
Biomedical & Pharmacology Journal	 Vol. 10(2), 895-906 (2017)

Neuromuscular Control With Forward
Dynamic Approximation In Human Arm

JAN THOMAS, P VINUPRITHA* and D KATHIRVELU

Department of Biomedical Engineering, SRM University, Kattankulathur – 603 203, Tamilnadu, India.
*Corresponding author E-mail: vinupritha@gmail.com

http://dx.doi.org/10.13005/bpj/1183

(Received: April 13, 2017; accepted: May 10, 2017)

ABSTRACT

	 The central nervous system (CNS) directs a large number of muscles to produce complex
motor behavior’s. Moreover, human movement control is significantly compromised in neuromuscular
diseases; many of which result from the imbalance in the sensorimotor control system. Forward
models are also known to capture the casual relationship between the inputs to the system and its
output. The aim of this study was to approximate a forward dynamic simulation by using feed forward
neural networks in human elbow arm movement. Motion capture data was used to generate c3d data
from Qualisys software via Qualisys track manager. The c3d data was then converted into marker
data which contains the markers location in the form of x-y-z coordinate. OpenSim- biomechanical
software was used to process the marker data for scaling, inverse kinematics and the subsequent
forward dynamics simulation in the right human upper arm model. The results for the training error
of the approximated forward dynamics simulation for 3 degrees of freedom (DOF) were 2.804429,
1.468017 and 2.475500 with a constant validation error of 0.000000. The proposed control algorithm
served as robust method for approximating a forward dynamic simulation, and can broaden the
understanding the representations of neuromuscular control in the central nervous system as
representations of movement plans that are eventually executed by the spinal cord and muscles in
the periphery.

.
Keywords: Neural networks; OpenSim; Forward dynamics; CNS.

INTRODUCTION
	
	 Human movement control is significantly
compromised in neuromuscular diseases; many of
which result from the imbalance in the sensorimotor
control system. Muscle excitation that follows the
neural impulses to generate movements common
in daily activities like reaching, grasping holding
plays a key role in the mechanism of motion from
the sensory input1,2. Neural Networks have also
gained popularity in their usage in fields such as
Natural Language Processing, Computer Vision,
reinforcement learning, and even animation3,4. The
primary motivation of this study was similar previous
studies which discuss the control of multijoint
movements by the CNS to perform complicated

transformations from the desired behavioral goals
into appropriate neural commands to muscles5. A
model thus formulated was proposed by defining
an objective function, which is considered as a
performance measure for any possible movement:
square of the rate of change of torque integrated over
the entire movement6-8. Furthermore, many studies
have also discussed the use of neural network
model was developed to understand the internal
organization of movement generation9-11. The use
of recurrent neural networks is discussed in detail
where recurrent neural network is trained to produce
the muscle activity of the reaching monkeys resulting
in a dynamics where simple inputs were transformed
into temporally and spatially complex patterns of
muscle activity12 .Past researches in the field of

896 THOMAS et al., Biomed. & Pharmacol. J., Vol. 10(2), 895-906 (2017)

motor control have also discussed the criterion that
is adopted for determination of the trajectory wherein
the common invariant features were found in several
researches that measured the hand trajectories
of skilled movements13. The hand movement for
instance, between a pair of targets, subjects tended
to generate roughly straight hand paths with bell-
shaped speed profiles. These observations along
with dynamic optimization theory, led to the design of
a mathematical model which accounts for formation
of hand trajectories13,5 .The use of neural networks
which contains internal model of inverse dynamics
as essential learning parts of the musculoskeletal
system was the main feature in the learning of
voluntary motor control14. Other studies emphasize
the forward model as representation of motor system
that predicts the next state using the current state of
motor system and motor commands15.

