
INTRODUCTION

The invasion of human erythrocytes by
malaria parasite initiates Plasmodium development
in a vacuole bound by erythrocyte-derived
membrane, whose asymmetrical distribution of lipids
is reversed in its orientation with respect to the
parasite plasma membrane. The malaria parasite
is incapable of synthesizing fatty acids de novo, but
utilizes preformed fatty acids and lipids from the
host. An enzyme capable of activating fatty acids,
which is necessary for incorporation, into lipids has
been localized to membranous structures found
within the cytoplasm of the infected erythrocyte1.
Lipid metabolism of the parasite may be associated
with alterations in fatty acids and cholesterol in the
erythrocyte plasma membrane, which in turn are
responsible for changes in permeability and fragility2.
A study evaluated the constitution of phospholipid
classes and the content of cholesterol of various
strains of Plasmodium falciparum-infected human
erythrocytes grown in in vitro cultures in conjunction
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ABSTRACT
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respects. Phospholipid metabolism has been identified as an ideal target for novel anti-malarial
chemotherapy due to its vital importance to the parasite. This paper attempts to review the underlying
lipid metabolic pathways in the malaria parasite and their potential benefit as likely targets for novel
anti-malarial chemotherapy.
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with drug susceptibility3. Study reveals that
uninfected erythrocytes in the culture serve as a
major source for the increased lipid content of
malaria-infected cells. The alterations of the
phospholipid composition of infected cells that
results from parasite lipid metabolism are also
reflected in the constitution of uninfected red cells,
implying lipid exchange between infected and
uninfected cells.

Glycerolipid and fatty acid biosynthetic
pathways

The augmentation of all the membrane
systems of the infected erythrocyte causes the lipid
content to rise rapidly, but the parasite lipid
composition differs from that of the erythrocyte in
many respects: it is higher in diacyl
phosphatidylethanolamine, phosphatidylinositol,
diacylglycerols, unesterified fatty acids,
triacylglycerols, hexadecanoic and octadecanoic
fatty acids; but lower in sphingomyelin,
phosphatidylserine, phosphatidylethanolamine,
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cholesterol and polyunsaturated fatty acids. Active
lipid metabolism accompany the membrane
proliferation associated with feeding, growth and
reproduction of malaria parasite.

Lipid metabolism is absent from normal
mature human erythrocytes4 but the  phospholipid
content increases by as much as 500% in the
infected erythrocytes5,6. It has been previously
shown that impairment of phospholipid biosynthesis
with polar head analogs, which interfere with natural
polar head incorporation either by substitution or
competition7-9 with fatty acids10 is lethal to the intra-
erythrocytic stage of Plasmodium falciparum in vitro.

In a study aimed at thoroughly studying
the mechanism of action of compounds showing
marked anti-malarial activity, the effect of the most
active compounds on PC (phosphatidylcholine) and
PE (phosphatidylethanolamine) biosynthesis was
evaluated by measuring the incorporation of
radioactive choline into PC as well as the
incorporation of radioactive ethanolamine into PE
using a cell harvester for rapid serial determination11.
A study repor ted close correlation between
impairment of phospholipid biosynthesis and
inhibition of in vitro malaria parasite growth12.
Compounds showing marked anti-malarial activity
in the study, are assayed for their effects on
phospholipid metabolism. It further revealed that the
most active compounds are inhibitors of de novo
phosphatidylcholine biosynthesis from choline. The
report highlighted that specific anti-malarial effects
of choline or ethanolamine analogs, are thus likely
mediated by their alteration of phospholipid
metabolism; and contended that de novo
phosphatidylcholine biosynthesis from choline is a
very realistic target for novel anti-malar ial
chemotherapy against pharmacoresistant strains.

Phospholipids are absolutely necessary for
parasite membrane biogenesis and it has been
shown that impairment of phospholipid metabolism
is lethal to Plasmodium falciparum in vitro7-10. When
considering the correlation between phospholipid
metabolism impairment and parasite growth
inhibition, molecules appear to segregate into two
groups. The most  whose IC50 is higher than 50µmol/
L appear to be well distributed along the bisecting
line (PL50=IC50). This contrasts with the second group

that has a long alkyl chain and IC50 of less than
50µmol/L.

Lipid synthesis by malaria parasite is
investigated by quantitatively measuring the
parasite’s ability to incorporate 14C-labeled glucose
carbon into various lipids in vitro12. Glucose is
chosen as the substrate for lipid synthesis because
glucose carbon serves as a primary source of the
acetate units required for the de novo synthesis of
fatty acids and sterols, as a source of the α-glycerol
phosphate required for the synthesis of glycerides
and phospholipids. Thin layer chromatographic
procedures are used to separate the extracted lipid
into neutral and phospholipids and to fractionate
the neutral and phospholipids into various
classes13,14. The individual neutral and phospholipid
fractions are recovered from the plates and assayed
for 14C content with a lipid scintillation counter15.
Results reveal that lipid synthesis observed for all
three cell synthesis represent primarily a synthesis
of phospholipids; in all instances between 90 to 99%
of the total 14C lipid activity is recovered from the
phospholipids.

