for that 
time step or the frame of motion1,15 .Mathematically, 
the “best match” is expressed as a weighted least 
squares problem, whose solution minimizes both 
marker and coordinate errors. The marker error is 
the distance between an experimental marker and 
the corresponding generic marker on the model; 
the IK solver computes the generalized coordinates 
and is used to position the markers. Each marker 
has a weight associated with it, which specifies the 
extent to which that marker’s error term should be 
minimized. The IK solver is given by the following 
equation as the weighted least squares problem 
solved by IK.

	 ...(1)
	 where q is the vector of generalized 
coordinates being solved for, xi

exp is the experimental 
position of marker i, xi (q) is the position of the 
corresponding marker on the model (which depends 
on the coordinate values), qj

exp is the experimental 

value for coordinate j. The marker weights (wi’s) and 
coordinate weights (Éj’s). This least squares problem 
is solved using a general quadratic programming 
solver, with a convergence criterion of 0.0001 and 
a limit of 1000 iterations.

	 This generates motion file with the times 
histories of joint angles [1] shown in table 1.

	 Each of the positions are in units of radians. 
For our model, we have 2 Degrees of Freedom 
(joint angles) that correspond to 2 joints, namely 
glenohumeral (GH) and elbow (EL). Each joint has a 
minimum and maximum value for position expressed 
as radians.

Forward dynamics
	 The  Forward  Dynamics Tool can drive a 
forward dynamic simulation. A forward dynamics 
simulation is the solution (integration) of the 
differential equations that define the dynamics of a 
musculoskeletal model1,18. By focusing on specific 
time intervals of interest, and by using different 
analyses, more detailed biomechanical data for the 
trial in question can be collected. From Newton’s 
second law, accelerations (rate of change of 
velocities) of the coordinates can be described in 
terms of the inertia and application of forces on the 
skeleton as a set of rigid-bodies: This is given by the 
following equation 
	 q = [M (q)]-1{T + C (q, q) + G (q) +F}	 ...(2)

	 Where q is the coordinate accelerations 
due to joint torques T Coriolis and centrifugal forces, 
C(q,q) as a function of coordinates q ,and their 
velocities q, gravity G(q), and other forces applied to 

Table 1: A motion data containing time 
histories of joint angles in degrees

Time 	 Joint 0	 Joint 1	 Joint n

t0	 θ00	 θ01	 θ02

t1	 θ10	 θ11	 θ12

t2	 ¸θ20	 θ21	 θ22

tm	 θm1	 θm2	 θm3

Table 2: A controls data containing time 
histories excitation patters of biceps   long 

and short head muscles

Time	 Biceps_long 	 Biceps_short 
	 head	 head

t1	 Excitation11	 Excitation 13

t2	 Excitation 21	 Excitation 23

t3	 Excitation 31	 Excitation 33

t4	 Excitation 41	 Excitation 43

t5	 Excitation 51	 Excitation 53

t6	 Excitation 61	 Excitation 63
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Table 3: Kinematics data in degrees:*r_
shoulder_elev- right shoulder elevation,* 

r_elbow_flex -right elbow flexion

Time	 r_ shoulder_elev	 r_elbow_ flex

0.000000	 -0.03349	 -0.05440
0.008333	 -0.03657	 0.014179
0.016667	 -0.03908	 0.088157
0.025000	 -0.04126	 0.173575
0.033333	 -0.04317	 0.275760
0.041666	 -0.04510	 0.399452
0.050000	 -0.04512	 0.548699
0.066667	 -0.04434	 0.726772
1.00000	 -0.03549	 90.170666

Table 4: State data of muscle 
excitation:*Biceps LH- Biceps long head, 

*Biceps SH- Biceps short head

Time	 Biceps LH	 Biceps SH

0.00000002	 0.01007429	 0.01028343
0.00000004	 0.01007438	 0.01028345
0.00000006	 0.01007445	 0.01028365
0.00000006	 0.01007467	 0.01028388
0.00000008	 0.01007470	 0.01028398
0.00000011	 0.01007476	 0.01028376
0.00000016	 0.01007485	 0.01028355
0.00000025	 0.01007489	 0.01028389
0.00000039	 0.01007494	 0.01028353
0.99999994	 0.01000356	 0.18449298

Fig. 1: Open sim Arm model

the model F, and M[(q)]-1  is the inverse of the mass 
matrix. The state of a model is the collection of all 
model variables defined at a given instant in time 
that are governed by dynamics. The model dynamics 
describe how the model will advance from a given 
state to another through time. In a musculoskeletal 
model the states are the coordinates and their 
velocities and muscle activations and muscle fiber 
lengths. The dynamics of a model require the state 
to be known in order to calculate the rate of change 
of the model states (joint accelerations, activation 
rates, and fiber velocities) in response to forces 
and controls1. This generates the controls file which 
gives the time histories of muscle excitations shown 
in table 2.

Neural Network Architecture
	 Neural Network architecture is imbibed 
from the computational phenomenon of the brain. 