	 This study will discuss its application to
approximating and controlling muscle activation
with feed forward neural networks. The only goal
of this study is to see if we could achieve values
using the above strategy in order to have a broader
understanding as to how neural signals of the motor
cortex relate to movement. We have selected a
musculoskeletal model that we will use for our
neural network approximation. In order to achieve
our goal, we generate forearm flexion movements
in an allowable range in order to train and test our
neural network.

MATERIALS

OpenSim
	 OpenSim is a software framework designed
to build and share musculoskeletal models, simulate
movements, and analyze and visualize those
movements using specialized tools. This framework
contains, amongst other things, a graphical user
interface (GUI) scripted in java language, various
built-in musculoskeletal models developed and
published by an open source community of
researchers and users, a software development
kit, APIs and other various tools that are used by
researchers or hobbyists for analysis16. OpenSim has
many open source musculoskeletal models available
in their repository. These include human and animal
models that can vary in complexity and scope. In
this study, we are only looking at the right arm of a

human which consists of 2 degrees of freedom, with
6 muscles and muscle elements such as bones,
ligaments, etc. and provides a dynamic graphical
simulation to visualize and analyze moments about
the joints of a human arm16. There are multiple arm
models that are available and we have the liberty
of choosing one that we believe can achieve our
objective simply and effectively. There are many
tools available on the platform that can be used to
analyze muscle actuation and joint position. We use
an arm model whose muscles are based on Hill’s
muscle model16,17 , which is shown in fig 1.

Motion Capture System
	 The motion capture device used for this
study was Qualisys motion capture system (Qualisys
Inc) with Qualisys Track Manager (QTM) allows users
to perform 2D, 3D and 6DOF capture of data in real-
time by the way of C3D data which is then converted
into in a .trc file which provides the distances between
markers on the model and experimental marker
positions which are compared and determined by
the scaling factors6. For this study the scaling factor
was set to 1.0 which is the default scaling factor used
in OpenSim software. The experimental markers set
for 15 healthy subjects were right acromium; right
humerus epicondyle and right styloid process of
radius to match with the generic marker in model.
The unscaled model should have a set of virtual
markers placed in the same anatomical locations
as the experimental markers. The modeling of the
neural network architecture was carried out in Matlab
2013 platform. Matlab is a high level language and
interactive environment for numerical computation,
visualization and programming. MATLAB provides
a range of numerical computation methods for
analyzing data, developing algorithms, and creating
models .The inverse and forward simulation along
with the conversion of motion capture data were
performed via Matlab-OpenSim interface18,19.

Scaling
	 Scal ing is performed based on a
combination of measured distances between x-y-z
marker locations which were obtained from the
data specified in the track row column (trc) files
and manually-specified scale factors. The marker
locations are usually obtained using motion capture
equipment. For pair 1 on the model (m1) the distance
is computed by placing the model as all joint angles

897THOMAS et al., Biomed. & Pharmacol. J., Vol. 10(2), 895-906 (2017)

get assigned their default values. The experimental
distance between pair 1 (e1) is computed by looking
at each frame of experimental marker data in the
given .trc file, computing the distance between the
pair for that frame, and taking the average across
all frames in a user-specified time range. The scale
factor due to pair is s1=e1/m1.

METHODS

	 The schematic of the proposed approach to
perform neuromuscular control with forward dynamic
approximation is shown in Fig.2

Inverse kinematics
	 The Inverse Kinematics (IK) tool computes
generalized coordinate values which positions
the model in a pose. This pose “best matches”
experimental marker and coordinate values for that
time step or the frame of motion1,15 .Mathematically,
the “best match” is expressed as a weighted least
squares problem, whose solution minimizes both
marker and coordinate errors. The marker error is
the distance between an experimental marker and
the corresponding generic marker on the model;
the IK solver computes the generalized coordinates
and is used to position the markers. Each marker
has a weight associated with it, which specifies the
extent to which that marker’s error term should be
minimized. The IK solver is given by the following
equation as the weighted least squares problem
solved by IK.