It has been shown that the malaria parasite
is incapable of synthesizing lipids de novo and
restricted to obtaining preformed fatty acids from
the host. Several parasite enzymes involved in lipid
biosynthesis from glycerides and free fatty acids
as well as enzymes involved in the remodeling of
lipid polar head groups have been identified16. A
study to determine the in vitro incorporation of
sodium acetate into the lipid classes of blood cells
infected with malaria parasite reported that free fatty
acids of both normal and infected plasma contain
most of the activity found in their total lipids. The
parasitized blood cells demonstrated greater
incorporation of 14C into their lipids than did plasma
or normal blood cells. The phospholipid fractions of
normal and parasitized blood cells possess most
of the 14C activity. A study reported a four-to-fivefold
increase in the fatty acid content and a two-to-
fourfold increase in phospholipid content of
Plasmodium infected erythrocytes.

The high concentration of 14C tagged free
fatty acids found in the infected plasma is possibly
due to the increased metabolism within the infected
cells. It has been shown from experimental evidence
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that sterols are produced to a greater extent in
parasitized than in normal cells, since there is a
significant amount of incorporation by sterols and
sterol esters of the infected cells.

Several enzymes which are associated
with the type II fatty acid synthetic pathway have
been identified in Plasmodium and appear to be
located in the apicoplast. Plasmodium
homologues of enzymes involved in type II fatty
acid synthesis has apicoplast targeting sequence
and are sensitive to known inhibitors of type II
fatty acid synthetase. This enzymatic biosynthetic
pathway is a particularly attractive drug target for
anti-malarial chemotherapy, since the human host
synthesized fatty acids via different pathways
utilizing different enzymes. A study revealed the
discovery of two genes encoding type II fatty acid
biosynthesis proteins: ACP (acyl carrier protein)
and KAS III (beta-acetoacyl-ACP synthase III)17.
The initiating steps of a type II system require a
third protein: malonyl-co-enzyme A:ACP
transcyclase (MCAT). The study described the
identification of a single gene from Plasmodium
falciparum encoding PfMCAT and the functional
characterization of this enzyme. Another study
presents evidence that two members of the
Plasmodium falciparum acyl-CoA synthetase
(PfACS) family are responsible for the activation
of long-chain fatty acids by thio-esterification with
CoA18. It described co-immunoprecipitation of
ankyrin and of ACS1/3 indicating that at least a
fraction of these proteins are physical ly
associated with the infected erythrocytes and
provide evidence for a novel specific interaction
which suggests that such a binding brought these
enzymes closer to the host erythrocyte membrane
where exogenous fatty acids are available.

A study evaluated the constitution of
phospholipid classes and the content of cholesterol
of various strains of Plasmodium falciparum-infected
human erythrocytes grown in in vitro cultures in
conjuction with drug susceptibility3. Study reveals
that uninfected erythrocyes in the culture serve as
a major source for the increased lipid content of
malaria-infected cells. The alterations of the
phospholipid composition of infected cells that
results from parasite lipid metabolism are also
reflected in the constitution of uninfected red cells,

implying lipid exchange between infected and
uninfected cells.

The metabolism and dynamics of lipids in
malaria infected erythrocytes have been extensively
reviewed19. The phospholipid composition of infected
is substantially different from that of normal red
blood cells. This altered composition is achieved
through various processes, of which de novo
synthesis could supply all the needs of the parasite
lipid anabolism provided adequate concentration of
substrates is supplied. The in vitro culture system
is obviously different from in vivo conditions where
the large systemic increase in plasma fatty acids
and triacylglycerols upon infection can serve the
parasite’s lipid metabolism.

The bi-product of lipid metabolism are
reactive oxygen intermediates such as superoxide,
hydroxyl radical and hydrogen peroxide. These
reactive oxygen intermediates (ROIs) damage
Plasmodium lipids. Glutathione peroxidase is
involved in the detoxification of these reactive
oxygen intermediates. Oxidized glutathione is
recycled and the reducing equivalents of NADPH
generated probably by pentose phosphate cycle.
However, it has been proposed that glutamate
dehydrogenase provides the reduced NADPH
needed for glutathione reductase20. Interestingly, the
malaria parasite may supply the host erythrocyte
with glutathione which could participate in protecting
the host cell from oxidative damage21. It should be
noted that the parasite lipid metabolism is
intertwined with that of the host’s because of the
intimate relationship between the host and parasite.

The biosynthesis of sphingolipids de novo
has been described in Plasmodium falciparum22.
Studies of intra-erythrocytic development of
Plasmodium falciparum have established that
sphingomyelin is synthesized by a parasite-specific
enzyme23-25, and was important for parasite-
mediated nutrient uptake26. However, in contrast to
other eukaryotic cells, no discernible amounts of
steryl esters are produced, and cholesterol is nearly
absent in the malaria parasite27.