In the brain neurons are connected to each other 
and fire when the sufficiently appropriate stimuli 
are presented. Inputs gathered by the Neuron and 
then passed through an activation function which 
produces an output from the neuron. These outputs 
are then propagated throughout the neural network 
and in the final stage, combined into an output value 
used to interpret the relevant state of the application 
shown in fig 3.

	 Neurons are arranged in layers labeled 
as input, hidden, or output. Input layers represent 
the inputs to the neural network. The hidden layers 
are between the inputs and outputs. The output 
layer is the observable. Each neuron in layer l 
receives weighted inputs from layer l-1and sums 
them together along with a bias before passing 
them through activation function. The bias shifts the 
input sums along the sigmoid function and can be 
beneficial to biasing the output towards a particular 
value. The activation function may change depending 
on the situation of the neural network, but typically 
it is the sigmoid function expressed in eq (3) and 
shown in fig 4.
	 g(z) = 1/(1+e-z)	 ...(3)

	 Feed forward network with 1 input layer, 3 
hidden layers, and a single output layer was used. 
It was fully connected such that each neuron in the 
previous layer is connected to all neurons in the 
next layer. Each hidden layer size is the same as 
the number of inputs created at the beginning of the 
network shown in fig 5.
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Fig. 2: Schematic of the work flow

Table 5: Results of training and validation error

Degrees of 	 1	 2	 3
freedom

Training 	 2.804429	 1.468017	 2.475500
error
Validation 	 0.000000	 0.000000	 0.000000
error

Sampling
	 The sampling required motion kinematics 
data (.mot file) and state data in storage (Controls.
sto) file. The states file can contain the time histories 
of model states, including joint angles, joint speeds, 
muscle activations, muscle fiber lengths, and more. 
The forward dynamics Tool to set the initial states of 

the model for forward integration. Muscle states can 
be estimated by solving for tendon and muscle fiber 
force equilibrium when the solution for equilibrium for 
actuator states is checked. The control data contains 
the time histories of the model controls (e.g., muscle 
excitations) to the muscles and/or joint torques, for 
this study biceps long head and short head was 
considered. It is possible to specify the controls as 
.sto files instead, with columns corresponding to 
desired excitations.

Normalisation
	 The inputs and the outputs were normalized 
between 0 and 1 by using the following equation

	 êj= ej - min(Ci)/max(Ci) - min(Ci)	 ...(4)
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Fig. 3: (a) Neuron (b) Network configuration 
[*Green dots represent connected neurons in each layer]

Fig. 4: Sigmoid function

	 Ci is the ith degrees of freedom. The max 
and min are the maximum values and minimum 
values of the degree of freedom, ej and is the jth 
element.

Initialisation
	 Initialization of the network was done with 
13 random inputs each with 12 dimensions which 
correspond to the down sample rate of 3 for 100 
time steps. The network has 5 layers where the first 
and the last are input and output layers, leaving 3 
hidden layers. There are 50 training rounds in each 
of the 50 epochs. The neural network was tested by 
down sampling the motion files and controls file by a 
factor k = 3. This decreases the amount of neurons 
used for our network and significantly lowers the 
amount of time needed for training and testing. The 

training consists of each input which is a 1X3 vector 
which represents the state at some time step. Each 
weight is multiplied elemental wise with the input 
and subsequently summed together column-wise. 
The bias is then added to the result and then each 
element of the new vector is passed through the 
sigmoid function.

Training
	 The training involved modified back 
propagation algorithm along with stochastic gradient 
descent10. The error function is expressed in 
equation 5
                           n
    Arg min =1/2  (yi – wi)

2	 ...(5)
      w,b              i=1
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Fig. 5: Architecture of the neuron: * Oi
l-1- neuron output of previous layer,*W and b- the weights 

and biases of the current layer,*g - sigmoid function

Fig. 6: Schematic of the training algorithm
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Fig. 7: Baseline testing for initialization

	 where yi is the associated true output and wi 

is the predicted output from the neural network. The 
weights and biases of the network are represented 
by w and b. We sum across all the outputs of our 
network to gather all the contributing errors. By 
finding the gradients with respect to each parameter, 
we will then update each parameter by taking a step 
in the direction of the gradient to decrease this error 
function. The weights and biases are updated in the 
direction of the negative gradient of the performance 
function. 

	 The algorithm for training is as follows: 
A random training example from training pool is 
chosen. Pass training input through the network and 
determine objective loss 

for 
Calculate each nodes in output layer by
1) Computing gradients with respect to biases
2) Computing gradients with respect to weights
3) Computing gradients with respect to previous layer 

end for (Calculate gradients with respect to outputs 
backwards
through the layers)
Repeat using output gradients from the next layer for:
1)	 Computing gradients with respect to biases
2)	 Computing gradients with respect to weights
3)	 Computing gradients with respect to previous 

layer until input layer is reached for  Update all 
weights and biases based on the computed 
gradients by a step size

end for
For each neuron output:
	 Ol

j = g (S (Oi
l-1Wij

l) + bj	 ...(6)

	 g is the sigmoid activation function. Ol
j is 

the output of node j in layer l where Oi
l-1 is the output 

from the previous layer and W and b are the weights 
and biases of the current layer respectively.
The gradients for weight, biases and previous output 
are as follows:
	 dOl

j  / dWij
l = g¹ (S (Oi

l-1Wij
l) + bj

l) Oi
l-1	 ...(7)
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Fig. 8: Training error