	 ...(1)
	 where q is the vector of generalized
coordinates being solved for, xi

exp is the experimental
position of marker i, xi (q) is the position of the
corresponding marker on the model (which depends
on the coordinate values), qj

exp is the experimental

value for coordinate j. The marker weights (wi’s) and
coordinate weights (Éj’s). This least squares problem
is solved using a general quadratic programming
solver, with a convergence criterion of 0.0001 and
a limit of 1000 iterations.

	 This generates motion file with the times
histories of joint angles [1] shown in table 1.

	 Each of the positions are in units of radians.
For our model, we have 2 Degrees of Freedom
(joint angles) that correspond to 2 joints, namely
glenohumeral (GH) and elbow (EL). Each joint has a
minimum and maximum value for position expressed
as radians.

Forward dynamics
	 The Forward Dynamics Tool can drive a
forward dynamic simulation. A forward dynamics
simulation is the solution (integration) of the
differential equations that define the dynamics of a
musculoskeletal model1,18. By focusing on specific
time intervals of interest, and by using different
analyses, more detailed biomechanical data for the
trial in question can be collected. From Newton’s
second law, accelerations (rate of change of
velocities) of the coordinates can be described in
terms of the inertia and application of forces on the
skeleton as a set of rigid-bodies: This is given by the
following equation
	 q = [M (q)]-1{T + C (q, q) + G (q) +F}	 ...(2)

	 Where q is the coordinate accelerations
due to joint torques T Coriolis and centrifugal forces,
C(q,q) as a function of coordinates q ,and their
velocities q, gravity G(q), and other forces applied to

Table 1: A motion data containing time
histories of joint angles in degrees

Time 	 Joint 0	 Joint 1	 Joint n

t0	 θ00	 θ01	 θ02

t1	 θ10	 θ11	 θ12

t2	 ¸θ20	 θ21	 θ22

tm	 θm1	 θm2	 θm3

Table 2: A controls data containing time
histories excitation patters of biceps long

and short head muscles

Time	 Biceps_long 	 Biceps_short
	 head	 head

t1	 Excitation11	 Excitation 13

t2	 Excitation 21	 Excitation 23

t3	 Excitation 31	 Excitation 33

t4	 Excitation 41	 Excitation 43

t5	 Excitation 51	 Excitation 53

t6	 Excitation 61	 Excitation 63

898 THOMAS et al., Biomed. & Pharmacol. J., Vol. 10(2), 895-906 (2017)

Table 3: Kinematics data in degrees:*r_
shoulder_elev- right shoulder elevation,*

r_elbow_flex -right elbow flexion

Time	 r_ shoulder_elev	 r_elbow_ flex

0.000000	 -0.03349	 -0.05440
0.008333	 -0.03657	 0.014179
0.016667	 -0.03908	 0.088157
0.025000	 -0.04126	 0.173575
0.033333	 -0.04317	 0.275760
0.041666	 -0.04510	 0.399452
0.050000	 -0.04512	 0.548699
0.066667	 -0.04434	 0.726772
1.00000	 -0.03549	 90.170666

Table 4: State data of muscle
excitation:*Biceps LH- Biceps long head,

*Biceps SH- Biceps short head

Time	 Biceps LH	 Biceps SH

0.00000002	 0.01007429	 0.01028343
0.00000004	 0.01007438	 0.01028345
0.00000006	 0.01007445	 0.01028365
0.00000006	 0.01007467	 0.01028388
0.00000008	 0.01007470	 0.01028398
0.00000011	 0.01007476	 0.01028376
0.00000016	 0.01007485	 0.01028355
0.00000025	 0.01007489	 0.01028389
0.00000039	 0.01007494	 0.01028353
0.99999994	 0.01000356	 0.18449298

Fig. 1: Open sim Arm model

the model F, and M[(q)]-1 is the inverse of the mass
matrix. The state of a model is the collection of all
model variables defined at a given instant in time
that are governed by dynamics. The model dynamics
describe how the model will advance from a given
state to another through time. In a musculoskeletal
model the states are the coordinates and their
velocities and muscle activations and muscle fiber
lengths. The dynamics of a model require the state
to be known in order to calculate the rate of change
of the model states (joint accelerations, activation
rates, and fiber velocities) in response to forces
and controls1. This generates the controls file which
gives the time histories of muscle excitations shown
in table 2.