The plasma membrane of infected
erythrocyte contains more phosphatidylcholine and
phosphatidylinositol and less sphingomyelin than the
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Fig. 1: Pathway of Lipid Biosynthesis in the Apicoplast of Malaria Parasite. (Retrieved
on-line from PubMed-http://sites.buji.ac.il/malaria/maps/facidsynthesispath.html)

plasma membrane of normal uninfected
erythrocyte28. Large increases in the levels of
palmitic (C16:0) and oleic (C18:1) acids and major
decreases in the levels of polyunsaturated fatty
acids such as arachidonic (C22:6) acids, occur as
a result of malaria infection. This makes the
phospholipid composition very similar to that of
acids, such as arachidonic (C20:4) and
docosahexanoic (C22:6) acids  as a result of
infection. Thus, the phospholipid composition is very

similar to that of the parasite, indicating that there
is intense dynamic phospholipid traffic between the
erythrocyte membrane and the membrane of the
intracellular parasite. These modifications must be
as a result of parasite metabolism of erythrocyte
lipids, since mature erythrocytes have negligible lipid
synthesis and metabolism. Several studies have
shown that the biosynthetic machinery of the
parasite can provide all of the new phospholipid
molecules.
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The intra-erythrocytic stages of
Plasmodium falciparum accummulate triacylglycerol,
produced using oleate and diacylglycerol as
substrates27,29. In contrast to other eukaryotic cells,
neither steryl esters nor cholesterol esters, the
second neutral lipid species reported to be important
for a related apicomplexan, Toxoplasma gondii are
detected in Plasmodium falciparum.

The genome of Plasmodium falciparum
contains the genes for fatty acid synthase II (FAS
II) pathway30. Previous studies have identified and
located the FAS II enzymes  in the apicoplast31,32.
In the FAS II pathway each reaction is catalysed by
a discrete enzyme33. Malonyl-ACP is the starting
point and is produced from malonyl CoA and ACP
catalyzed by the enzyme Malonyl CoA: ACP
transacetylase (fabD).

The enzymes of the fatty acid biosynthetic
pathway, in the apicomplexan parasites including
the Plasmodium species, are predicted to be
localized in the apicoplast; based on the N-terminal
extensions suggesting such a localization34. Malonyl-
CoA itself formed from acetyl-CoA and a single
acetyl-CoA carboxylase (ACCase) is predicted to
be localized to the apicoplast in the Plasmodium
genome. Among the enzymes of the FASII pathway
in Plasmodium falciparum, fabI or enoyl-ACP
reductase, which catalyses the final step in the chain
elongation cycle, has been investigated in great
detail from the viewpoint of identifying potent
inhibitors. The enzyme catalyses the conversion of
trans-2-acyl-ACP to acyl-ACP and requires NADH
as the cofactor. The creation of transgenic
Plasmodium berghei parasites with the Pfenoyl-ACP
reductase replacing the endogenous counterpart,
is another interesting development to serve as an
in vivo mice model35 for studying drug efficacy. Three
condensing enzymes β-ketoacyl-ACP synthases
(PfKAS I, II, III) essentially involved in chain initiation
and fabB/F (I,II) involved in chain elongation are
also being investigated as possible drug targets.

Isoprenoid biosynthetic pathway
The malaria parasite genome provides

evidence for the presence of the non-mevalonate
pathway for isopentenyl pyrophosphate (IPP)
biosynthesis. The presence of  1-deoxy-D-xylose-
5-phosphate (DOXP) synthase in the parasite

genome has been reported36. Isoprenoids,
consisting of isopentenyl pyrophosphate (IPP)
repeat units form prosthetic groups of some
enzymes and are involved in the synthesis of
ubiquinone and dolichol. The DOXP pathway has
been fully characterized37. The mechanism of export
of IPP is not clear, but the close association of the
apicoplast with the mitochondrion is visualized to
facilitate its import and ubiquinone biosynthesis in
the mitochondrion. Thus inhibitors of DOXP reducto-
isomerase may have anti-malarial activity36. The
formation of isopentenyl diphosphate and
dimethylallyl diphosphate, both central
intermediates in the biosynthesis of isoprenoids in
Plasmodium falciparum, occurs via the
methylerythritol phosphate (MEP) pathway.

Interestingly, metabolic profiles show that
DOXP and CDP-ME (4-[cytidine-5-diphospho]-2C-
methyl erythritol) are highly accumulated when
compared to the other intermediates, mainly in the
trophozoite and schizont stages. It is considered
that both DOXP and CDP-CE could act as a
metabolite reserve, which might be used during
schizogony to sustain high demand of  isoprenoids,
and both intermediates might be key metabolites
of the MEP pathway in Plasmodium falciparum. The
metabolic results are correlated with the transcript
profiles of genes involved in the MEP pathway.
Results indicate that MEP pathway metabolite peak
preceded maximum transcript abundance during
the intra-erythrocytic cycle. The MEP pathway
associated transcripts are mostly altered by the
drug, indicating that parasite is not strongly
responsive at the transcript level. A combined
analysis of metabolic and transcription profiles may
be a useful procedure for the identification of
candidate enzymes as novel drug targets38.

CONCLUSION

A better understanding of the parasite’s
lipid metabolism may lead to the development of
novel therapeutic strategies which exploit the
uniqueness of the malaria parasite.

This lends credence to the existence of
novel mechanisms and pathways to malaria
infection, thus describing a new intervention strategy
in the fight against malaria.
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