Fig. 9: Validation error
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	 Oi
l-1 contributes to all of the outputs in 

the next layer and so in order to back propagate 
the contribution, we have to average all of its 
contributions as follows:
	 dOl/ dOl

l-1 = 1/N S (g¹ (© (Oi
l-1Wij

l) + bj
l) Wij

l	
...(8)

	 dOl
j
 /d Wij

l-1 = dOl
j/dOl-1 * Ol-1/ Wij

l-1	 ...(9)
	 dOl

j
 / d bl-1 = dOl

j/dOl-1 * Ol-1/ b
l-1	

...(10)

	 The chain rule is applied to find the 
gradients with respect to the weights and biases of 
previous layers using the above equations. Once 
the gradients have been calculated, the weights 
were updated update each weight element by a step 
size into the gradient direction. The step size in the 
current study is 0.5 since the gradients were small 
compared to actual weights. This is probably due to 
the fact that normalization required each weight and 
input to be between 0 and 1 and thus these values 
will be multiplied together during training to result 
in a very small value. Therefore a step size large 
enough to influence the objective error function in 
each epoch was used.

Validation
	 In this study, 15 samples operating on 15 
training examples for each of the 20 epochs were 
presented to the network. The network selects 95% 
of the data for training leaving 5% for validation The 
data produced by forward dynamics simulation from 
the 15 samples were validated. The network updates 
the weights and biases and uses those updated 
parameters for the validation set through training 
and is shown in fig 6.

RESULTS AND DISCUSSION

Results of Inverse Kinematics simulation is shown 
in table 3
Results of Forward Dynamics simulation is shown 
in table 4
Results of Baseline testing of the neural network is 
shown in fig 7
Results of training and validation error shown in table 
5 and fig 8 and 9

	 In the past several models were developed 
to understand motor control in human that is 
incorporated in designing the robotic system. At 

present there are various models that use recurrent 
neural network along with supervised learning. 
A study by Kawato et al proposed, proposed a 
mathematical model which accounts for formation 
of hand trajectories. This model is formulated 
by defining an objective function, a measure of 
performance for any possible movement. This 
objective function is determined complex nonlinear 
dynamics of the musculoskeletal system square 
of the rate of change of torque integrated over the 
entire movement. This study was done in an effort 
to understand the trajectory planning and control of 
voluntary human movements6,9.

	 A more recent study on reaching tasks in 
monkeys was carried out by Susillo et al concluded 
the solution generated by recurrent neural network 
which was a low dimensional oscillator resulting in 
multiphasic commands; in order to understand the 
dynamics that transformed simple inputs into both  
spatially and temporally complex muscle activity11. 
The study by  Jordan et al, demonstrated that certain 
classical problems associated with the notion of 
the “teacher” in supervised learning con be solved 
by judicious use of learned internal models as 
components of the adaptive system10. In particular it 
focused on how supervised learning algorithms can 
be utilized in cases in which an unknown dynamical 
system intervenes between actions and desired 
outcomes. Thus in the light of previous studies, 
the present study proposes a control algorithm 
based on feed forward that uses stochastic gradient 
descent to compute the errors for learning strategy. 
The study executes a forward dynamics simulation 
approximated by the feed forward neural network, in 
an attempt to understand the inputs from the CNS 
that are transformed into movements by the way 
of synergistic muscle activities. The network only 
updates the weights and biases through training and 
uses those updated parameters for the validation set. 
The validation graphs reflect the training error graphs 
in their behavior. The degree of freedom which 
represents the time index shows graph where the 
output times and input times are similar and that this 
error is the lowest error of all the degrees of freedom 
as would be expected.Further in the results it is seen 
that the validation error follows a similar pattern 
as the training error, suggesting the possibility 
approximating the forward simulation. This would 
indicate that forward dynamics simulation can be 
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approximated by a neural network. It also important 
to considered the relatively small sample size used 
for the study as a limitation which resulted in similar 
patterns of the cumulative errors throughout the 
epochs. A larger sample size could have shown 
more pronounced results with regard to the changes 
in the errors values for the corresponding training 
errors with greater computational costs. Moreover, 
the study was circumscribed by the constraints in the 
degrees of freedom which limited the movements to 
elbow flexion in allowable range. The activities of the 
secondary muscles that aid in elbow flexion were 
consequently beyond the scope of this study. 

CONCLUSION

	 A common cumulative error was achieved 
that corresponded to the training errors in order to 

approximate the simulation of forward dynamics. 
Hence it can be concluded that control algorithm 
that uses feed forward neural network along with 
back propogation by gradient descent is a robust 
method in an effort to mimic the execution and 
motor planning of the brain when performing simple 
tasks. Furthermore, the proposed control algorithm 
can be judiciously used with both supervised and 
unsupervised learning algorithms.
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