Neural Network Architecture
	 Neural Network architecture is imbibed
from the computational phenomenon of the brain.

In the brain neurons are connected to each other
and fire when the sufficiently appropriate stimuli
are presented. Inputs gathered by the Neuron and
then passed through an activation function which
produces an output from the neuron. These outputs
are then propagated throughout the neural network
and in the final stage, combined into an output value
used to interpret the relevant state of the application
shown in fig 3.

	 Neurons are arranged in layers labeled
as input, hidden, or output. Input layers represent
the inputs to the neural network. The hidden layers
are between the inputs and outputs. The output
layer is the observable. Each neuron in layer l
receives weighted inputs from layer l-1and sums
them together along with a bias before passing
them through activation function. The bias shifts the
input sums along the sigmoid function and can be
beneficial to biasing the output towards a particular
value. The activation function may change depending
on the situation of the neural network, but typically
it is the sigmoid function expressed in eq (3) and
shown in fig 4.
	 g(z) = 1/(1+e-z)	 ...(3)

	 Feed forward network with 1 input layer, 3
hidden layers, and a single output layer was used.
It was fully connected such that each neuron in the
previous layer is connected to all neurons in the
next layer. Each hidden layer size is the same as
the number of inputs created at the beginning of the
network shown in fig 5.

899THOMAS et al., Biomed. & Pharmacol. J., Vol. 10(2), 895-906 (2017)

Fig. 2: Schematic of the work flow

Table 5: Results of training and validation error

Degrees of 	 1	 2	 3
freedom

Training 	 2.804429	 1.468017	 2.475500
error
Validation 	 0.000000	 0.000000	 0.000000
error

Sampling
	 The sampling required motion kinematics
data (.mot file) and state data in storage (Controls.
sto) file. The states file can contain the time histories
of model states, including joint angles, joint speeds,
muscle activations, muscle fiber lengths, and more.
The forward dynamics Tool to set the initial states of

the model for forward integration. Muscle states can
be estimated by solving for tendon and muscle fiber
force equilibrium when the solution for equilibrium for
actuator states is checked. The control data contains
the time histories of the model controls (e.g., muscle
excitations) to the muscles and/or joint torques, for
this study biceps long head and short head was
considered. It is possible to specify the controls as
.sto files instead, with columns corresponding to
desired excitations.

Normalisation
	 The inputs and the outputs were normalized
between 0 and 1 by using the following equation

	 êj= ej - min(Ci)/max(Ci) - min(Ci)	 ...(4)

900THOMAS et al., Biomed. & Pharmacol. J., Vol. 10(2), 895-906 (2017)

Fig. 3: (a) Neuron (b) Network configuration
[*Green dots represent connected neurons in each layer]

Fig. 4: Sigmoid function

	 Ci is the ith degrees of freedom. The max
and min are the maximum values and minimum
values of the degree of freedom, ej and is the jth
element.

Initialisation
	 Initialization of the network was done with
13 random inputs each with 12 dimensions which
correspond to the down sample rate of 3 for 100
time steps. The network has 5 layers where the first
and the last are input and output layers, leaving 3
hidden layers. There are 50 training rounds in each
of the 50 epochs. The neural network was tested by
down sampling the motion files and controls file by a
factor k = 3. This decreases the amount of neurons
used for our network and significantly lowers the
amount of time needed for training and testing. The

training consists of each input which is a 1X3 vector
which represents the state at some time step. Each
weight is multiplied elemental wise with the input
and subsequently summed together column-wise.
The bias is then added to the result and then each
element of the new vector is passed through the
sigmoid function.

Training
	 The training involved modified back
propagation algorithm along with stochastic gradient
descent10. The error function is expressed in
equation 5
 n
 Arg min =1/2 (yi – wi)

2	 ...(5)
 w,b i=1

901 THOMAS et al., Biomed. & Pharmacol. J., Vol. 10(2), 895-906 (2017)

Fig. 5: Architecture of the neuron: * Oi
l-1- neuron output of previous layer,*W and b- the weights

and biases of the current layer,*g - sigmoid function

Fig. 6: Schematic of the training algorithm

902 THOMAS et al., Biomed. & Pharmacol. J., Vol. 10(2), 895-906 (2017)

Fig. 7: Baseline testing for initialization

	 where yi is the associated true output and wi

is the predicted output from the neural network. The
weights and biases of the network are represented
by w and b. We sum across all the outputs of our
network to gather all the contributing errors. By
finding the gradients with respect to each parameter,
we will then update each parameter by taking a step
in the direction of the gradient to decrease this error
function. The weights and biases are updated in the
direction of the negative gradient of the performance
function.

	 The algorithm for training is as follows:
A random training example from training pool is
chosen. Pass training input through the network and
determine objective loss

for
Calculate each nodes in output layer by
1) Computing gradients with respect to biases
2) Computing gradients with respect to weights
3) Computing gradients with respect to previous layer

end for (Calculate gradients with respect to outputs
backwards
through the layers)
Repeat using output gradients from the next layer for:
1)	 Computing gradients with respect to biases
2)	 Computing gradients with respect to weights
3)	 Computing gradients with respect to previous

layer until input layer is reached for Update all
weights and biases based on the computed
gradients by a step size

end for
For each neuron output:
	 Ol

j = g (S (Oi
l-1Wij

l) + bj	 ...(6)

	 g is the sigmoid activation function. Ol
j is

the output of node j in layer l where Oi
l-1 is the output

from the previous layer and W and b are the weights
and biases of the current layer respectively.
The gradients for weight, biases and previous output
are as follows:
	 dOl

j / dWij
l = g¹ (S (Oi

l-1Wij
l) + bj

l) Oi
l-1	 ...(7)

903THOMAS et al., Biomed. & Pharmacol. J., Vol. 10(2), 895-906 (2017)

Fig. 8: Training error

Fig. 9: Validation error

904 THOMAS et al., Biomed. & Pharmacol. J., Vol. 10(2), 895-906 (2017)

	 Oi
l-1 contributes to all of the outputs in

the next layer and so in order to back propagate
the contribution, we have to average all of its
contributions as follows:
	 dOl/ dOl

l-1 = 1/N S (g¹ (© (Oi
l-1Wij

l) + bj
l) Wij

l	
...(8)

	 dOl
j
 /d Wij

l-1 = dOl
j/dOl-1 * Ol-1/ Wij

l-1	 ...(9)
	 dOl

j
 / d bl-1 = dOl

j/dOl-1 * Ol-1/ b
l-1	

...(10)

	 The chain rule is applied to find the
gradients with respect to the weights and biases of
previous layers using the above equations. Once
the gradients have been calculated, the weights
were updated update each weight element by a step
size into the gradient direction. The step size in the
current study is 0.5 since the gradients were small
compared to actual weights. This is probably due to
the fact that normalization required each weight and
input to be between 0 and 1 and thus these values
will be multiplied together during training to result
in a very small value. Therefore a step size large
enough to influence the objective error function in
each epoch was used.

Validation
	 In this study, 15 samples operating on 15
training examples for each of the 20 epochs were
presented to the network. The network selects 95%
of the data for training leaving 5% for validation The
data produced by forward dynamics simulation from
the 15 samples were validated. The network updates
the weights and biases and uses those updated
parameters for the validation set through training
and is shown in fig 6.

RESULTS AND DISCUSSION

Results of Inverse Kinematics simulation is shown
in table 3
Results of Forward Dynamics simulation is shown
in table 4
Results of Baseline testing of the neural network is
shown in fig 7
Results of training and validation error shown in table
5 and fig 8 and 9

	 In the past several models were developed
to understand motor control in human that is
incorporated in designing the robotic system. At

present there are various models that use recurrent
neural network along with supervised learning.
A study by Kawato et al proposed, proposed a
mathematical model which accounts for formation
of hand trajectories. This model is formulated
by defining an objective function, a measure of
performance for any possible movement. This
objective function is determined complex nonlinear
dynamics of the musculoskeletal system square
of the rate of change of torque integrated over the
entire movement. This study was done in an effort
to understand the trajectory planning and control of
voluntary human movements6,9.

	 A more recent study on reaching tasks in
monkeys was carried out by Susillo et al concluded
the solution generated by recurrent neural network
which was a low dimensional oscillator resulting in
multiphasic commands; in order to understand the
dynamics that transformed simple inputs into both
spatially and temporally complex muscle activity11.
The study by Jordan et al, demonstrated that certain
classical problems associated with the notion of
the “teacher” in supervised learning con be solved
by judicious use of learned internal models as
components of the adaptive system10. In particular it
focused on how supervised learning algorithms can
be utilized in cases in which an unknown dynamical
system intervenes between actions and desired
outcomes. Thus in the light of previous studies,
the present study proposes a control algorithm
based on feed forward that uses stochastic gradient
descent to compute the errors for learning strategy.
The study executes a forward dynamics simulation
approximated by the feed forward neural network, in
an attempt to understand the inputs from the CNS
that are transformed into movements by the way
of synergistic muscle activities. The network only
updates the weights and biases through training and
uses those updated parameters for the validation set.
The validation graphs reflect the training error graphs
in their behavior. The degree of freedom which
represents the time index shows graph where the
output times and input times are similar and that this
error is the lowest error of all the degrees of freedom
as would be expected.Further in the results it is seen
that the validation error follows a similar pattern
as the training error, suggesting the possibility
approximating the forward simulation. This would
indicate that forward dynamics simulation can be

905THOMAS et al., Biomed. & Pharmacol. J., Vol. 10(2), 895-906 (2017)

approximated by a neural network. It also important
to considered the relatively small sample size used
for the study as a limitation which resulted in similar
patterns of the cumulative errors throughout the
epochs. A larger sample size could have shown
more pronounced results with regard to the changes
in the errors values for the corresponding training
errors with greater computational costs. Moreover,
the study was circumscribed by the constraints in the
degrees of freedom which limited the movements to
elbow flexion in allowable range. The activities of the
secondary muscles that aid in elbow flexion were
consequently beyond the scope of this study.

CONCLUSION

	 A common cumulative error was achieved
that corresponded to the training errors in order to

approximate the simulation of forward dynamics.
Hence it can be concluded that control algorithm
that uses feed forward neural network along with
back propogation by gradient descent is a robust
method in an effort to mimic the execution and
motor planning of the brain when performing simple
tasks. Furthermore, the proposed control algorithm
can be judiciously used with both supervised and
unsupervised learning algorithms.

ACKNOWLEDGMENTS

	 The authors wish to express their deep
sense of gratitude to the co-workers for their constant
support throughout the study.

REFERENCES

1.	 Emel Demircan, Oussama Khatib, Scott delp.
Reconstruction and EMG-Informed Control
Simulation Analysis of Human Movement For
Athletes:Improvement and Injury Prevention.
Conf Proc IEEE Eng Med Biol Soc.September
2015.

2.	 Demircan E, Sentis L, De Sapio V, Khatib
O. Human Motion Reconstruction by Direct
Control of Marker Trajectories. In: Lenarcic
J, Wenger P, editors. Advances in Robot
Kinematis.2008.,Springer Netherlands, pp.
263–272.

3.	 Radek Grzeszczuk, Demetri Terzopoulos, and
Geoffrey Hinton. Neuroanimator:Fast neural
network emulation and control of physics-
based models. In Proceedings of the 25th
Annual Conference on ComputerGraphics
and Interactive Techniques, SIGGRAPH.,
pages 9–20, New York, NY, USA (1998).

4.	 Paul J. Webros.Backpropogation Through
Time: What it does and How to do it.
Proceedings of the IEEE. 10 (1999).

5.	 Tamar Flash, Michael.J Jordan.Computational
schemes and neural networks model of
human arm trajectory control. World congress
of neural networks. pp.76-83 (1999).

6.	 Mitsuo Kawato.Formation and Control of
Optimal Trajectory in Human Multijoint Arm
Movement. Biol.Cybernetics., 61: pp 80-89

(1989).
7.	 T a m a r F l a s h , T e r r e n c e J

Sejnowski.’Computational approaches to
motor control.Trends Cogn Sci., 1: pp209-16
(1997).

8.	 Schweighofer N., Arbib M. A., Kawato M.Role
of the cerebellum in reaching movements
in humans in Distributed inverse dynamics
control. Eur. J. Neurosci. 10: pp 86–94 (1998).

9.	 Kawato M1, Furukawa K, Suzuki R.A
hierarchical neural-network model for control
and learning of voluntary movement.Biol
Cybern., 3: pp 169-85 (1987).

10.	 Jordan MI, Rumelhart DE. Forward models
– supervised learning with a distal teacher.
Cogn Sci., 6: pp 307-54 (1992).

11.	 David Sussillo, Mark M Churchland, Matthew
T Kaufman & Krishna V Shenoy et al.A neural
network that finds a naturalistic solution for
the production of muscle activity.Nature
Neuroscience., 18 (2015).

12.	 Nikhil Bhushan and Reza Shadmehr.
Evidence for a Forward Dynamics Model in
Human Adaptive Motor Control. Advances in
Neural Information Processing Systems, 11:
pp. 3-9 (1999).

13.	 Hogan N., Bizzi E., Mussa-Ivaldi F. A., Flash T.
Controlling multijoint motor behavior. Exerc.
Sport Sci. Rev, 15: pp153–190 (1987).

906 THOMAS et al., Biomed. & Pharmacol. J., Vol. 10(2), 895-906 (2017)

14.	 D.M. Wolpert, M. Kawato.Multiple paired
forward and inverse models for motor control
.Neural Networks.11: pp 1317–1329 (1998).

15.	 R.C MIall, D.M Wolpert.Forward models for
physiological motor control. Neural Networks.,
9(8): pp 1265-1279 (1996).

16.	 Scott L. Delp, Frank C. Anderson, Allison S.
Arnold, Peter Loan, Ayman Habib, Chand T.
John,Eran Guendelman, and Darryl G. Thelen
et al.OpenSim: Open-Source Software to
Create and Analyze Dynamic Simulations of
Movement .IEEE Transactions on biomedical
engineering. 54(11) (2007).

17.	 Thelen DG, Anderson FC, Delp SL.
Generating dynamic simulations of movement
using computed muscle control. Journal of
Biomechanics, 36: pp 321–328 (2003).

18.	 M a n t o a n , C, P i z zo l a t o , M . S a r t o r i , Z .
Sawacha,C.Cobelli,M.Regianni.MOtoNMS:
A Matlab toolbox to process motion data
for neuromusculoskeletal modeling and
simulation. Source code for Biology and
Medicine. 2009.,pp 44.

19.	 Khatib O, Brock O, Chang K, Conti F,
Ruspini D, Sentis L. Robotics and Interactive
Simulation. Communications of the ACM.3:
pp 46–51 (2002).

